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Abstract: It is w ell-knovn that arbitrary interconnections of passive (possibly
nonlinear) resistances (R), inductances (L) and capacitances (C) define passive ports,
with port variables the external sources voltages and currents, and storage function
the total stored energy. In this brief note we establish some new passivity properties
of RC and RL circuits under the more restrictive assumption that the characteristic
functions of the capacitances and inductances are nondecreasing. In particular, w e
prove that for this class of nonlinear R Ccircuits passivity is preserv edeven if w e
tak e as port wariables the sources currents and the voltage derivatives. We also show
that nonlinear RL circuits define passive ports with port variables the sources current
derivatives and the voltages. The storage function in both cases is the sum of the
resistors co—conten t, which is a function associated to the pow erdissipation. The
proof of these properties idirect application & ellegen’s theorem. We illustrate
the applicability of these results to generate new Lyapunov functions for nonlinear

stabilization problems.

Notation We consider RLC circuits consisting of ng
resistances, ny, inductances and n¢ capacitances. We
will use the symbols ir,vg,ir,v5,ic,vc to denote
the resistors, inductors and capacitors currents and
voltages, respectively. We will also use ¢, gc to denote
inductor flux and capacitor charge. Resistors are char-
acterized by a graph ir = ig(vg), (or vg = Ogr(ig).)
The inductors behavior is described by the relation
vy = éL, with characteristic function 7;, = fL(¢L);
while the capacitors satisfy ic = ¢¢, with charac-

teristic function ve = ¢ (go). The circuits are inter-
connected to the environment through external ports
with voltages and currents vg, ¢ 5. Boldface will be used
for v ector quartities, with the k—th element identified
with a subindex (-)g., these indexes belong to the
indexed sets R, £ and C, for the R, L and C elements,
respectively. When clear from the context the subindex
k will be omitted.



1. INTRODUCTION

Tellegen’s theorem states the set of branch voltage
vectors that satisfy Kirchoff’s voltage law, say Ky,
and the set of branch currents that satisfy Kirchoff’s
current law, say Kj, are orthogonal linear spaces—
see (Wyatt 1969) for a lucid, compact derivation of
this fundamental result. An immediate consequence of
Tellegen’s theorem is power conservation, that is, the
voltages and currents in an RLC circuit satisfy

igVC + i—lL—VL + iEVR = igVS
where we have adopted the standard sign convention
for the sources voltage and current. Integrating this

equation, and recalling that the stored energy of ca-
pacitors and inductances are given by

qc(t)
Eclgo ()] := oo (q0)dge
0
and
or(t)
ELlor (] := [ ir(dy)del,
0

respectively, we obtain the well-known energy—balance
equation for RLC circuits

Z{Ekc grc ()] — Exclarc(0)]} +
keC

D AEke[okr ()] = Exe (e (0)]} =

kel (1)
t t
/ Vi) / vl dr
0

0
From (1), and the fact that the R, L and C elements
are passive if and only if their stored energy is non—
negative! for all ¢ > 0, we obtain the following
classical result of circuit theory, see e.g., Section 19.3.3
of (Desoer et al. 1969).

Proposition 1. Arbitrary interconnections of passive
RLC elements, with external port variables vg,ig €
IR":, defines a passive port with port variables (is, vg)
and storage function the total stored energy

= Erclake) + Y Ern(drr)

keC kel

gtot qC) QSL

In this short note we will use the following non—obvious
corollary of Tellegen’s theorem

Tdve  .rdvp
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1 Notice that, while resistors are passive if and only if its
characteristic function ig = tg(vg) lies in the first and third
quadrants, this restriction is not imposed for L. and C elements.

which stems for the fact that % € K, for all v € Iy,
to establish some new passivity properties of RL and
RC circuits.

2. MAIN RESULTS

To present our main results we need to introduce the
concepts of content and co-content of a resistance,
which are well-known in circuit theory (Millar 1951,
Penfield et al. 1970), and have been recently used to
study stability of neuromorphic circuits (Wyatt 1969,
Shi et al. 1999).

Definition 1. The co—content of a voltage—controlled
resistance is defined as
VR
Hew) = [ intei)doy
0
while for current—controlled resistances the function
iR
Gin) = [ onti)iiy
0

is called the resistors content.

Notice that the co—content has units of power, and
in particular for linear resistors, where vg = Rig, is
simply half the dissipated power. Also, remark that
for passive resistances it is a positive, nondecreasing
function.

Proposition 2. Arbitrary interconnections of passive
resistances and capacitances with nondecreasing char-
acteristic function ve = 9c(gc) and external port
variables vg,ig € IR™ satisfy the inequality

/ vI()is(N)dr > Tt VR(E)] = Jeot[VR(0)]
0

with

= Je(vkr)

kER

Jiot(VR)

Consequently, the circuit defines a passive port with
port variables (ig, d;’ts ) and storage function the total

resistor co—content Jiot(VR).

Proof. The proof proceeds from (2), where we will
consider the resistive and capacitive branch types
separately. Replacing the constitutive relations for the
capacitances we get

d
-y

keC

OV
Oqrc

(qm] 2.0 (3)



where the non—negativity stems from the assumption
that the function oxc(grc) is nondecreasing.

Now, for the resistances we obtain

d’l}kR
E ZRlc 'Uk:R
kER

_ Z dJi(vkr) dokr

dv dt
keR kR

3 Hulnlt)

keR
thot (VR (t))
=——" 4
0 (4)
The proof is completed replacing (3) and (4) in (2) and
integrating from 0 to ¢. <

A similar result can be established for RL circuits,
noting that % € Ky for all i € Kj. The proof,
which follows wverbatim from the proof of Proposition

2, replacing (2) by

leL TdiR les

Lar TVEG T VST
is omitted for brevity.

Proposition 3. Arbitrary interconnections of passive
resistances and inductances with nondecreasing char-
acteristic function iy, = EL(QSL) and with external port
variables vg,ig € IR™s satisfy the inequality

/ T)dT > Wiot[ir(t)] — Wiotlir(0)]

with

Wiot (ir) Z Wi (ikr)
keR
Consequently, the circuit defines a passive port with
port variables (d;—ts, vg) and storage function the total
resistor co—content Wiyt (ig).

3. DISCUSSION

(1) The new passivity properties of Propositions 2
and 3 differ from the standard result of Proposition
1 in the following respects. First, while Proposition 1
holds for general RLC circuits, the new properties are
valid only for RC or RL systems. Using the fact that
passivity is invariant with respect to negative feedback
interconnections it is, of course, possible to combine
RL and RC circuits and establish passivity of some
RLC circuits. However, it is not clear at this point
how to derive a (relatively) general statement. Second,

the condition of nondecreasing characteristic function
required for Propositions 2 and 3 is sufficient, but not
necessary for passivity of the elements. Hence, the class
of admissible C and L terms are more restrictive.

(2) The derivations above are largely inspired by
the proof of the Shrinking Dissipation Theorem for
RC circuits of the influential paper (Wyatt 1969).
In (Wyatt 1969) it is assumed that the capacitances
satisfy the constitutive relation

) dvc

ic=C —

c (ve) dt
where C(vc) > 0. Notice that, following the descrip-
tion of capacitances used in the paper, we have that
C(ve) = %@C), with constitutive function ¢o =
Go(ve). Therefore, our new passivity property for RC
circuits also holds for this class of elements. Similarly,
Proposition 3 holds true for RL systems where the
inductances are described by
dir,

= L(ip)—

vr = Lin) =
where L(i) > 0.

(3) The results of Propositions 2 and 3 (a well as
Proposition 1) can be easily extended—under suitable
assumptions—in several directions, e.g., to consider
time—varying elements, or reciprocal multiterminal de-
vices (Wyatt 1969).

4. APPLICATION FOR STABILIZATION

In this section we will apply the new passivity prop-
erties described above to the problem of stabilization—

via a suitable definition of the external source variables—

of the equilibria of nonlinear RL or RC circuits. In par-
ticular, we will prove that for RL systems we can use
the new passivity property to overcome the dissipation
obstacle for energy—balancing stabilization identified
in (Ortega et al. 2001).

In (Ortega et al. 2001) we presented a new method
to stabilize nonlinear systems satisfying (1) based
on the following observation. It is clear from (1)
that if no power is delivered to the circuit, i.e., if
v (t)is(t) = 0 for all ¢ > 0, then the energy function
Eiot[z(t)], (where we have defined the state z :=
(ac, #1) € IR™), is not increasing and—in the presence
of adequate dissipation—the trajectories will evolve
towards the minimum of & (z). As this minimum
will not necessarily coincide with the desired operating
point, say . = (qQ«c, ¢« ), the central idea of (Ortega
et al. 2001) is to assign to the interconnected system
a new energy function £4(x) which has a minimum at
T



A natural approach to shape the energy function is to
design a source system such that the energy that it
supplies to the circuit can be expressed as a function
of the circuit state.? Indeed, assume that

t

—/Vg(T)is(T)dT = Ealz()] = Ealz(s)]  (5)

S

holds for some function &,(z), and for all £ > s. Then,
replacing (5) in (1), we see that the trajectories of the
system will converge now to the minimum of the new
energy function

gd(l’) = gtot(x) + ga(l’) (6)

and the desired equilibrium z, will be stable. Notice
that the new energy functions is equal to the difference
between the stored and the supplied energies. There-
fore, we refer to this particular class of controllers as
energy—balancing.

As discussed in (Ortega et al. 2001), and illustrated
in the example below, energy—balancing stabilization
is possible only for systems that can be stabilized
extracting a finite amount of energy from the source,
which in particular implies that the supplied power
evaluated at z, should be equal to zero. For instance,
a series RLC circuit is energy—balancing stabilizable
(because in steady state there is no current drained
from the source), but not a parallel RLC circuit. (For
the case of linear time—invariant systems without poles
at the origin and transfer matrix X(s) = C(sI—A) 'B
we can give a complete characterization of energy—
balancing stabilizable systems. Indeed, in this case,
admissible equilibria must satisfy z, = A~!Bu, for
some (nonzero) constant vector u, € IR™. We have
then that
u, Cr, =04 %(0) =0,

In other words, a necessary and sufficient condition
for the extracted power to be zero at the equilibrium
is that the plant has a blocking zero at zero. This is
clearly a quite restricted class of systems.)

It turns out that the new passivity properties estab-
lished in Propositions 2 and 3 can be used to over-
come the dissipation obstacle indicated above, assign-
ing Lyapunov-like functions based on the resistor co—
content, instead of the total energy. We will illustrate
this point with a simple example.

Example. Consider a voltage—controlled nonlinear se-
ries RL circuit whose dynamics are described by

2 For ease of presentation the derivations below are presented
with some abuse of notation, for a mathematically precise
treatment see (Ortega et al. 2001) and the example below.

o1 = —0r(ir) + vs
tR=1p,
ir, =ir(¢r)

where 9g(ig) is a first third quadrant function, 71, (¢r)
is nondecreasing, and both functions are zero only
at zero. As the voltage across the inductance is zero
in steady state, it is clear that, at any equilibrium
oL« # 0, the extracted power is nonzero, hence the
circuit is not energy-balancing stabilizable—even in
the linear case! This fact becomes evident if we look
at the differential form of (5)

Sa(d)L) =
855(;¢L) —ig(ir(¢r)) + 0s(br)| = —0s(or)ir(or),
L

where we have postulated a (control) function vs =
05(¢r). Now, as the term in square brackets equals ¢,
it should be zero at ¢r., but the extracted power at
any nonzero equilibrium, ﬁs(d)L*)fL (¢L«), is nonzero,
hence the PDE does not have a solution, and we cannot
shape the energy function as desired.

On the other hand, to construct our Lyapunov-like
function, we can proceed from the inequality of Propo-
sition 3, which in this particular example takes the
form

t i (t)

/ ir, ("oslin (r]dr > Wiz (1) = / o (il )dit, > 0.

We can then try to express the left-hand side as a
function of iy, say —G,(ir). (Notice that, to simplify
the notation, we postulated now a feedback of i;, as
the controlled voltage.) This is tantamount to solving
the PDE
Galip) = 786;.(“) ir=—0s(ig) ir
ir

that, for any arbitrary G,(i1,), has the trivial solution

. 0Gq (i
’US(ZL) = —#

The design is completed selecting a function G, (ir)
such that

ir(¢r.) = argmin{G(ir) + Go(iz)}

and applying the control vs = tg(ir,)- o

Obviously, the stabilization problem described above
can be solved with much simpler techniques, but the
objective of the exercise was to illustrate—with the
simplest example—a procedure that can be generalized
to more complicated cases.?® Also, although it is clear
that there are many other applications of the new

3 Provided, of course, that we can solve the PDE!



dissipation inequalities for controller design, for the
sake of brevity, we will not elaborate on this topic
any further. Results along this line will be reported
elsewhere.

5. CONCLUSIONS

We have established some new passivity properties for
nonlinear RC and RL circuits, when the R, C and L
elements are passive and, furthermore, the constitutive
relations of the C and L elements are nondecreasing.
It is shown that, in this case, it is possible to “add
a differentiation” to the port terminals preserving
passivity. In contrast to the well-known passivity of
general RLC circuits, the new passivity properties
have been derived only for RC or RL circuits. This
class of circuits contains, however, some interesting
application examples. For instance, in VLSI circuits
the inductive effects are negligible, while for electric
machines one can usually disregard the capacitive
terms. The result is then proven to be useful to
overcome the dissipation obstacle in RL circuits that
are not stabilizable via energy-balancing. At a more
general level, one objective of our paper was to put
forth the resistor co—content as a new (Lyapunov-like)
building block for controller design.

There are close connections of our result and the well-
known Brayton—Moser’s description of RLC networks
(Brayton et al. 1964).% In this model RLC circuits are
gradient systems with potential function the dissipa-
tion function defined by the resistors. It is interesting
that the model is defined with respect to an indefinite
inner product, which is definite if the circuit contains
only RL or RC elements, as considered here. See (Weiss
et al. 1998) for a recent extension of Brayton—Moser’s
result and a review of the relevant literature.
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