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Abstract: This paper deals with a class of uncertain systems with multiple time-
varying delays. The stability and stabilizability of this class of systems are considered.

Their robustness are also studibdn the norm bounded uncertain

ties are consid-

ered. LMIs Delay-dependent sufficient conditions for both stability and stabilizability
and their robustness are established to check whether a system of this class is stable
or not and/or is stabilizable or not. Some numerical examples are provided to show
the usefulness of the proposed results. Copyright (©2002 IFA C
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1. INTRODUCTION

It was shown in different studies that the presence
of the time-delay in the systems dynamics is
the primary cause of instability and performance
degradation. The class of dynamical systems with
time-delay has in fact attracted a lot of researchers
mainly from the control communit y Many results
on this class of systems have been reported to the
literature. We refer the reader to (Boukas and
Liu, 2000; Mahmoud, 2000) and the references
therein for more information.

In the present literature there exist tw o tech-
niques that can be used to study the stability
and the stabilizability. The first one is based on
the Lyapunov-Razumikhin technique and it con-
sists of considering a Ly apune function of the
form, V(z;) = x] Py, with P a symmetric and
positiv e-definitematrix with appropriate dimen-
sion and x; is the state vector of the system, to
dev elopthe conditions that can be used used to
check whether the system under study is stable
or not; and/or stabilizable or not. This technique

gives a condition that depends on the maximum
value of the dela y.The reader can consult the
w orkof (Hale, 1977; Wang et al., 1987; Su and
Huang, 1992; Niculescu et al., 1994; Su, 1994; Xu
and Liu, 1994; Mao, 1997; Xu, 1995; Li and
de Souza, 1996; Li and de Souza, 1997; Hmamed,
1997; Sun et al., 1997; Mahm®od)) andhe
references for more information.

The second technique is based on the Lyapunov-
Krasovskii approach and it consists of considering
a more complicated Lyapunov functional to deter-
mine the appropriate dela y-dependent condition
that in general depends on the upper bound of
the first derivative of the delay when it is time-
varying. This tecinique has been extensively used
and the large number of references using it con-
firms this. See for example the w orksdone by
(Boukas and Liu, 2000; Mahmoud, 2000; F rid-
man, 2001) and the references therein for more
information;

But from the practical point of view w e are
interested by conditions that depend on both, i.e:



the upper bound of the delay and the lower and
the upper bounds of the first derivative of the
time-varying delay. Since in practice the delay is
in fact always time-varying, that can be usually
represented by a function h(t), and bounded by
a constant h, it is therefore desirable to have
conditions that depend on the upper bound of the
time-varying delay and on the lower and the upper
bounds of the first derivative of the time-varying
delay.

The goal of this paper consists of considering the
class of uncertain linear systems with multiple
time-varying delays and develop sufficient con-
ditions for stability and stabilizability and their
robustness that depend on the upper bounds of
the delays and on the lower and upper bounds
of the first derivative of the time-varying delays.
The Lyapunov-Krasovskii approach will be used
in this paper.

The paper is organized as follows. In section 2, the
problem is stated and the required assumptions
are formulated. Section 3 deals with the stability
and the robust stability. Section 4 covers the
stabilizability and the robust stabilizability of the
class of systems under study. Section 5 presents
some numerical examples to show the usefulness
of the proposed results.

2. PROBLEM STATEMENT

Let us consider the following class of systems with
multiple time-varying delays:

P
=AWz + Y Agi(t)Ten; ) + B)uy (1)
j=1
where z; is the state vector, u; is the control input,
hj(t); 3 =1,2,...,p, is the time-varying delay of
the system and the matrices A(t), Ag;(t) and B(t)
are given by:

A(t)y=A+ DF(t)E
Adj(t) = Adj + Dij(t)Ej,Vj =1,2,...,p

B(t)= B+ DyFy(t)Ey
with A, Ag, j = 1,2,....,p, B, D, E, D;, Ej;
j = 1,2,....,p, Dy and E, are given matrices
with appropriate dimensions and F(t), F;(t); j =
1,2,...,p and F(t) represent the system uncer-
tainties satisfying the following assumption.

Assumption 2.1. Let us assume that the following
hold:

FT()RF(t) <R (2)
F/ (t)R4F4(t) < Ry, (3)
F () RyFy(t) < Ry (4)

with R, R;,...,R, and R, are given matri-
ces with appropriate dimensions and R; =
diag(Ry, ..., Rp), F4(t) = diag(Fy(t),..., Fp(t))

Remark 2.1. The uncertainties that satisfy (2)-
(4) will be referred to as admissible uncertainties.
Notice that the uncertainties F'(t), F;(t), j =
1,2,...,p and Fy(t) can be chosen dependent
on the system state and the developed results
will remain valid. However, in the present paper
we will consider only the case of time-varying
uncertainties.

Assumption 2.2. The time-varying delay h;(¢),
j=1,2,...,pis assumed to satisfy the following;:

where l_zj, l; and l_j, j =1,...,p are given positive

constants.

Let us define 7 as T = max (ﬁl,...,ﬁl) and x;
as x¢(8) = Ty, t — T < s < t. In the rest of the
paper we will use x; instead of x;(s);

In the rest of this paper the notation is standard
unless it is specified otherwise. L > 0 (L >
0) means that the matrix L is symmetric and
positive-definite matrix (symmetric and negative-
definite).

3. STABILITY AND ROBUST STABILITY

The goal of this section consists of establishing
what will be the sufficient conditions that can be
used to check whether or not the class of systems
under study is stable. We are also interested by
the robust stability of this class of systems. These
two problems will be discussed in the following
subsections.

3.1 Stability

Let us now suppose that the control is equal
to zero, i.e: uy = 0, V¢t > 0 and that the
system doesn’t contain uncertainties which gives
the following dynamics:

P
T = Az + Z AdiTi_p, (1) (7)
j=1

The goal of this subsection consists of developing
a condition that can be used to check whether
the class of systems under study is stable or not.
The condition we are looking for should depend
on the upper bound of the delay and on the lower



and upper bounds of the first derivative of the
time-varying delays given in Assumption 2.2. The
following theorem states such result.

Theorem 3.1. Let assume that the assumption 2.2
is satisfied. If there exist P >0, Q; > 0, W; > 0,
Xj, Y; and Z; for j = 1,2,...,p such that the
following hold:

AR ®
([j_lj) Xj+([j—1) W]’ <0,and (9)

ATP-}-PA—F‘I’l PA; — ¥y ATIW
T

(PAd - ws) —w, ATIW | <0
WITA WIT Ay -W
(10)
where

I=[I ... I] (11)
Aa=[Aa ... A (12)
W: diag(hlwl, . hpr) (].3)

p
=Y [Q+ (I - 1) (hZ; +Y; +Y;"){14)

j=1

Us=[(Lh-L)Y1...+(,-1)Y,] (15)

Uy =diag((1— L) Q1, ..., (1—1,)Qp) (16)

then the system under study is asymptotically
stable.

Proof: Let the Lyapunov functional be defined by:

Vi(xe) = Vi(xe) + Va(xe) + Va(x¢) + Va(xy)

where

Vi(xe) = xtTth

p t t
Va(x) =) / /:'UZTWjj:Zdzds

=L hi(t) s

=1
¢
-
/ z, Qjxsds

t—h;(t)

Vi(x) :i/ (l} - h]—(z))

V3(Xt)

e

II
-

J

Jj=1

. Z; Y; T,
/ [mj ms] {er XJJ] [i:s]deZ

z—h;(?)

After taking the derivative of these functionals
and some algebraic manipulations we get

V(Xt) = f;ert

+i / g (1= 4) Xj+ (I — 1) W;] ieods

I (1)
with
L :
A P R
Mll M12:|
M =
[Msz Mss

where My, My, and My, are given by
My =A"P+PA+A"IWI'A+ ¥,
Mis=PAy—Us+ ATTW I Ay

My =AjIW I"Ay— 0,

with Therefore, the system is then asymptotically
stable if the following hold:

M <0 )
[(=1) X;+ (L —1)W;] <0,¥j=1,...,p

Notice that matrix M can be expressed as follows

ATP+PA+V; PA;— Ty
T

M= (PAd - \113) —,
ATIWITA ATITWITA,
_ T _
TlATT W) AT A
ATP+PA+U, PA;—U,
— T
(PAd - \113) —,
ATIW (W)_l ATIW ’
ATTW ATTW

Using the Schur complement, we conclude that M
is negative definite if and only if (10) is satisfied
which is verified by assumption and therefore,
since (9) and (8) are assumed to be satisfied the
system under study is asymptotically stable. This
ends the proof of the theorem. VVV

Remark 3.1. The results of Theorem 3.1 are only
sufficient and therefore if these conditions are not
verified we can’t claim that the system under
study is not stable.



3.2 Robust stability

Let us now assume that the control is still equal
to zero for all time and assume that the system
has uncertainties on all the matrices, i.e:

i = [A+ DF(t)E]

p
+ D [Ag + DiFj () Ejlweon,ey  (17)
j=1

where all the terms keep the same meaning as
before.

We introduce the following notations

A=A+ DF({t)E
Ag=[An + DiF\(t)E1 ... Agp+ DyF,()Ep]
=Aq+ DyFyEq

where E; and Dy are given by
Dy=[D1 ... D] Eq = diag(Ey, ...Ep)

Note that conditions (8) and (9) do not depend
on the system matrices so they do not need to be
adapted to the uncertain case. Besides, we have
to replace A and Ag respectively by A and Ay in
condition (10) to get a condition for the robust
case.

Thus after some algebraic manipulation we have
the following result.

Theorem 3.2. Let assume that the assumptions
2.1-2.2 are satisfied. If there exist P > 0, Q; > 0,
W; >0, X;,Y;, Z; for j =1,2,...,p and X such
that conditions (8), (9) and (26) hold. then the
uncertain system under study is asymptotically
stable for all admissible uncertainties.

3.3 Stabilizability

This section deals with the stabilizability prob-
lem, and we will try to design a controller that
stabilizes the closed-loop system. We will restrict
our self to the class of memoryless state feedback
controller.

Thus the state feedback controller is of the form:
u(t) = Kua(t) (18)

Substituting (18) in the plant model and taking
A = (A+BK) we get the closed-loop dynamics:

p
iy = Ay + Z Agi ()T, (1) (19)
j=1

We note that only condition (10) must be adapted
to the stabilizability case. We replace A by A in

(10) and we multiply both sides by diag(P~*, I,®
Pt (W) 71) with I, the unity matrix in RP
and ® stands for the Kronecker product. Further,
assuming that

W <I'e®P
with I' = diag(vy1, ... , %) and T, = (I, ® P71)
we get
a AT, — Ty PL(A)'T
_\ T _
(AdTp - \1'3) —0, T,ATT
I7(Ap=t) 1741, -(TeP)™
<0 (20)

with @ = P=1(4) " 4 (A°)P~! + ¥, and ¥, =
P=1,P~1 i =1,2, 3 (this notation applies in the
sequel).

If we use the new variables T = P! and S = KT
and after some algebraic manipulation we get the
result summarized in Theorem 3.3

Theorem 3.3. Let assume that the assumption 2.2
is satisfied. If there exist T = Pt >0,Q; >0,
W; >0,X;,Y;, Zifori=1, ..., pand S = KP~!

such that the following hold for¢ =1, ..., p
hiW; <~7'T (21)
[ Z; Y,
v X] >0 (22)
(i—1) X+ (= 1) Wi <0 (23)
B A;r + AO + \i'l AdTp — \i’3 AII

_\ T _
(AdTp - \1:3) ~, T,ATT | <0

L I74, I"A, 5, —(I)'eT

(24)

with A, = (AT+BS) then the closed loop system
is asymptotically stable.

3.4 Robust stabilizability

In this subsection, we are concerned by robust
stabilizability of the uncertain system under the
control law (18). The closed loop system is then
given by

it =[A+ BK + DF(t)E + DyFy(t)E, K] 2
p
+ D [Ag + D0 Ejlwiny)  (25)
j=1

where all the terms keep the same meaning as
previously. Taking account of the uncertainties in
(24), we get



Al + A, + 9, AT, — 05 AlT
N\ T _
(AdTp - \1:3) — T, T,ATT
T4, A0, —(0)7'eT
+A <0

By considering non null vectors n;, 72 and 73 we
get

Ui
[nf m3 n3 ]A || =20 DF(t)ETn
n3

+2n, Dy Fy(t)Ey St + 21, (DaFy(t)Eq @ T)1o
+2ng I'" (DF(t)ET + DyFy(t)EpS)m
+2n 1" (DyFy(t)Eq ® T)ne

Taking (, = Fy(t)EpySm, ¢ = F(t)ETn and
Ca = (Fd(t)Ed ® T)’I72 then

.
HINA
2 Al n =2z"Agz
L] L]
with 2" =[n/ n n3 (" ¢ ¢ ]and A
given by
0 0 O D Dy Dy
0O 0 0 O 0 o0
A 0 0 0 D Dy Dy
= 1Dp" 0o DT 0 0 O
Df 0 D/ 0 0 0
D} 0 D; 0 0 0
note also that
¢1"TR 0 07([¢
G2 0 Ry O G| <
(3 0 0 R4 (3

n STE,) RyEySm +n) TETRET )
+1)2 (Ed Y T) TRd (Ed ® T) nathen

From above and the use of the S-procedure we get
condition (27).

The following theorem summarizes the result of
robust stability.

Theorem 3.4. Assume that the assumptions 2.1-
2.2 are satisfied. If there exist T = P~! > 0,
Q; >0,W; >0, X;,Y;, Zj for j = 1,2,...,p,
S = KP7! and X such that conditions (21),
(22), (23) and (27), then the closed loop uncertain
system under study is asymptotically stable for all
admissible uncertainties.

4. EXAMPLE

To show the usefulness of our results, let us
consider some numerical examples.

Ezxample 4.1. In this example, we will consider
that the system under study has one time-dealy
and try to apply the results of Corollary 3.2. Let
us assume that the dynamics is described by the
following matrices:

4|31 A — [ —0:2000 0.1000
I R | 4= 1 _0.3000 —0.1000

D=D, =02 E=E =1

R=R, =1 1=01 1[=04

Solving LMIs of Theorem 3.3 for a single time

varying delay case we get:
0.7355 0.3138 v — 1.7810 2.0019
0.3138 0.5133 | = ~ | —0.9834 —1.0850 |’
—2.6960

x|

8.8733 —4.7567 p— 8.3500

—4.7567 2.5605 |’ | —2.6960 2.2104
| w-]

z-|
15.3847 —5.3892 0.5190 0.0963
h = 4.385

|
|

The parameter h has been found by trial and error
method in order to achieve the feasibility of the
LMI’s. Based on the results of Theorem 3.3, we
conclude that the system is robustly stable.

@= [—5.3892 2.5053 0.0963 0.2809
A =0.2357

Ezxample 4.2. In this example, we consider the
robust stabilizability problem. For this purpose let
us consider the following data:

2.0 0.0

A‘_1.03.0] D=02I E=I
(1.0 2.0

B‘_l.oo.o] Dy=02I Ey=1I
[—0.1 0.0

Al__—O.S—l.O} Dy =02 E =1

R=I, R =1 Ry=1I

y=5 1=01 1=04

Solving equation (21)-(21) and (27), for a system
with a single time varying delay we get:

r=w |1 5 x=w 2 Y]
vew |5 5] 2w T T
e R RN ey
s=107| 3 Vi) A=10




_ [-0.9574
| -1.0323

—6.9350

2.0171 h = 4.385

K

The parameter h has been found by search. Based
on the results of the previous theorem, we con-
clude that the system under study in this example
is robustly stable for all admissible uncertainties.

5. CONCLUSION

This paper dealt with class of dynamical linear un-
certain systems with multiple time-varying delays
in the state. delay-dependent sufficient conditions
have been developed to check whether a system
of this class of systems is stable or unstable,
stabilizable or not stabilizable. A state feedback
controller with consequent parameters has been
used to stabilize the system. The LMI technique
is used in all the development.
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ﬂo T PAd - ‘113
(PAs-Ws)  —s+ AE] RuEq
WI'TA WI' Ay
DTP 0
DIp 0
ATIW PD  PDy
ATIW 0 0
- WI'D WI'D,
_ T < 0(26)
(WITD) AR 0

(WITDd) T “ ARy

B,=A"P+PA+3, +\E"RE

[ ﬂl AdT - @3 A;FI
_ T
(AdT _ xpg) By TATT
174, ra,r -0 'er
DT 0 DT
D) 0 D)
L D} 0 D}
D D, Dy
0 0 0
D D, Dy
S o <o (27)
0 —ARy, O
0 0 —ARy

Bi=A, + A, + ¥ + AS"E) RyE,S
+M\TE"RET
By=—Wy+ A(E4®T) Ry(Eq®T)

Condition (27) is linearized with respect to S and
T by means of a simple Schur complement which
we omit here for lack of space.



