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Abstract: Model validation provides a useful means of assessing the ability of a model to
account for a specific experimental observation, and has application to modeling, identifi-
cation and fault detection. In this paper we consider a new approach to the linear fractional
transformation (LFT) model validation problem by deploying quadratic functionals, and more
generally nonlinear functionals, to specify noise and dynamical perturbation sets. Sufficient
conditions for invalidation of such models are provided in terms of semidefinite programming
problems.
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1. INTRODUCTION

Models for robust control design contain bounded un-
certainties (perturbations and unknown noise or sig-
nals) with explicitly specified bounds. Robust control
models are specified as sets, where the sizes of the
perturbation and noise/disturbance bounds specify the
boundary of the sets. In this context, model validation
for robust control models can be stated as follows:
Given a robust control model, is there a perturbation
and noise/disturbance signal from the assumed sets
which makes the model consistent with the experi-
mental observation? No assumptions are made about
the nature of the physical system. Rather, measure-
ments are taken, and the assumption that the model
describes the system is directly tested. The quanti-
tative information obtained is a lower bound on the
mismatch between the model and the corresponding
physical system. A model cannot be validated by an
experiment, only invalidated or not invalidated.

The robust control model validation problem was first
considered in the frequency domain, using structured
LFT models, by Smith and Doyle (1992). Poolla et al.
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(1994) considered the discrete time-domain case, with
a more restricted class of perturbation model struc-
tures. Zhou and Kimura (1993) addressed the issue of
identifying certain system parameters in this frame-
work. Chen and Wang (1996) and Toker and Chen
(1996) extended the time-domain validation approach
to certain LFT structures and shown that the model
validation problem can be reformulated as a biaffine
matrix inequality which they have shown to be � P
hard. Structured LFT frameworks for model valida-
tion are also considered in Chen (1997); Rangan and
Poolla (1998); Xu et al. (1999).

More recent work in Smith and Dullerud (1996) and
Rangan and Poolla (1996) has focused on sampled-
data framework and the emphasis has again been
structures in which the norm-bounded perturbations
affect the residual data/model mismatch linearly. The
sampled-data results share the same complexity prop-
erties as the aforementioned time-domain results.

The contribution of this paper is that we consider
model validation in a more general setting than pre-
vious work. Our approach considers an LFT formula-
tion, and use nonlinear functional constraints—in par-
ticular, multinomial functionals—to provide a wider
set of possibilities for expressing the characteristics
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of the input disturbances and dynamical perturba-
tions. This general approach to modeling perturba-
tions and signals is motivated by Yakubovich (1971)
and Megretski and Rantzer (1997). We also make use
of the recent work in Parrilo (2000) on non-negativity
of multinomial functionals, and we derive sufficient
conditions for invalidation in terms of semidefinite
programming problems.

2. THE MODEL VALIDATION PROBLEM

The linear fractional framework to be considered is
described by the equations,

z � P11v�P12w�P13u (1)

y � P21v�P22w�P23u

v � ∆z�

where systems P and ∆ are discrete-time and causal.
We consider the signals in the above as finite data
records, of length T . P is taken to be a linear system,
and ∆ to be a more general mapping residing in a
prespecified class. Despite its simple structure this
paradigm is remarkably general when ∆ is used to
account for both static nonlinearities and unmodeled
dynamics.

The input w is an unknown exogenous signal, taken
from a known bounded set, w � �w � �nwT . The
other input, u, is known or measured and might cor-
respond to the excitation input in an identification
experiment. In the model validation problem, the out-
put signal, y, is also considered to be known or mea-
sured. Measurement noise is modeled as a component
of w, and in any experimentally based problem P22
can be assumed to be left invertible. The function ∆
is constrained in terms of the ordered pair �v�z�, by
�z�v� ��∆ ��

nzT ��nvT .

Model validation is the data based assessment of this
model. Given measurements of the input u, and output
y, we wish to determine whether or not there exist
�v�z� � �∆ and w � �w, consistent with (1). If no
such �z�v� and w exist, then the particular datum
�u�y� invalidates the model. This is formally stated as
follows.

Problem 1. (Model Validation). Let P be a matrix,
and �w and �∆ be appropriately defined subsets of
Euclidean space. Given measurements �u�y���nuT �
�

nyT , do there exist internal signals �v�z� ��∆, and a
disturbance signal w ��w, such that

�
z
y

�
� P

�
� v

w
u

�
� � (2)

If no triple �w�v�z� � �w ��∆ satisfying the con-
ditions of Problem 1 exists then the model is invali-
dated by the datum. Strictly speaking model valida-
tion methods can only invalidate models. This also

motivates us to search for sufficient conditions for
invalidation as they are the only conditions which
lead to definitive statements about model quality. If
there exists a triple �w�v�z� � �w ��∆ satisfying
the validation conditions then we say that the datum
corroborates the model. Note that this is not as strong
a statement as invalidation as the elements of the triple
�w�v�z� do not necessarily match physical signals in
the system, and subsequent experiments may invali-
date the model. Our ability to answer this question in
some form will clearly depend on the characterization
of the sets�w and�∆, an issue we now consider.

2.1 Model sets

The object we will use to specify our model sets is the
concept of a quadratic functional.

Definition 2. A mapping F : �n � � is a quadratic
functional if there exist a matrix A � �n�n, a vector
b ��n, and a scalar c �� such that

F�x� � x�Ax�b�x� c for all x in�n.

We will define the signal sets �w and �∆ by inter-
secting sets of the form

�x ��n : F�x�� 0��

given a quadratic functional F. A special instance of
the constraint defining the set is when the vector b
and scalar c are zero, in which case it is known as
an integral quadratic constraint (IQC) set; IQCs are
a very useful tool for analyzing feedback systems,
see for instance Megretski and Rantzer (1997). Con-
straints involving quadratic functionals can be used to
describe many dynamical properties of a perturbation
∆, and a disturbance signal w. Using this concept we
will explicitly define our models sets by

�w :� �w ��nwT : W0�w�� 0�W1�w� � 0� � � �

� � � �Wd�w�� 0�

�∆ :� ��z�v� ��nzT ��nvT : Q1�z�v�� 0� � � �

� � � �Qr�z�v�� 0��

for prespecified quadratic functionals Wi and Qi. Note
that the constraint given by W0 is strict, whereas the
others are non-strict. This makes little difference from
a practical perspective, and is convenient technically.
The use of such constraints, particularly IQCs, for
modeling signals and and perturbations is a well-
developed area, and in the next two subsections we
provide some basic illustrative examples from the
literature in this area for tutorial purposes.

Specification of the �∆ Model Sets In most of the
model validation frameworks studied to date, the un-
certainty sets,�∆, can be cast as quadratic forms, Qi.



Example 1: Discrete-time norm-bounded LTV opera-
tors. Here we consider the case where the operator ∆
is linear and causal, and satisfies the �2 induced norm
bound constraint of �∆��2��2

	 γ, for some specified
γ � 0.

Given two finite data vectors z� �z�0��z�1�� � � � � z�T 

1�� and v��v�0��v�1�� � � � �v�T 
1��, we would like to
characterize when there exists such a causal ∆ : �2 �
�2, satisfying v � Γ∆Γ �z, where Γ is the truncation
operator mapping �n

2 � �
nT in the obvious way. It

is shown in Poolla et al. (1994) that a necessary and
sufficient condition is that �Π iv�2 	 γ�Πiw�2, for 1	
i	 T , where Π i is the truncation map from sequences
of length T to sequences of length i. Defining the
quadratic functional (form)

Qi�z�v� �

�
z
v

�
�
�

γ2Π�i Πi 0
0 
Π�i Πi

��
z
v

�
�

and we see that a ∆ exists exactly when Qi�z�v� � 0
holds for all 1	 i	 T . �

The results discussed here extend easily to the sampled-
data case. See Smith and Dullerud (1996); Rangan and
Poolla (1996) for details.

Example 2: Block diagonal operators. A common
type of perturbation ∆ is one that has a block diagonal
structure, and is associated with the structured singular
value in the time-invariant case; see e.g., Packard
and Doyle (1993). The given data sequences z and
v are partitioned into spatial channels z1� � � � �zm and
v1� � � � �vm, and we are looking to determine when there
exists a causal perturbation of the form

∆ � diag�∆1� � � � �∆m��

so that vi � Γ∆iΓ�zi for 1 	 i 	 m and �∆��2��2
	

γ. If we are considering LTV operators, it is clear
that such a perturbation exists exactly when each pair
�zi�vi� satisfies the constraints of Example 1; namely,
Qi�zk�vk�� 0 for all 1	 i	 T and 1	 k 	 m. �

Example 3: Sector bounded memoryless nonlineari-
ties. We now consider the case where ∆ is not an
unknown operator, but a specific memoryless nonlin-
earity, v � ∆z � ψ�z�.

In the general case some part of z will be unknown and
the effect of the nonlinearity will have to be addressed.
An optimization problem based on the explicit knowl-
edge of ψ, will usually be complex and non-convex.
A reasonable alternative is to replace v � ψ�z�, by an
IQC based constraint. This is potentially conservative
but will still give sufficient conditions for invalidation.

For example, consider ψ to be a memoryless nonlin-
earity in the sector [α , β]. Then,

α z�k�2 	 ψ�z�t��z�k� 	 βz�k�2

for all z�k� � � and for all k � 0. Observing that the
operator,

ψ�z�

�α �β�

2
z

is in the sector �
�β 
α ��2��β 
α ��2�, shows that
the above conditions are clearly captured by the
quadratic constraints,�

z�k�
v�k�

�
�
�

2αβ α �β
α �β 
2

��
z�k�
v�k�

�
� 0�

for all z�k� � � and for all k � 0. In some problem
structures z, and therefore v, may be calculated from
other measured signals. In such cases the nonlinearity
poses no additional difficulties, and the model vali-
dation problem may be treated by the more standard
linear methods; see Smith and Dullerud (1999) for
examples. �

A large number of useful model set specifications (in-
cluding all of the �∞ model validation work to date)
can be expressed in terms of quadratic functionals.
The common framework makes it particularly easy
to apply operator set descriptions to the component
blocks, ∆i. In particular, Megretski and Rantzer (1997)
give a detailed description of IQCs including a list
of IQCs for a wide range of nonlinear and uncertain
operators.

Specification of the �w Model Sets A similar ap-
proach is taken for the definition of the exogenous
signal set in terms of functionals, Wi�w�.

Example 4: Norm bounded signals. The signal set
�w is from an open norm bounded ball. Thus this
set is totally specified in terms of the single functional
W0�w� � β2
w�w � 0� �

Example 5: White noise signals. Given a scalar data
sequence w�0�� � � � �w�T 
 1�, we define its circular
autocorrelation via

rw�i� :�
T�1

∑
t�0

w�t � imodT �w�t��

A standard characterization of a sequence w being
“white”, is to say that the values of rw�i� at nonzero
values of i, are small compared with rw�0�; see e.g.,
Paganini (1995). More precisely, we say that the se-
quence w is white up to accuracy γ if

�rw�i�� 	 γrw�0�� for 1	 i	 T 
1. (3)

Let Z be the cyclic shift matrix on sequences of length
T , and then observe that

γrw�0�
 rw�k� � w�
�

γI

1
2
�Zk��


1
2

Zk
�

w�



For 1	 i	 T
1 defineWi�w� to be the quadratic form
on the right-hand side above, and thus the constraints
in (3) are simply given by inequalities Wi�w�� 0, and
similar inequalities constructed from the constraints
γrw�0�� rw�k� � 0. �

3. A GENERAL FORMULATION AND
SOLUTION

Our goal in this section is to provide a readily
computable way to approach the model validation
question. The approach is motivated by the work
in Yakubovich (1971). We begin by considering the
equation (2) and rearrange to get

�

P13 0

P23 I

��
u
y

�
�

�
P12 P11 
I
P22 P21 0

��� w
v
z

�
� �

Thus we see that the variables which satisfy (2) can be
parametrized by a vector variable ξ via�

� w�ξ �
v�ξ �
z�ξ �

�
�� x�ξ � � x0 �Rξ � (4)

for some matrix R and some particular solution x0. We
remark that if the parametrization in (4) is empty, then
the model is immediately invalidated for all sets �∆
and �w. Observe that if F is a quadratic functional
in the variable x, then G�ξ � :� F�x�ξ �� is a quadratic
functional in ξ .

We now state the following important result, which
is a corollary to (Fradkov and Yakubovich, 1973,
Thm 2.1):

Theorem 3. Suppose H0�ξ �� � � � �Hn�ξ � are quadratic
functionals in the real vector variable ξ . If there exist
scalars τi � 0 such that the inequality

H0�ξ �� τ1H1�ξ �� � � �� τnHn�ξ �	 0 (5)

holds for all ξ , then there does not exist a vector ξ
such that the inequalities

H0�ξ �� 0� H1�ξ �� 0� � � � �Hn�ξ �� 0 (6)

are simultaneously satisfied. Furthermore, if n� 1 and
there exists ξ such that H1�ξ � � 0, then if there does
not exist a solution to (6), then there exist τ i � 0
satisfying (5).

Returning to our model validation problem, we recall
that our sets �w and �∆ are defined in terms of the
quadratic functionalsWi and Qi respectively. Using the
parametrization of signals w�v�z from (4) define the
quadratic functionals Gi�ξ � by

Gi�ξ � �
	

Wi�w�ξ ��� 0	 i	 d
Qi�r�v�ξ ��z�ξ ��� d � i	 d � r�

(7)

We can now state the main result of the section.

Theorem 4. Given a datum �u�y� and the quadratic
functionals defined in (7). If there exist scalars τ i � 0
such that

G0�ξ �� τ1G1�ξ �� � � �� τd�rGd�r�ξ �	 0� (8)

for all ξ , then the model in Problem 1 is invalidated.
Furthermore, if n � 1 and there exists ξ such that
G1�ξ � � 0, then the model is invalidated if and only
if the condition in (8) can be satisfied.

The theorem states that if multipliers can be found
such that (8) holds, then the model specified is not
consistent with the datum �u�y�. This result is exact
when there are only two functionals, and a value of the
parameter ξ can be found that makes G1 positive. In
this case the model being not invalidated is equivalent
to it being corroborated. In other words, there exists
w � �w, and ∆ � �∆ accounting for the observed
datum.

4. SOLUTION VIA LMI OPTIMIZATION
METHODS

The test in Theorem 3 is readily converted to a linear
matrix inequality feasibility problem via the following
lemma.

Lemma 5. Suppose Gi�ξ � are quadratic functionals
defined by Gi�ξ � :� ξ �Aiξ �b�i ξ �ci, and τi are non-
negative scalars. Then (8) is satisfied if and only if the
matrix inequality

M0 � τ1M1 � � � �τd�rMd�r 	 0

holds for some τ i � 0, where the matrices

Mi :�

�
Ai b�i
bi ci

�
�

Recall that we typically defined Qi�z�v� in terms of
γ, an assumed norm bound on �∆, and W �w� was
defined in terms of the norm bound β . It is frequently
useful to determine the smallest γ and β such that the
model is invalidated. This can be posed as an LMI
optimization problem.

5. GENERALIZATION TO MULTINOMIAL
FUNCTIONALS

In the preceding sections we have emphasized quadratic
functionals to describe our noise and uncertainty sets.
Our goal is now to show that the model validation
framework presented can be extended to a more gen-
eral class of nonlinear functionals, yet a computable



test is still possible using a combination of the S-
procedure and recent work in Parrilo (2000).

Definition 6. A function F :�n �� is a multinomial
functional if, for some q � �0, there exist scalars
c1� � � � �cq �� and vectors α1� � � �αq ��

n
0, such that

F�x� �
q

∑
i�1

cix
αi1
1

xαi2
2
� � �xαin

n �

The order of the functional is dF :� maxi�αi1 � � � ��
αin�. Furthermore, if dF � αi1 � � � ��αin, for each i,
F is called a multinomial form.

So far in the paper we have restricted our use of
functionals to the case where the order dF 	 2, and
our goal is now to outline how our framework might
be used in this more general case. Clearly if we allow
ourselves to use multinomial functionals for defining
the perturbation set �∆ and disturbance set �w, we
still have that the model validation problem has a
solution if and only if the positivity constraints on the
Gi�ξ � are satisfied. As in Theorem 4, it is therefore
clear that the model is invalidated if there exist scalars
τi � 0 such that G�ξ �τ �	 0, for all ξ , where

S�ξ �τ � :� G0�ξ �� τ1G1�ξ �� � � �τd�rGd�r�ξ �� (9)

Before proceeding to discuss computation of the
above condition, we provide an important motivating
example.

Example 6: LTI Uncertainty. We now consider char-
acterizing when, given data sequences z and v, is it
possible to find a causal linear time-invariant pertur-
bation ∆ such that both �∆��2��2

	 γ and v � Γ∆Γ �z
holds. This condition can be expressed very compactly
in terms of a matrix inequality. First, define the nota-
tion

� �v� �

�




�

v�0� 0 0 � � � 0
... v�0� 0 � � � 0

v�T 
1� � � � v�0� � � � 0

v�T � v�T 
1� � � �
. . . v�0�

�
����� �

Then the classic Caratheodory interpolation theorem
states that an LTI operator ∆ exists if and only if the
matrix inequality, M�ξ �� 0, where,

M�ξ � :� γ2
� �z�ξ ���� �z�ξ ��
� �v�ξ ���� �v�ξ ���

See, for example, Foias and Frazho (1990).

A symmetric matrix is positive semidefinite exactly
when all its principal minors are non-negative. Let
Qi�ξ � denote the principal minors of M�ξ �; namely,

Qi�ξ � � det�ϒ�i M�ξ �ϒi� for 1	 i	 T �

where ϒi : �T � �
i projects �T onto �i in the

usual way. Each Qi is a multinomial functional in the

variable ξ . Thus we have that an LTI operator exists
mapping the initial sequence z�ξ � to v�ξ � if and only
if the following multinomial inequalities are satisfied

Qi�ξ �� 0� for each 1	 i	 T .

We remark that the matrix condition M�ξ � � 0 can
be expressed as an infinite number of quadratic func-
tionals: observe that each scalar entry in M�ξ � is a
quadratic functional of ξ and thus the matrix inequal-
ity is equivalent to

Fx�ξ � :� x�M�ξ �x � 0�

for all vectors x ��T . �

In general, computing the multiplier condition in (9)
is difficult. However, the recent work in Parrilo (2000)
provides an LMI approach, and we now give a brief
exposition in our current model validation context to
do this. Returning to (9), it is easy to show that there
exist (non-unique) matrices J0� � � � �Jd�r such that

S�ξ �τ � � p��ξ �
�
J0 � τ1J1 � � � �� τd�rJd�r


� �� �

J�τ �

p�ξ ��

where p�ξ � is a vector-valued function with entries
of the form pi�ξ � � ξ β1i

1
ξ β2i

2
� � �ξ βni

n . Note that p�ξ �

can be chosen so that β1i � � � ��βmi 	
dGmax�1

2 , where
dGmax � maxi dGi

. This representation is studied in a
control context in Bose and Li (1968).

Now, notice that the matrices U which satisfy p��ξ �U p�ξ ��
0, form a finite dimensional subspace; let the matrices
N1� � � � �Nk denote a basis for this subspace. Hence, we
have for all scalars λ i that

S�ξ �τ � � p��ξ �
�
J�τ ��λ1N1 � � � ��λkNk


� �� �

J�τ �λ �

p�ξ ��

Furthermore, if V �τ � is a matrix such that S�ξ �τ � �
p��ξ �V �τ �p�ξ �, then there exists values of λ i such
that V �τ � � J�τ �λ �. From this discussion we obtain
the following result, which provides a sufficient con-
dition for model invalidation in terms of an LMI fea-
sibility problem based on the matrices defined so far.

Theorem 7. Given the definitions of the matrices Ji
and Ni above. If there exist values of λ i �� and τi � 0
satisfying the matrix inequality,

J0 � τ1J1 � � � �τd�rJd�r �λ1N1 � � � �λkNk 	 0�

then the model is invalidated.

Thus this theorem provides a sufficient condition in
terms of an LMI for invalidating a model, when the
model sets are specified by multinomial functionals.
Unfortunately, the conditions in (9) is not equivalent
to the above inequality, with the latter only implying



the former. However, recent numerical experiments in
Parrilo and Sturmfels (2001), indicate that perhaps it
is a rare situation, and that satisfiability of these condi-
tions is typically equivalent. This would indicate that
for typical examples, the conservatism in our model
invalidation condition would only be that introduced
by the use of the S-procedure condition in (9).

6. CONCLUSIONS

The model validation framework has been signifi-
cantly generalized by using multinomial functional
descriptions to characterize perturbations and nonlin-
earities. The S-procedure can then be used to develop
sufficient conditions for invalidation conditions, lead-
ing to semidefinite programming methods for compu-
tation.
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