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Abstract: When designing model-based fault-diagnosis systems, the use of consistency
relations(also called e.g. parity relations) is a common choice. Different subsets are sensitive
to different subsets of faults, and thereby isolation can be achieved. This paper presents
an algorithm for finding a small set of submodels that can be used to derive consistency
relations with highest possible diagnosis capability. The algorithm handles differential
algebraic models and is based on graph theoretical reasoning about structure of the model.
An important step, towards finding these submodels and therefore also towards finding
consistency relations, is to find all minimal structurally singular(MSS) sets of equations.
These sets characterize the fault diagnosability.
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1. INTRODUCTION

When designing model-based fault-diagnosis systems,
the use of consistency relations(also called e.g. parity
relations) is a common choice. The idea is to have
a set of consistency relations, with different subsets
sensitive to different subsets of faults. In this way
isolation between different faults can be achieved.

The systems considered in this paper are assumed to
be modeled by a set of non-linear and linear differen-
tial algebraic equations. To find consistency relations
by directly manipulating these equations is a computa-
tionally complex task, especially for large and nonlin-
ear systems. To reduce the computational complexity
of deriving consistency relations a structural approach
is chosen. Instead of directly manipulating the equa-
tions themselves, the proposed algorithm in this paper
only deals with the structural information contained
in the model, i.e. which variables that appear in each
equation. Each consistency relation is derived from a
submodel, i.e. a part of the complete model. The struc-
tural algorithm finds these submodels. These submod-
els obtained are typically much smaller than the whole
model, and therefore the computational complexity of
finding consistency relations decreases.

The structural information is collected in a structural
model. By analyzing and manipulating this structural
model, the proposed algorithm picks out all submodels
that can be used to derive consistency relations. More-
over, of these submodels, it selects a small set that
corresponds to consistency relations with the highest
possible diagnosis capability.

In industry, design of diagnosis systems can be very
time consuming if done manually. Therefore it is im-
portant that methods for diagnosis-system design are
as systematic and automatic as possible. The algo-
rithm presented here is fully automatic and only needs

as input a structural model of the system. This model
can in turn easily be derived from for example simu-
lation models.

Structural approaches have also been studied in other
works dealing with fault diagnosis. In (Pulido and
Alonso, 2000) a structural approach is investigated
as an alternative to dependency-recording engines in
consistency based diagnosis. Furthermore a structural
approach is used in the study of supervision ability
in (Cassar and Staroswiecki, 1997) and an extension
to this work considering sensor placement is found in
(Travé-Massuyès et al., 2001).

In Sections 2 and 3, structural models and their use-
fulness in fault diagnosis are discussed. Then in Sec-
tion 4, a complete description of the algorithm is
given. The algorithm is in (Krysander and Nyberg,
2002) applied to a large nonlinear industrial process, a
part of a paper plant. In spite of the complexity of this
process, a small set of consistency relations with high
diagnosis capability is successfully derived.

2. STRUCTURAL MODELS

The behavior of a system is described with a model.
Usually the model is a set of equations. A structural
model (Cassar and Staroswiecki, 1997) contains only
the information of which variables that are contained
in each equation. Let Morig denote the structural
model obtained from the equations, describing the sys-
tem to be diagnosed. This structural model will con-
tain three different kinds of variables: known variables
Y , e.g. sensor signals and actuators; unknown vari-
ables Xu, for example internal states of the system;
and finally the faults F . If faults are decoupled then
they will also be included in Xu. The differentiated
and non-differentiated version of the same variable are
considered to be different variables. The time shifted
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variables in the time discrete case are also considered
to be separate variables.

A structural model can be represented by an incidence
matrix (Harary, 1969; Carpanzano and Maffezzoni,
1998). The rows correspond to equations and the
columns to variables. A cross in position (i, j) tells
that variable j is included in equation i.

Example 1.A simple example is a pump, pumping
water into the top of a tank. The water flows out of
the tank through a pipe connected to the bottom of
the tank. The known variables are the pump input u,
the water level in the tank yh and the flow from the
tank yf . One fault denoted fi is associated to each
known variable. The actual flows to and from the
tank are denoted Fi, and the actual water level in the
tank is denoted h. Without knowing the exact physical
equations describing the analytic model the structural
model can be set up as follows:

equation unknown fault known

F1 F2 h ḣ fu fh ff ḟf u yh yf

e1 X X X
e2 X X X
e3 X X X
e4 X X
e5 X X X
e6 X

(1)

Equation e1 describe the pump, e2 the conservation of
volume in the tank, e3 the water level measurement,
e4 the flow from the tank caused by the gravity, e5 the
flow measurement and e6 a fault model for the flow
measurement fault ff . �

3. FAULT DIAGNOSIS USING STRUCTURAL
MODELS

The task is to find submodels that can be used to form
consistency relations. To be able to draw a correct
conclusion about the diagnosability from the struc-
tural analysis it is crucial that for each of these sub-
models there is a consistency relation that validates
all equations included in the submodel. The common
definition of consistency relation does not ensure this.
Therefore the new definition of consistency relation
for an equation setis introduced that explicitly points
out the submodel considered. Before consistency rela-
tion for E is defined some notation is needed.

Let x and y denote the vectors of variables contained
in Xu and Y respectively. Then E(x,y) denote an
equation set E that depends on variables contained in
Xu and Y .

Definition 1.(Consistency Relation for E). A scalar
equation c(y) = 0 is a consistency relation forthe
equations E(x,y) iff

∃xE(x,y) ⇔ c(y) = 0 (2)

and there is no proper subset of E that has prop-
erty (2).

The idea to define consistency relations for an equa-
tion set E in this way is to ensure the following: it is
a sufficient explanation for an inconsistency c(y) �= 0
that any equation in E is not valid.

Definition 1 differ from the common definition of
consistency relation in two ways, the left implication
in (2) and that there is no proper subset of E that has
property (2). Refer the latter as the minimality condi-
tion in Definition 1. The following example shows the
importance of the left implication in (2).

Example 2.Consider the model E = {y1 = x, y2 =
x, y3 = x}. The equation y1 − y2 = 0 is not a
consistency relation for E, because it is true even
if e.g. y3 �= y1 = y2 and then it is impossible to
find a consistent x in E. However y1 − y2 = 0 is a
consistency relation for {y1 = x, y2 = x}.

The expression y1 + y2 − 2y3 = 0 includes y3.
The right implication in (2) holds, but the opposite
direction does not hold. The conclusion is that also
this expression is not a consistency relation for E or
any equation subset of E.

However (y1 −y2)2 +(y2 −y3)2 = 0 is a consistency
relation for E. �

The minimality condition in Definition 1 is important,
because it guarantees that any invalid equation can
infer an inconsistency.

3.1 Basic Assumptions

Basic assumptions are needed to guarantee that the
subsets found only by analyzing structural properties
are those subsets that can be used to form consis-
tency relations. Before the basic assumptions are pre-
sented, some notation is needed. Let E be any set
of equations and X any set of variables. Then de-
fine varX(E) = {x ∈ X|∃e ∈ E : e contains
x} and equE(X) = {e ∈ E|∃x ∈ X : e con-
tains x}. Also, let varX(e) and equE(x) be short-
hand notations for varX({e}) and equE({x}) re-
spectively. If g is any equation, function or variable,
let g(i) denote the i:th time derivative of g. Then
define varX(E) = {undifferentiated x|∃i(x(i) ∈
varX(E))}, e.g. varXu∪Y ({y = ẋ}) = {y, x}. Fi-
nally, the number of elements in any set E is denoted
|E|.
The first assumption is used to ensure that the model
becomes finitely differentiated in Section 4.1.

Assumption 1.The model Morig has the property
∀E ⊆ Morig : |E| ≤ |varXu∪Y (E)|. (3)

The meaning of condition (3) is that each subset of
equations include more or equally many different vari-
ables, considering derivatives as the same variable. If
condition (1) is not fulfilled and there are no redundant
equations, the model would normally be inconsistent.

As mentioned earlier, the structural model contains
less information than the analytical model. The next
assumption makes it possible to draw conclusions
about analytical properties from the structural prop-
erties.

Assumption 2.There exists a consistency relation
c(y) = 0 for the equation set H iff
∀X ′ ⊆ varXu

(H),X ′ �= ∅ : |X ′| < |equH(X ′)|
(4)



According to Assumption 2 the unknown variables in
H can be eliminated if and only if it holds that for each
subset of variables in H the number of variables is
less then the number of equations in H which contain
some of the variables in the chosen subset.

The Assumptions 1 and 2 are often fulfilled. For ex-
ample all subsets of equations found in the industrial
example in the end of the paper satisfy Assumption 2.
Even though the ”only if” direction of Assumption 2
is difficult to validate in an application, the results of
the paper can still be used to produce a lower bound of
the actual detection and isolation capability. If all sub-
sets of the model fulfill Assumption 2, the structural
analysis will find all subsets that can be used to find
consistency relations.

3.2 Finding Consistency Relations via MSS Sets

Now, the task of finding those submodels that can
be used to derive consistency relations will be trans-
formed to the task of finding the subsets of equa-
tions that have the structural property (4). To do
this, two important structural properties are defined
(Pantelides, 1988).

Definition 2.(Structurally Singular). A finite set of
equations E is structurally singularwith respect to the
set of variables X if |E| > |varX(E)|.

Definition 3.(Minimal Structurally Singular). A struc-
turally singular set is a minimal structurally singular
(MSS) set if none of its proper subsets are structurally
singular.

For simplicity, MSS will always mean MSS with
respect to Xu in the rest of the text. The next theorem
from (Krysander and Nyberg, 2002) tells that it is
sufficient and necessary to find all MSS sets to get all
different sets that can be utilized to form consistency
relations. The task of finding all submodels that can be
used to derive consistency relations has thereby been
transformed to the task of finding all MSS sets.

Theorem 1.Let H ⊆ Morig, where Morig fulfills
Assumption 1. Further, let H and all Ei fulfill As-
sumption 2. Then there exists a consistency relation
c(y) = 0 for H(x,y) where |H| < ∞ iff H =

⋃
i Ei

where for each i, Ei is an MSS set.

4. ALGORITHM FOR FINDING AND
SELECTING MSS SETS

The objective is to find all potential consistency re-
lations for a given model Morig and then choose a
small subset of these consistency relations with the
same diagnosability as the full set of the consistency
relations. This is done by finding all MSS sets in a dif-
ferentiated version of the model Morig . The algorithm
can be summarized in the following steps.

Algorithm 1.

(1) Differentiating the model: Find equations that
are meaningful to differentiate for finding MSS
sets.

(2) Simplifying the model: Given the original model
and the additional equations found in step (1),
remove all equations that cannot be included in
any MSS set. To simplify the next step, merge
sets of equations that have to be used together in
each MSS set.

(3) Finding MSS sets: Search for MSS sets in the
simplified model.

(4) Analyzing Diagnosability: Examine the diagnos-
ability of the MSS sets found in step (3).

(5) Decoupling faults: If the diagnosability has to be
improved, some faults have to be decoupled. For
decoupling faults, return to step (1) and consider
these faults as unknown variables in Xu.

(6) Selecting a subset of MSS sets: Select the sim-
plest set of MSS sets that contains the desired
diagnosability.

The following sections discuss each of the steps in
Algorithm 1.

4.1 Differentiating the Model

To handle dynamic models, Algorithm 1 needs a way
to deal with derivatives. In this section an algorithm
for handling derivatives is defined. This algorithm is
referred to as Algorithm 2. A small example will show
what Algorithm 2 must be capable to handle.

Example 3.Consider the model E = {e1, e2, e3} =
{y1 = x, y2 = ẋ, y3 = x2}. It is obviously impossible
to eliminate ẋ in e2 if differentiation of any equation
is forbidden. In general, all derivatives of E have to
be considered. If E(i) denote the set of the i:th time
derivative of each element, the equation set generally
considered is ∪∞

i=0E
(i).

Even though varXu
(e1) = varXu

(e3) = {x} the
derivatives of e1 and e3 contain different sets of vari-
ables, because varXu

(ė1) = {ẋ} �= varXu
(ė3) =

{x, ẋ}. Since x is linearly contained in e1, the variable
x in ė1 disappears. Knowledge about which of the
variables that are contained linearly in an equation
determines the set of variables in the differentiated
equation completely.

For all natural numbers j, y
(j+1)
1 − y

(j)
2 = 0 is a

consistency relation. Most of these consistency rela-
tions contain high orders of derivatives of y1 and y2.
The derivatives of known variables are in general not
known, but they can usually be estimated. The higher
order of derivative, the more difficult it is to estimate
the derivative. Thus it is reasonable to make a limi-
tation m(y) for variable y of the order of derivative
that can be considered as possible to estimate. Deriva-
tives up to m(y) are then considered to be known and
higher derivatives belong to Xu.

To summarize the example, Algorithm 2 must be capa-
ble of differentiating equations. To produce a correct
structural representation of differentiated equations,
the algorithm must take linearly contained variables
into account. Further, it has to handle the limitation
m(y) for each y ∈ Y . �

Algorithm 2 consists of two parts. The first part is
a modification of Pantelides’ algorithm (Pantelides,



1988). Let M =
⋃n

i=1

⋃αi

j=0{e(j)
i }, then αi is the

highest number of differentiations in M of equation
i. Then M is a differentiated model of Morig =
⋃n

i=1{ei}. Let {e(αi)
i |1 ≤ i ≤ n} be the set of most

differentiated equations in M . The highest derivative
of a non-differentiated variable x in the model M is
defined as max({i|x(i) ∈ varXu

(M)}).
Pantelides’ algorithm differentiates equation subsets,
so that the original equations together with the differ-
entiated equations have a complete matching(Harary,
1969) of the most differentiated equations into the
unknown variables with the highest derivatives.

The modification of Pantelides’ algorithm is that
derivatives of known variables, higher or equal to
m(y), are also allowed to be included in the matching.

Algorithm 2.
Input: The original model Morig , a description of
which variables that are linearly contained, and for
each y ∈ varY (Morig), m(y) < ∞.

(1) Apply the modified Pantelides’ algorithm to
Morig and the limits m(y). The output is the
number of times each equation must be differ-
entiated to find all MSS sets.

(2) Differentiate the equations in Morig the number
of times suggested in step (1) and use the de-
scription of which variables that are linearly con-
tained, to get the correct structural description
of the differentiated structural model denoted
Mdiff .

Output: Mdiff .

It is critical that step (1) in Algorithm 2 will terminate,
i.e. no equation should be differentiated an infinite
number of times. In Pantelides (1988) the condition
when the algorithm terminates is stated. This con-
dition can be written as the structural property (3).
Since the model Morig has this property according to
Assumption 1 the algorithm will terminate.

Let now MSS(M) denote the set of MSS sets found
in equations M and MSSall(M) = MSS(∪∞

i=0M
(i)).

Then it is possible to state the following theorem
proven in (Krysander and Nyberg, 2002).

Theorem 2.If Assumption 1 is satisfied and for each
y ∈ varY (Morig), m(y) < ∞, then

MSSall(Morig) = MSS(Mdiff )

The consequence of this theorem is that all MSS sets
that are possible to find if the original model Morig is
differentiated an infinite number of times, can always
be found in Mdiff .

Example 4.The following example is a continuation
of Example 1 with the structural model shown in (1).
Let m(u) = m(yf ) = 1 and m(yh) = 0. Assume
that all faults are zero, i.e. the system is fault free.
The equation e6 contains only a fault. Since all faults
are at the moment assumed to be zero, then e6 is
not considered. Further, assume that no variable is

linearly contained in any equation. Then no variable
will disappear in the differentiation. The structural
model Mdiff obtained from Algorithm 2 is

equation unknown fault known

F1 F2 Ḟ2 h ḣ fu fh ff ḟf u yh yf ẏf

e1 X X X
e2 X X X
e3 X X X
e4 X X
ė4 X X X X
e5 X X X
ė5 X X X X X X

(5)

4.2 Simplifying the Model

It is a complex task to find all MSS sets in a structural
model. Therefore it can be of great help if it is possible
to simplify the model. Here two kinds of simplifica-
tions are used.

In a first step, all equations in Mdiff that fulfill the
following condition are removed. The condition is
that the equation includes a variable in a subset of
unknown variables that do not fulfill (4) where H =
Mdiff . This can be done with Canonical Decomposi-
tion (Cassar and Staroswiecki, 1997).

In a second step, variables that can be eliminated
without losing any structural information are found.
The rest of this section will be devoted to a discussion
about this second step.

If there is a set X ⊆ Xu with the property 1 + |X| =
|equMdiff

(X)|, then all equations in equMdiff
(X)

have to be used to eliminate all variables in X . Since
all unknown variables must be eliminated in an MSS
set this means particularly that all MSS sets including
any equation of equMdiff

(X) has to include all equa-
tions in equMdiff

(X). The idea is to find these sets.
Then it is possible to eliminate internal variables, in
the previous discussion dented X , in these sets. Every
set is replaced with one new equation.

This second simplification step finds subsets of vari-
ables that are included in exactly one more equation
than the number of variables. To reduce the compu-
tational complexity, a complete search for such sets
is in fact not performed here. Instead only a search
for single variables included in two equations is done.
However, with this strategy larger sets then two equa-
tions will also be found, since the algorithm can merge
previously found sets. When a variable is included in
just two equations these equations are used to elim-
inate the variable. If all variables are examined and
some simplification was possible, then all remaining
variables have to be examined once more. When no
more simplifications can be made, the simplification
step is finished and the resulting structural model is
denoted Msimp.

The next theorem from (Krysander and Nyberg, 2002)
ensures that no MSS set is lost in the simplification
step.

Theorem 3.MSS(Mdiff ) = MSS(Msimp)



Consider again Example 4 and the output (5) from the
differentiation step. No equations can be removed in
the first simplification step.

The second step searches for variables which belong
only to two equations. In the first search, the algorithm
finds F1 in {e1, e2}, Ḟ2 in {ė4, ė5} and ḣ in the
equations produced by {e1, e2} and {ė4, ė5}. This
makes one group of {e1, e2, ė4, ė5}. This search made
simplifications and therefore the search is performed
once more. The second time no simplifications have
been done and the simplification step is therefore
complete. The remaining system is

equation unknown fault known

F2 h fu fh ff ḟf u yh yf ẏf

{e1, e2, ė4, ė5} X X X X X X X X
e3 X X X
e4 X X
e5 X X X

(6)

4.3 Finding MSS Sets

After the simplification step is completed, step (3) in
Algorithm 1 finds all MSS sets in the simplified model
Msimp. This section explains how the MSS sets are
found.

The task is to find all MSS sets in the model Msimp

with equations {e1, · · · , en}. Let Mk = {ek, · · · , en}
be the last n − k + 1 equations. Let E be the current
set of equations that is examined. The set of MSS sets
found is denoted Malg3. Then the following algorithm
finds all MSS sets in Msimp.

Algorithm 3.
Input: The model Msimp.

(1) Set k = 1 and Malg3 = ∅.
(2) Choose equation ek. Let E = {ek} and X = ∅.
(3) Find all MSS sets that are subsets of Mk and

include equation ek.
(a) Let X̃ = varXu

(E)\X be the unmatched
variables.

(b) If X̃ = ∅, then E is an MSS set. Insert E
into Malg3.

(c) Else take a remaining variable x̃ ∈ X̃ and
let X = X ∪ {x̃}. Let Ẽ = equMk\E(x̃) be
the remaining equations. For all equations e
in Ẽ let E = E ∪ {e} and goto (a).

(4) If k < n set k = k + 1 and goto number (2).

Output: The set of MSS sets found, i.e. Malg3.

Algorithm 3 finds all MSS sets in Morig according to
the next theorem proven in (Krysander and Nyberg,
2002).

Theorem 4.Malg3 = MSS(Msimp)

The following small example with five equations
shows how the algorithm works.

x1 x2 x3

1 X X
2 X X
3 X X X
4 X
5 X

This model gives the following time evolution of
current equations, i.e. E in Algorithm 3 is

2 3 2
2 5 5 2 2 3 3 5

3 3 3 3 4 4 4 4 4 4
1 1 1 1 1 1 1 1 1 1 1

4
4 3 3 5

3 3 5 5 5 4 4
2 2 2 2 2 2 3 3 3 4 5

The bold columns represent the MSS sets found. This
example also shows that if there are several matchings
including the same equations, the algorithm finds the
same subset of equations several times.

4.4 Analyzing Diagnosability

In many cases in real applications, it is difficult to
draw conclusions when a consistency relation is ful-
filled. Therefore it is assumed that conclusions are
drawn only when consistency relations are not ful-
filled.

Now follows the continuation of the example in (6).
The 4 MSS sets in (6) are shown in the left column in
Figure 1 (a). The matrix in this figure is the incidence
matrix of the MSS sets in (6). If any equation in the
MSS set i include fault j, the element (i, j) of the
incidence matrix is equal to X . However, an X in
position (i, j) is no guarantee for fault j to make a
consistency relation derived from MSS set i invalid.
The derivatives of the faults are omitted in Figure 1.
The third MSS set in Figure 1 (a) could contain fu

and ff , but it is impossible that it could contain fh,
since fh is only included in equation e3.

If the number of different faults is large it is not easy to
see which faults that can be isolated from each other.
The incidence matrix of the MSS set shows how the
consistency relations react on the faults, but it is more
interesting to see which faults that can be explained
by other faults. The fault matrix shows the maximum
isolation and detection capability of the diagnosis
system. If fault j is sensitive to at least all consistency
relations as fault i is sensitive to, then element (i, j)
of fault matrix is equal to X . The interpretation of an
X in position (i, j) is that fault fi can not be isolated
from fault fj .

The fault matrix in the example is shown in Fig-
ure 1 (b). Consider the first row of the fault matrix.
Suppose that fault fu is present. Then, the first three
consistency relations are not satisfied in an ideal case.
This means that fu certainly can explain fault fu, but
also ff can explain fault fu. Fault fh cannot explain
fault fu, since if fh is present, the third consistency
relation is satisfied. Note that the fault matrix is not
symmetric. For example fault ff can explain fault fu

but the opposite is not true. The fault matrix can more
easily be analyzed after Dulmage-Mendelsohn permu-
tations (Meurant, 1999). This algorithm returns a max-
imal matching(Harary, 1969) which is in block upper-
triangular form. The diagonal blocks corresponds to
strong Hall components of the adjacency graph of the
fault matrix. The interpretation is that faults in a diago-
nal block can never be distinguished with that diagno-
sis system. In the small example in Figure 1 (b), the



MSS fu fh ff
{e1, e2, e3, e4, ė4, ė5} X X X
{e1, e2, e3, ė4, e5, ė5} X X X
{e1, e2, e4, ė4, e5, ė5} X X
{e3, e4, e5} X X

present interpreted fault
fault fu fh ff
fu X X
fh X X
ff X

(a) (b)

Fig. 1. The incidence matrix of MSS sets is shown in
(a). The fault matrix of (a) is shown in (b).

same matrix is returned after Dulmage-Mendelsohn
permutations, which usually is not the case. The di-
agonal blocks are the 1 × 1 diagonal elements.

4.5 Decoupling faults

Suppose that the element (i, j) of the fault matrix is
equal to X for some i �= j. It could still be possible to
isolate fault i from fault j by trying to decouple fault
j. Include fault j among the unknown variables Xu

and search for new MSS sets by applying Algorithm 1
step (1) to the new model obtained. An MSS set that is
able to isolate fault i from fault j has to include at least
one equation that includes fault i. If any such MSS set
is found, it has to include an elimination of fault j. If
not, this MSS would have been discovered earlier.

In the example in Figure 1, the fault matrix shows that
fu and fh can not be isolated from ff . The problem is
that there is no consistency relation that decouple fault
ff . But there could be one if ff is eliminated. The
fault ff is moved from the faults F to the unknown
variables Xu. The procedure starts all over from the
step (1) in Algorithm 1. The result is a new MSS set
in which ff is decoupled. This gives a possibility to
detect and isolate all faults.

4.6 Selecting a Subset of MSS Sets

It is not unusual that the number of MSS sets found is
very large. Many of the MSS sets probably use almost
as many equations as unknown variables in the entire
system. These MSS sets usually rely on too many
uncertainties to be usable for fault isolation. Small
MSS sets are more robust and are usually sensitive to
fewer faults. Therefore the goal must be to find the set
of most robust MSS sets but with the same diagnosis
capability as the set of all MSS sets.

Start to sort the MSS sets in an ascending order of
complexity. The complexity measure is here the num-
ber of equations, even though more informative mea-
sures are also a possibility. The MSS sets are exam-
ined in the rearranged order. If an MSS set increase the
diagnosability, then select the MSS set. The diagnos-
ability is increased if some fault becomes detectable
or some fault i can be isolated from some other fault
j. This means that for each detection of a fault and
for each isolation between two faults, the smallest
MSS sets with this diagnosis ability will be one of the
chosen MSS sets. In this way the final output from
Algorithm 1 will be the most robust set of MSS sets
with highest possible diagnosis capability.

5. CONCLUSION

This paper has presented a systematic and automatic
method for finding a small set of submodels that can
be used to derive consistency relations with highest
possible diagnosis capability. The method is based on

graph theoretical reasoning about the structure of the
model. It is assumed that a condition on algebraic in-
dependency is fulfilled, i.e. Assumption 2. An impor-
tant idea, towards finding these submodels, is to use
the mathematical concept minimal structurally singu-
lar sets. These sets have in Theorem 1 been shown
to characterize these submodels, i.e. the consistency
relations, which give the fault detection and the fault
isolation capability. The method is capable of han-
dling general differential algebraic non-causal equa-
tions. Further, the method is not limited to any special
type of fault model. Algorithm 1 finds all submodels
that can be used to derive consistency relations and
it is proven in Theorem 2, 3, and 4. The key step in
Algorithm 1 is step (3) that finds all MSS sets in the
model it is applied to.

In this paper consistency relations are used to validate
the MSS sets. However, there are also other methods
that can be used to validate the MSS sets, e.g. ob-
servers. Finally in (Krysander and Nyberg, 2002) the
method has been applied to a large nonlinear industrial
example, a paper plant. The algorithm successfully
manage to derive a small set submodels. In spite of the
complexity of this process, most of these submodels
can be used to derive consistency relations with high
diagnosis capability.
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