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Abstract: Model Predictive Control(MPC) is widely used, especially in the chemical
process industry. Model Predictive Controllers calculate the optimal control inputs at
each time step, based on past information, a plant model, a quadratic objective and
given constraints. Typically this involves solving a large linearly constrained quadratic
program(LCQP) at each time step. Standard methods turn out to be too slow to calculate
the desired inputs in time, i.e. each sampling instant. By exploiting the structure of
the LCQP, specific methods for solving the QP’s in MPC were developed recently. We
will compare these methods with classical QP solvers and show their necessity when
controlling large systems from the example of a high density polyethylene production
plant.Copyright(©2002 IFAC
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1. INTRODUCTION porate constraints on inputs and outputs, which is one
of the main differences with standard controller design

Model Predictive Control (MPC) is a control tech- methods and also one of the main reasons why MPC
nique that has been developed for the chemical proces$ias become very popular in the chemical industry
industry and is widely used in that area (Qin and Badg- where many (hard) input and output constraints have
well, 1997). This control strategy uses a model and theto be dealt with.
state at the current time instant to predict the effect of
control inputs on the future states and/or outputs of the One of the main drawbacks of nowadays model pre-
system. A quadratic cost function is defined, involving dictive controllers is the need to solve an optimization
the outputs, the states and/or the inputs of the systenproblem at each time step in order to be able to guaran-
over a certain time horizon, while the model equations tee stability and a good performance. MPC controllers
act as constraints. The finite horizon allows to incor-



areratherdifficult to implementon-line,becaus¢hese
optimizationproblems typically linearly constrained
guadratigproblems(LCQP),tendto becometoo large
to besolvedin real-timewhenstandard. CQP solvers
are used. State-of-the-arimplementationsof model
predictive controllerscircumwentthis problemby us-
ing a priorisationschemeor the constraintspr other
tricks to solve thedynamicoptimizationproblem.Re-
cently, several methodswereproposedo reformulate
the optimizationproblemor the entireMPC problem,
in orderto generatesolutionsin lessertime. Many of
thesemethodstry to approximatethe given control
problem by making assumptionsfor instanceabout
the controlsignalstructure(e.g.CommandSoverning
(Bemporad,1997)).Neverthelessthe mostpromising
methodsdo not make suchassumptionsbut exploit
thestructureof thegivenoptimizationproblem.lt will
be shavn thatthesestructurednethodscantacklethe
problem at hand for large scalesystemsin a much
betterway thanstandard_CQP solvers.

This paperis organizedasfollows. In Section2, we
give a descriptionof the MPC problem and the op-
timization problemit leadsto. Section3 discusses
standardmethodsto solve LCQP’s and their disad-
vantageswith respectto large problems.In section
4, structureexploiting methodgor solvingthe LCQP
in MPC applicationsare discussedand in section5
someimplementatiorissuesanddetailsarediscussed
andacontrolexamplefor a high densitypolyethylene
plantis givento shav thatthesemethodscanplay an
importantrole in next generatiorMPC controllersfor
large scalesystemsConclusionaredrawn in section
6, followed by the acknavledgementgsection?), the
referencesndanappendix.

2. MODEL PREDICTIVECONTROL: PROBLEM
DEFINITION

Let us considerthe statespaceequationsof a given
discretetime linearmodel,

Xk+1 = AXc+ Bug

Yk = Cxk @)

whereu, € R™ is theinputvector y, € R theoutput
vector and xx, € R™ the statevector at time instant
k. This modelis typically theresultof alinearization
of a non-linearsystemarounda givenworking point.
The control taskis to find, at eachtime instantk, an
optimal input sequencely, - - - , Uk over the horizon
N, that generatesa good tracking behaviour of the
outputswhile certain given constraintsare fulfilled.

This is usually done by defining a quadratic cost
functionin the outputs(or the states)andthe inputs.
Typically, the horizonis finite. If we defineatracking
referencesignaly" for the outputs this will leadto an
optimizationproblemof theform

ANt T T
min = — — u, Reu
min 3 kZO[(Yk Vi) Qi (Vi — Vi) + Uy R
1. — .
+§y-ll\-lQNYN — YnONYN
(X1 = Axc+ Bug
Yk = Cx¢ (2)
Diug < dk
S.t.¢ BxraXkrr < 61
k=0,...,N—1
yn = Cxn
| Xofixedandgiven

The matricesQy andQN canbecalculatedn various
waysto guaranteestability, dependingpn theassump-
tion thatone makeson the control law for N > k and
dependingon whetherA is stableor not. For unstable
systemsan endpointconstraintof the form Fxy = 0

is introducedo ensurestability of theunstablenodes.
The matrix F is constructedrom the part of A that
containsthesemodes.For more details we refer to

(Rawlings and Muske, 1993). Notice that in almost
all MPC applications,only the optimal input of the

currenttimeinstantis appliedandthatthecalculations
arerepeatectachtime instant,giving riseto amoving

window approachin (Mayneetal., 2000)it is shovn

that under certain assumptionsthe solution can be

provento give asymptoticallystablecontrol.

In most MPC applicationsthe statespaceequations
areusedto eliminatethe statesrom the optimization
problemin orderto reducethesize(Muske andRawl-
ings,1993).1f weintroduce

U= (UL, Ulgs- s Ugn]

d= [d-Ora"'ac%—l]T

e=[e],....e]"

Qp = diag{Qs,...,Qn-1} 3)
Ro = diag{Ro,- -, Ru—1}

Dp = diag{Do, . DN—l}

Ep = diag{El,...,EN}

andthematrices, Hc andHy,

CA
CA?
FCZ
caN
CB 0 0...0 (4)
CAB CB 0 ..0
Hc= .

caN-1BcaN-2B CB O

Hn=[AYB AN1B ... B]

we canrewrite (2) as



rrbin u” (HY QHe + R+ Hn gy Hi)u
+%§ (F QHe + (CANH) T Hi)u
Dpu<d (5)
s.t. ¢ EpHcu < e—EpFexg
Xp fixedandgiven

The numberof variablesis now reducedfrom (ny +
nx+ny) N to n,x N. Sincethecostis quadratiandall
constraintarelinearin u, standardQP solversmight
be usedto solwe this problem.The two bestknown
methodsto solve LCQP’s are active setmethodsand
interior point methods.They are briefly discussedn
the next section,where it will be made clear that
thesemethodswill give problemssolvinglarge scale
problems.

3. STANDARD QP SOLVERS

Two well known classesof iteratve methodsexist
for solving LCQP’s like (5). The first class con-
tainsthe active set methods(ASM ), the secondone
interior point methods(IPMs), seee.g. (Nashand
Sofer 1996),(NocedalandWright, 1999).

ASMs try iteratively to find the setof constraintghat
are active at the optimum. To obtain that goal they
solve an equality constrainedproblem at eachtime
stepto determinea new searchdirection. Eachiter-
ationthusrequiressolving a densesetof equationsn
Nny variables)eadingto O(N°ng) operationgeriter-
ation.Thetotalnumberof iterationswill increasewith
the numberof active constraintssinceapproximately
in eachiterationoneconstrainwill becomeactive.

IPMs try to solve the non-linearsetof Karush-Kuhn-
Tucker equationsteratively by makinglinearapprox-
imationsto this set. Thesesetsof equationsare of
the samesizeasfor active setmethodsNevertheless,
whentheproblemsgrow larger, interior pointmethods
can make usemore efficiently of sparsesolversand
will be faster Also the numberof iterationsto reach
a point closeto the optimumis typically independent
of thenumberof constraintandwill besmallerasfor
ASMs.

Several publicly available codesof thesealgorithms
canbe found (Table 1). The factthat all thesemeth-
odsbecomevery slow whenthe numberof variables
and/or constraintsincreasesjs shown in Figure 1,

where the computationaltime is plotted versusthe

numberof variablesrespectrely for two of thesealgo-

rithms. Anotherproblemwith thesestandardnethods
is thatthey generallyrequirealot of memoryusageo

storelarge densematrices.For large problemsmem-
ory problemsmayoccut

It is clearfrom theseaspectshatthosestandardneth-
odsarenot suitedfor solvingthe givenMPC problem

Table 1. Some available Active Set and
Interior PointMethodsfor LCQP’s.

Name Class Whereto befound

Mosek IPM wwy. nosek. com

Logo IPM waw. pri ncet on. edu/ ~rvdb
Quadprog ASM  Matlab's QP solver

NAG (e04n) ASM  www. nag.com

CPUt

16

14r

12f

0.8

0.6

041

0.2

T L L L L L L L
20 40 60 80 100 120 140 160 180 200

Fig. 1. Relationbetweennumberof variablesin the
given dynamic optimizationand CPU time for
somestandardmethods.Simulationswere done
onanlintel Plll andall routineswerecalledfrom
within Matlah

for large scalesystemswith large horizons.Therefore
methodsthat don't suffer from the third power rela-
tion betweernthe numberof variablesandthe number
of iterationsare needed For MPC relatedproblems,
the structurein the given quadraticprogramcan be
exploitedto developsucha method.

4. EXPLOITING STRUCTURE

Whenthe outputequationyy, = Cx is usedto elim-

inate the outputsin (5), but the statesare not elimi-

natedandkept asoptimizationvariables the number
of variablesbecomesN(ny + ny), but the remaining
setsof equationsthat have to be solved will have a
sparsestructurethatcanbe exploited.

For theinterior pointcasethisis thoroughlyexplained
in (Rao and Rawlings, 1997). There a primal-dual
predictorcorrectorinterior pointmethodis developed
to solve the Karush-Kuhn-Tucker(KKT) equationgor
optimality.

Introducingthe Lagrangemultipliers px for the state
spaceequationsandAy, k1 for the input and output
constraintgespectiely, andthe correspondinglacks
t@,té and assuminga zero referencewithout loss of
generalitytheseequationsaregivenby

nvar



( Ruc+ BT px+ Dg Ak =0
ElL1&i+1— P +CTQCX 41+ AT Py = 0
ENEN—1— Pn—1+ QnXn =0
Xi+1 — AX — Bl =0

! dk— Dyu—t) =0
&+1— Ek+1Xk+1—t|§+l =0 (6)
tli\T}\k =0
(trsq) " & =0

[ Mks €1 >0
k=0,...,N—1
1=0,...,N—2

The linear approximationof these KKT equations
which hasto be solved at eachiteration step,canbe
rewrittenas
—- R_O BT -
B -l
—-1Q1 AT
Ry BT
AB -l
-1Q AT
R, BT
A B .
L Qn |

As=r1 (7)

with

T ApT AT T
As = [ATan_I_ApO_IgAXla-:I_-a_?XN]
S LIRS S v

®)

whereAs is the stepdirectionto be determinedn the
currentiterationstepandr theresidualectorresulting
from thepreviousiterationrespectiely. Thematrixon

the left-handside of (7) hasa bandedstructurewith

somenewly introducedvariablesdefinedn Appendix
A. Applying a block elimination schemethe given
setof equationscan now be solved recursvely in a
Ricatti-like mannerby calculating,n afirst recursion
loop,fork=N,...,2,

_ -1_
|-|N ZCDN‘FE;S-H(E = lEN

TN = Ty _ . Q)
M1 = Qo1 — ATMBR L, BT A

Th1 =Py ; — ATHKBRlz—llrukfl

andin a secondloop, for k = 1,...,N — 1, the step
directions

Aug = R (Fy, — BT MAAX)
DXyey1 = ADX + BAU — 1, (20)
Apk = MidXg — T

The newly introducedvariablesin 9 and10 areagain
definedin AppendixA. For thefirst stepof this loop,
i.e.for k=0 (toinitialize therecursion) asmallsetof
equationgemainsto besolved,

Ro BT 07 [Aug Mg
B 0 —I Apo | = | Iy (11)
0 -1 M4 AXq ™

Using well-known matrix inversionlemmas and as-
suminginvertibility whererequired theinverseof the
left-handsidematrix of (11) caneasilybeshonvnto be
equalto

RoB" 0 N J K
2% 5] -1k,
0 —1T1y

J=(Ro+B"M;B)~1
K= (Ry+B'MB)~BT [M1 1]
L=KT

ST
=[]
S=-N;+MB(Ry+B™MN;B)~*B™ My
T=—1+M1B(Ry+B"M;B)~!B"
V = —1+B(Ry+B'M;B)~'BM,
W =B(Ro+B'n;B)~ 18"

(12)

and thus only somesmall inverseswill have to be
calculatedn orderto solve theentiresetof equations.

Theconclusiorof thesecalculationds thatbecaus®f
therecursve schemepnly O(N(ny + ny)®) operations
areneededper iteration, sincethe setof equationss
dividedin N separatélocks.Moreover, thisschemes
very easyto implementandrequiresalmostno mem-
ory.

Noticethatothermethodsanbechoserto decompose
the given bandedmatrix and solve the linear set of
equationsseee.g.(GopalandBiegler, 1998).

5. IMPLEMENTATION ISSUESAND EXAMPLE

In (RaoandRawlings, 1997)theinterior pointmethod
isimplementedasa primal-dualMehrotra’s predictor
correctormethod.Of courseothervariantsof interior
point methodscan be chosen.It is worth noticing
thatin theseprimal-dualmethods jnfeasiblestarting
points are allowed. Neverthelesghat way the itera-
tion trajectorywill runthroughinfeasibleregionswith
the disadwantagethat when the algorithm hasto be
stoppedbeforereachingthe optimalsolution,it is not
surethealgorithmwill returnafeasibleiterate.More-
over, the corvergenceof the algorithmis highly de-
pendenbnthestartingpoint. The duality gap,defined
as

AT 4 ETHE
B m

DG (13)

wherem is the numberof inequality constraintsand
\, &, tA t& thevectorof all input andoutputconstraint
Lagrangemultipliers and slacksrespectiely, can be
used as a stopping criterion (DG < €) as is often
the casein IPMs. The numberof iterations,i.e. the
numberof timestherecursiorhasto bedone,canthen
be approximatedfteroneiterationas



log —DGS(O)

DG(0)

Nit =
log 55

(14)

whereDG(i) denoteghe duality gapbeforethe (i+1)-

th iteration. This is an extensionof the exact calcu-
lation of the numberof outeriterationsfor standard
IPMs (Boyd andVandenbeghe,2000).If thetime for

one iteration is approximatelyknown, one hasthus
also an approximationfor the time neededo obtain
agivenaccurag.

The exampleof a high density polyethyleneplant is
takenhereto make somecomparisonsindshov some
propertiesA non-linearHDPE modelwaslinearized
arounda certaingradeto obtain a linear statespace
model for the given grade. This model contains45
states4 control inputs and 19 relevant outputs.The
structuredIPM was implementedin Matlab and all
simulationswere donein Matlab 5 on an Intel Pl
850MHz with 1Gb RAM. Notice that for instance
Matlab’s Quadprogdid needthatmuchmemory(tests
on a PC with 256Mb RAM failed for that reason)
whereaghestructuredPM coulddowith lessemem-
ory (testsonaPCwith 256 MbRAM gavenoproblems
at all). The linear modelis suchthatthe references
zero.

In Figure?2 thetrajectoriesof someinputsandoutputs
areshawn, firstwhentheconstrainboundsveretaken
suchthatthe constraintsvereinactive, thenwith some
active constraintsThe numberof iterationsto obtain
thesolutionatthefirst samplewasapproximatedo be
9 using(14), while it turnedout to be 11 in practice.
In Figure 3 the CPUtime neededo calculatethe tra-
jectorieswith active constraintgor differenthorizons
is shavn. As expected the calculationtime increases
linearly with N. For a naive active setimplementation
(hereMatlab’s Quadpr og, modifiedto solve LCQP’s
only), calculationtimes becomehugeif the horizon
increaseslt is clearthatstandardnethodsequiretoo
muchtime andtoo muchmemorywhenlargehorizons
areinvolved.

6. CONCLUSIONS

This papershows that standardQP solvers are not
suited to tackle the dynamic optimizationin model
predictive controllersfor on-lineusein realtime. That
is the reasonwhy state-of-the-artmodel predictive
controllerstry to approximatethe given optimization
problemsby priorization, defining move times, etc.
Nowadaysmethodsare being developedwhich ex-
plicitly take the structureof the given probleminto
accounsuchthatthenext generatiorof modelpredic-
tive controllerswill beableto tacklethe dynamicop-
timizationproblem.Fromtheexamplegivenit is clear
that for problemswith large horizonsand mary (ac-
tive) constraintsaie implementation®f QP solvers
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Fig. 2. Input (above) and Output (below) trajectories
for two inputs and two outputs,the dottedline
when no constraintswere active, the full line
whenthe A H2/C2 flow wasboundedabove and
belonv by -0.01 and 0.01 and the density was
boundedby -0.04 belon. The A C4/C2 flow is
in promille, the A H2/C2 flow in ppm and the
densityin kg/m®
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Fig. 3. Increasein CPU time when the horizon in-
creases.

becomeuselesssince it will be impossibleto give
an optimal solution within the available time when
runningin realtime. Moreover, densemethodsequire
morememoryto storethefull densematrices.
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APPENDIXA

In equation(7), for
k=0,...,N—1andl =1,...,N—1, the following
matriceswereintroduced,

= -1
R« = R+ DL T /\k—lle
Q =C'QC+E'T¢ =g

with
T} = diag{t)} (15)
N = diag{)\k}
T" = diag{t}

= =diag{§ }

In equationg9) and(10), againfor
k=0,...,N—1andl =1,...,N—1, the following
matricesandvectorswereintroduced,

l?k = R:k+ B'My1B
Q=Q+ATM A
Fuk = I’Uk + BTI_Ik+j_rpk + BTT[k+j_

My, =TIx + ATnk+1rpk +ATT[k+1

(16)



