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Abstract: Model Predictive Control(MPC) is widely used, especially in the chemical
process industry. Model Predictive Controllers calculate the optimal control inputs at
each time step, based on past information, a plant model, a quadratic objective and
given constraints. Typically this involves solving a large linearly constrained quadratic
program(LCQP) at each time step. Standard methods turn out to be too slow to calculate
the desired inputs in time, i.e. each sampling instant. By exploiting the structure of
the LCQP, specific methods for solving the QP’s in MPC were developed recently. We
will compare these methods with classical QP solvers and show their necessity when
controlling large systems from the example of a high density polyethylene production
plant.Copyright c

�
2002 IFAC
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1. INTRODUCTION

Model Predictive Control (MPC) is a control tech-
nique that has been developed for the chemical process
industry and is widely used in that area (Qin and Badg-
well, 1997). This control strategy uses a model and the
state at the current time instant to predict the effect of
control inputs on the future states and/or outputs of the
system. A quadratic cost function is defined, involving
the outputs, the states and/or the inputs of the system
over a certain time horizon, while the model equations
act as constraints. The finite horizon allows to incor-

porate constraints on inputs and outputs, which is one
of the main differences with standard controller design
methods and also one of the main reasons why MPC
has become very popular in the chemical industry
where many (hard) input and output constraints have
to be dealt with.

One of the main drawbacks of nowadays model pre-
dictive controllers is the need to solve an optimization
problem at each time step in order to be able to guaran-
tee stability and a good performance. MPC controllers
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areratherdifficult to implementon-line,becausethese
optimizationproblems,typically linearly constrained
quadraticproblems(LCQP),tendto becometoo large
to besolvedin real-timewhenstandardLCQPsolvers
are used.State-of-the-artimplementationsof model
predictive controllerscircumventthis problemby us-
ing a priorisationschemefor theconstraints,or other
tricks to solve thedynamicoptimizationproblem.Re-
cently, severalmethodswereproposedto reformulate
theoptimizationproblemor theentireMPC problem,
in orderto generatesolutionsin lessertime. Many of
thesemethodstry to approximatethe given control
problemby making assumptions,for instanceabout
thecontrolsignalstructure(e.g.CommandGoverning
(Bemporad,1997)).Nevertheless,themostpromising
methodsdo not make suchassumptions,but exploit
thestructureof thegivenoptimizationproblem.It will
beshown thatthesestructuredmethodscantacklethe
problem at hand for large scalesystemsin a much
betterway thanstandardLCQPsolvers.

This paperis organizedas follows. In Section2, we
give a descriptionof the MPC problemand the op-
timization problem it leads to. Section3 discusses
standardmethodsto solve LCQP’s and their disad-
vantageswith respectto large problems.In section
4, structureexploiting methodsfor solvingtheLCQP
in MPC applicationsare discussedand in section5
someimplementationissuesanddetailsarediscussed
andacontrolexamplefor ahigh densitypolyethylene
plant is givento show that thesemethodscanplay an
importantrole in next generationMPC controllersfor
largescalesystems.Conclusionsaredrawn in section
6, followedby theacknowledgements(section7), the
referencesandanappendix.

2. MODEL PREDICTIVECONTROL: PROBLEM
DEFINITION

Let us considerthe statespaceequationsof a given
discretetime linearmodel,

xk � 1 � Axk � Buk

yk � Cxk
(1)

whereuk �	� nu is theinputvector, yk �	� ny theoutput
vector and xk �
� nx the statevector at time instant
k. This modelis typically the resultof a linearization
of a non-linearsystemarounda givenworking point.
The control taskis to find, at eachtime instantk, an
optimal input sequenceuk ������� uk� N over the horizon
N, that generatesa good tracking behaviour of the
outputswhile certaingiven constraintsare fulfilled.
This is usually done by defining a quadraticcost
function in the outputs(or the states)andthe inputs.
Typically, thehorizonis finite. If we definea tracking
referencesignalyr for theoutputs,this will leadto an
optimizationproblemof theform

min
uk � yk

1
2

N � 1

∑
k� 0

���
yk � yr

k � TQk
�
yk � yr

k � � uT
k Rkuk �� 1

2
yT

NQ̄NyN � yr
NQ̃NyN

s.t.

���������� ���������
xk � 1 � Axk � Buk

yk � Cxk

Dkuk � dk

Ek� 1xk� 1 � ek� 1

k � 0 �������� N � 1
yN � CxN

x0fixedandgiven

(2)

ThematricesQ̄N andQ̃N canbecalculatedin various
waysto guaranteestability, dependingon theassump-
tion thatonemakeson thecontrol law for N � k and
dependingon whetherA is stableor not.For unstable
systems,an endpointconstraintof the form FxN � 0
is introducedto ensurestabilityof theunstablemodes.
The matrix F is constructedfrom the part of A that
containsthesemodes.For more details we refer to
(Rawlings and Muske, 1993). Notice that in almost
all MPC applications,only the optimal input of the
currenttimeinstantis appliedandthatthecalculations
arerepeatedeachtime instant,giving riseto amoving
window approach.In (Mayneet al., 2000)it is shown
that under certain assumptions,the solution can be
provento giveasymptoticallystablecontrol.

In most MPC applicationsthe statespaceequations
areusedto eliminatethestatesfrom theoptimization
problemin orderto reducethesize(MuskeandRawl-
ings,1993).If we introduce

u � �
uT

k � uT
k� 1 �������� uT

k� N � T
d � �

dT
0 ������� dT

N � 1 � T
e � �

eT
1 �������� eT

N � T
QD � diag� Q1 �������� QN � 1 �
RD � diag� R0 ������� RN � 1 �
DD � diag� D0 �������� DN � 1 �
ED � diag� E1 ������� EN �

(3)

andthematricesFc, Hc andHN,

Fc �  !!!" CA
CA2

...
CAN

#%$$$&
Hc �

 !!!" CB 0 0 ���� 0
CAB CB 0 ���� 0

...
...

CAN � 1B CAN � 2B CB 0

#%$$$&
HN �(' ANB AN � 1B ����� B )

(4)

we canrewrite (2) as



min
u

uT � HT
c QHc � R � HN

T q̄NcHN � u� xT
0
�
FT

c QHc � �
CANc � 1 � T q̄NcHN � u

s.t.

�� � DDu � d
EDHcu � e � EDFcx0

x0 fixedandgiven

(5)

The numberof variablesis now reducedfrom
�
ny �

nx � nu �+* N to nu * N. Sincethecostis quadraticandall
constraintsarelinear in u, standardQPsolversmight
be usedto solve this problem.The two bestknown
methodsto solve LCQP’s areactive setmethodsand
interior point methods.They arebriefly discussedin
the next section,where it will be made clear that
thesemethodswill give problemssolving large scale
problems.

3. STANDARD QPSOLVERS

Two well known classesof iterative methodsexist
for solving LCQP’s like (5). The first class con-
tainsthe active set methods(ASMs), the secondone
interior point methods(IPMs), seee.g. (Nash and
Sofer, 1996),(NocedalandWright, 1999).

ASMs try iteratively to find thesetof constraintsthat
are active at the optimum. To obtain that goal they
solve an equality constrainedproblem at eachtime
stepto determinea new searchdirection.Eachiter-
ationthusrequiressolvinga densesetof equationsin
Nnu variables,leadingto O

�
N3n3

u � operationsperiter-
ation.Thetotalnumberof iterationswill increasewith
the numberof active constraintssinceapproximately
in eachiterationoneconstraintwill becomeactive.

IPMs try to solve thenon-linearsetof Karush-Kuhn-
Tuckerequationsiteratively by makinglinearapprox-
imations to this set. Thesesetsof equationsare of
thesamesizeasfor active setmethods.Nevertheless,
whentheproblemsgrow larger, interiorpointmethods
can make usemore efficiently of sparsesolvers and
will be faster. Also the numberof iterationsto reach
a point closeto theoptimumis typically independent
of thenumberof constraintsandwill besmallerasfor
ASMs.

Several publicly available codesof thesealgorithms
canbe found (Table1). The fact that all thesemeth-
odsbecomevery slow whenthe numberof variables
and/or constraintsincreases,is shown in Figure 1,
where the computationaltime is plotted versusthe
numberof variablesrespectively for two of thesealgo-
rithms.Anotherproblemwith thesestandardmethods
is thatthey generallyrequirea lot of memoryusageto
storelarge densematrices.For large problemsmem-
ory problemsmayoccur.

It is clearfrom theseaspectsthatthosestandardmeth-
odsarenot suitedfor solvingthegivenMPCproblem

Table 1. Some available Active Set and
Interior PointMethodsfor LCQP’s.

Name Class Whereto befound
Mosek IPM www.mosek.com
Loqo IPM www.princeton.edu/ , rvdb
Quadprog ASM Matlab’s QPsolver
NAG (e04n) ASM www.nag.com
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Fig. 1. Relationbetweennumberof variablesin the
given dynamic optimizationand CPU time for
somestandardmethods.Simulationsweredone
on anIntel PIII andall routineswerecalledfrom
within Matlab.

for largescalesystemswith largehorizons.Therefore
methodsthat don’t suffer from the third power rela-
tion betweenthenumberof variablesandthenumber
of iterationsareneeded.For MPC relatedproblems,
the structurein the given quadraticprogramcan be
exploitedto developsucha method.

4. EXPLOITING STRUCTURE

When the outputequationyk � Cxk is usedto elim-
inate the outputsin (5), but the statesarenot elimi-
natedandkept asoptimizationvariables,the number
of variablesbecomesN

�
nu � nx � , but the remaining

setsof equationsthat have to be solved will have a
sparsestructurethatcanbeexploited.

For theinteriorpointcasethis is thoroughlyexplained
in (Rao and Rawlings, 1997). There a primal-dual
predictor-correctorinterior pointmethodis developed
to solve theKarush-Kuhn-Tucker(KKT) equationsfor
optimality.

Introducingthe Lagrangemultipliers pk for the state
spaceequationsandλk � ξk� 1 for the input andoutput
constraintsrespectively, andthecorrespondingslacks

tλ
k � tξ

k and assuminga zero referencewithout loss of
generality, theseequationsaregivenby



���������������� ���������������

Ruk � BT pk � DT
k λk � 0

ET
l � 1ξl � 1 � pl � CTQCxl � 1 � AT pl � 1 � 0

ET
NξN � 1 � pN � 1 � Q̄NxN � 0

xk� 1 � Axk � Buk � 0
dk � Dkuk � tλ

k � 0

ek� 1 � Ek� 1xk� 1 � tξ
k� 1 � 0

tλ
k

T
λk � 0�

tξ
k� 1 � Tξk� 1 � 0

λk � ξk� 1 - 0
k � 0 �������� N � 1
l � 0 �������� N � 2

(6)

The linear approximationof theseKKT equations
which hasto be solved at eachiterationstep,canbe
rewrittenas !!!!!!!!!!!!!"

R̄0 BT

B � I� I Q̄1 AT

R̄1 BT

A B � I� I Q̄2 AT

R̄2 BT

A B
. . .

Q̄N

#%$$$$$$$$$$$$$&
∆s � r (7)

with

∆s � �
∆uT

0 � ∆pT
0 � ∆xT

1 ������� ∆xT
N � T

r � �
rT
u0 � rT

p0 � rT
x1 ������ rT

xN � T (8)

where∆s is thestepdirectionto bedeterminedin the
currentiterationstepandr theresidualvectorresulting
from thepreviousiterationrespectively. Thematrixon
the left-handsideof (7) hasa bandedstructurewith
somenewly introducedvariables,definedin Appendix
A. Applying a block elimination schemethe given
set of equationscan now be solved recursively in a
Ricatti-likemanner, by calculating,in afirst recursion
loop, for k � N ������.� 2,

ΠN � Q̄N � ET
NTξ

k

� 1
Ξ � 1

k EN

πN � rxN

Πk � 1 � Q̃k � 1 � ATΠkBR̃� 1
k � 1BTΠkA

πk � 1 � r̃xk / 1 � ATΠkBR̃� 1
k � 1r̃uk / 1

(9)

and in a secondloop, for k � 1 �������� N � 1, the step
directions

∆uk � R̃� 1
k

�
r̃uk � BTΠkA∆xk �

∆xk� 1 � A∆xk � B∆uk � rpk

∆pk � Πk∆xk � πk

(10)

Thenewly introducedvariablesin 9 and10 areagain
definedin AppendixA. For thefirst stepof this loop,
i.e. for k � 0 (to initialize therecursion),asmallsetof
equationsremainsto besolved, " R0 BT 0

B 0 � I
0 � I Π1

#&  " ∆u0

∆p0

∆x1

#& �  " ru0

rp0

π1

#& (11)

Using well-known matrix inversionlemma’s andas-
suminginvertibility whererequired,theinverseof the
left-handsidematrixof (11)caneasilybeshown to be
equalto  " R0 BT 0

B 0 � I
0 � I Π1

#& � 1 �10 J K
L M 2 �

J � �
R0 � BTΠ1B� � 1

K � �
R0 � BTΠ1B� � 1BT ' Π1 I )

L � KT

M � 0 S T
V W 2

S � � Π1 � Π1B
�
R0 � BTΠ1B� � 1BTΠ1

T � � I � Π1B
�
R0 � BTΠ1B� � 1BT

V � � I � B
�
R0 � BTΠ1B� � 1BΠ1

W � B
�
R0 � BTΠ1B� � 1BT

(12)

and thus only somesmall inverseswill have to be
calculatedin orderto solve theentiresetof equations.

Theconclusionof thesecalculationsis thatbecauseof
therecursivescheme,only O

�
N
�
nu � nx � 3 � operations

areneededper iteration,sincethe setof equationsis
dividedin N separateblocks.Moreover, thisschemeis
very easyto implementandrequiresalmostno mem-
ory.

Noticethatothermethodscanbechosentodecompose
the given bandedmatrix and solve the linear set of
equations,seee.g.(GopalandBiegler, 1998).

5. IMPLEMENTATION ISSUESAND EXAMPLE

In (RaoandRawlings,1997)theinteriorpointmethod
is implementedasaprimal-dualMehrotra’spredictor-
correctormethod.Of courseothervariantsof interior
point methodscan be chosen.It is worth noticing
that in theseprimal-dualmethods,infeasiblestarting
points are allowed. Neverthelessthat way the itera-
tion trajectorywill runthroughinfeasibleregionswith
the disadvantagethat when the algorithm has to be
stoppedbeforereachingtheoptimalsolution,it is not
surethealgorithmwill returna feasibleiterate.More-
over, the convergenceof the algorithm is highly de-
pendenton thestartingpoint.Thedualitygap,defined
as

DG � λTtλ � ξTtξ

m
(13)

wherem is the numberof inequalityconstraintsand
λ � ξ � tλ � tξ thevectorof all input andoutputconstraint
Lagrangemultipliers and slacksrespectively, can be
used as a stopping criterion (DG � ε) as is often
the casein IPMs. The numberof iterations,i.e. the
numberof timestherecursionhasto bedone,canthen
beapproximatedafteroneiterationas



nit � log DG 3 04
ε

log DG 3 04
DG 3 14 (14)

whereDG
�
i � denotesthedualitygapbeforethe(i+1)-

th iteration.This is an extensionof the exact calcu-
lation of the numberof outer iterationsfor standard
IPMs (Boyd andVandenberghe,2000).If thetime for
one iteration is approximatelyknown, one has thus
also an approximationfor the time neededto obtain
a givenaccuracy.

The exampleof a high densitypolyethyleneplant is
takenhereto makesomecomparisonsandshow some
properties.A non-linearHDPEmodelwaslinearized
arounda certaingradeto obtain a linear statespace
model for the given grade.This model contains45
states,4 control inputsand19 relevant outputs.The
structuredIPM was implementedin Matlab and all
simulationswere donein Matlab 5 on an Intel PIII
850MHz with 1Gb RAM. Notice that for instance
Matlab’sQuadprogdid needthatmuchmemory(tests
on a PC with 256Mb RAM failed for that reason)
whereasthestructuredIPM coulddowith lessermem-
ory (testsonaPCwith 256MbRAM gavenoproblems
at all). The linear model is suchthat the referenceis
zero.

In Figure2 thetrajectoriesof someinputsandoutputs
areshown,first whentheconstraintboundsweretaken
suchthattheconstraintswereinactive,thenwith some
active constraints.Thenumberof iterationsto obtain
thesolutionat thefirst samplewasapproximatedto be
9 using(14), while it turnedout to be 11 in practice.
In Figure3 theCPUtime neededto calculatethe tra-
jectorieswith active constraintsfor differenthorizons
is shown. As expected,thecalculationtime increases
linearly with N. For a naiveactivesetimplementation
(hereMatlab’s Quadprog, modifiedto solve LCQP’s
only), calculationtimes becomehugeif the horizon
increases.It is clearthatstandardmethodsrequiretoo
muchtimeandtoomuchmemorywhenlargehorizons
areinvolved.

6. CONCLUSIONS

This papershows that standardQP solvers are not
suited to tackle the dynamic optimization in model
predictivecontrollersfor on-lineusein realtime.That
is the reasonwhy state-of-the-artmodel predictive
controllerstry to approximatethe givenoptimization
problemsby priorization, defining move times, etc.
Nowadaysmethodsare being developedwhich ex-
plicitly take the structureof the given probleminto
accountsuchthatthenext generationof modelpredic-
tive controllerswill beableto tacklethedynamicop-
timizationproblem.Fromtheexamplegivenit is clear
that for problemswith large horizonsandmany (ac-
tive) constraintsnaive implementationsof QPsolvers
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Fig. 3. Increasein CPU time when the horizon in-
creases.

becomeuselesssince it will be impossibleto give
an optimal solution within the available time when
runningin realtime.Moreover, densemethodsrequire
morememoryto storethefull densematrices.
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APPENDIX A

In equation(7), for
k � 0 ������� N � 1 and l � 1 ������� N � 1, the following
matriceswereintroduced,

R̄k � Rk � DT
k Tλ

k
� 1

Λ � 1
k Dk

Q̄l � CTQlC � ET
l Tξ

l

� 1
Ξ � 1

l El

with
Tλ

k � diag� tλ
k �

Λk � diag� λk �
Tξ

l � diag� tξ
l �

Ξl � diag� ξl �
(15)

In equations(9) and(10),againfor
k � 0 �������� N � 1 and l � 1 �������� N � 1, the following
matricesandvectorswereintroduced,

R̃k � R̄k � BTΠk� 1B
Q̃l � Q̄l � ATΠl � 1A
r̃uk � ruk � BTΠk � 1rpk � BTπk � 1

r̃xk � rxk � ATΠk� 1rpk � ATπk� 1

(16)


