

TASK DECOMPOSITION IMPLEMENTATION IN RT-LINUX

J. Vidal, A. Crespo, P. Balbastre

Departamento de Informática de Sistemas y Computadores
Universidad Politécnica de Valencia

{jvidal, alfons, patricia}@disca.upv.es

Abstract: Control applications require defining several parallel activities to model the
environment. Periodic tasks model the activities to be executed at periodic instants of
time. While the process of control design is focused on obtaining the regulator, later on
translated into an algorithm, the software design is focused on producing pieces of
software that will be executed concurrently under a scheduler. Nowadays, more and
more applications require complex computation and the use of complex algorithms that
can compromise the response time of the system. The activities involving a control loop
task can be structured in some parts: data acquisition, computation of the control action,
optional activities and output of the control action. This decomposition is useful to
improve the control performance and reduce delays due to the scheduler. This paper
shows how to implement complex real-time control applications by means of periodic
tasks in RT-Linux, using a task decomposition. Copyright © 2002 IFAC

Keywords: Real-time system, scheduling, real-time operating systems

1 INTRODUCTION?

During the last years an emerging field of integrated
control and scheduling has been object of several
works. In this field a closer interaction between control
design phase and control implementation (scheduling)
is used to improve the control performances. The
development of scheduling techniques and control
theory considering both aspects permits the definition
of new flexible scheduling schemes where the control
design methodology takes the availability of computing
resources into account during the design phase and
allows the optimization of control performance and
computing resource utilization.

In digital control, it is well known that the system is
behaving in open-loop in between two sampling

? This work has been supported by the Spanish Government
Research Office CICYT under grant TIC1999-1226-C02

periods. Thus, the control performance degrades as far as
the sampling period increases and the degrading depends
on the control effort applied to the plant (Albertos et al.,
1999). It is als o generally the case that delays between
the measurement sampling and the control signal
updating deteriorates the control performances (Albertos
et al., 2000).
A classical limitation in the selection of the sampling
period is determined by the complexity of the control
algorithm and the time needed by the CPU to compute
the result. But, in the case of complex systems, there are
many other limitations as the multitasking effects and
the computation time variations and the control
performances induced by the delays.

To reduce these effects some previous work in the
integration of control and scheduling can be found in the
literature considering several aspects:

- To increase the use of the CPU adjusting the control

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

loops frequency off-line taking into account the process
dynamic and the system schedulability (Seto et al.,
1998). This method considers the period range of the
tasks involved in a control design as criteria to obtain an
optimal use of the system resources. In this integrated
approach, the imple mentation is tuned translating a
control performance index into task sampling periods to
execute the control tasks at the maximum frequency
while ensuring the system schedulability. The sampling
periods were considered as variables and the method
determine their values so that the overall performance
was optimized subject to the schedulability constraints.
An on-line application of the approach is suggested in
(Shin and Meissner, 1999) .

- To reduce the basic timing constraints of a control
loop. The timing constraints associated to a control task
are the period and the control delays due to the input/
output latency. If the delay is fixed and known, the
control algorithm can be designed to counteract its
effect. From a control point of view, sampling jitter and
input-output jitter can be interpreted as disturbances
acting on the control system. In (Crespo et al., 1999,
Albertos et al., 2000, Balbastre et al., 2000,) a task
partitioning scheme is defined to reduce the variable
task delays of the control loop implementation.

- To reduce the control performance degrading
identifying a parameter as the control effort and
adjusting the priority scheme and splitting the task set.
A methodology to consider all these aspects has been
proposed in (Albertos et al., 2000).

- To dynamically adjust the task periods to maintain the
CPU load in bounds. In (Buttazzo et al. , 1998) a model
based on an elastic task for periodic tasks is presented.
Each task has associated an elasticity coefficient and
may change its period within certain limits depending
on the system load. This approach can be used under
fixed or dynamic priority scheduling.

- To consider the on-line use of the CPU as an input to a
controller. A feedback controller adjusts the sampling
frequencies to maintain the CPU utilization at a desired
value. In (Stankovic et al. ,1999) it is proposed to use a
PID controller as an on-line scheduler under the notion
of Feedback Control-EDF. The scheme can be used to
adjust the periods or to handle mode changes.

- To handle abrupt variations of the execution time an
on-line scheduling feedback control is proposed in
(Cervin and Ecker, 2000). The proposed scheme
attempts to keep the CPU utilization in a prescribed
level avoiding overload situations.

Thus, an important work has been done to integrate
both phases, control design and implementation, but it
is always assumed that the control algorithm is fixed
and only some parameters (period and delay) can be
adapted. While the process of control design is focused
on obtaining the regulator, later on translated into an
algorithm, the software design is focused on producing
pieces of software that will be executed concurrently
under the supervision of a scheduler. The software

designer has to ensure that all the tasks meet their
deadlines, i.e., the system is schedulable. Nowadays,
more and more applications require complex
computation and the use of complex algorithms that can
compromise the response time of the system.

In this work, we describe the implementation in RT-
Linux of the partitioning scheme proposed in (Crespo et
al., 1999) in a efficient way. In Section 2 the periodic
task scheme is presented. In Section 3 details the task
organization and the basic mechanism used to task
synchronization and communication.. Section 4 details
the main aspects of the implementation. Section 6 ends
with some conclusions.

2. PERIODIC TASK SCHEME

The design of a control system involves the definition of
several control loops (each one is a task) that have to be
executed under the operating system scheduler.
Therefore, periodic tasks are the main components in the
design of real-time control applications, performing the
actions at regular intervals of time. The periodic scheme
is a well known model and there are several methods and
techniques for the design, analysis and validation of this
systems (Burns and Wellings, 1996).

In (Crespo et al., 1999) an partitioning task scheme was
proposed. This scheme an improve the control
performances reducing the variable delay of all tasks.
Under this scheme, the system priorities are split into
three bands: final, initial and main bands. The final band
covers the highest priorities, the initial band considers
the intermediate priorities and the main band the lowest.
A periodic job can be split into three tasks: initial, main
and final assigning a priority to each part in a the
corresponding priority band.

offset

ki
T

kmT

kf
T

kJ

Job

Tasks
Fig. 1. The initial control activity, Job, is split in three

activities.

In (Albertos et al., 2000) is stated the advantages of the
variable delay reduction in combination with a control
parameter as the control effort.

A job can be decomposed into several tasks taking into
account its control activities:

- Mandatory task (M)
- Mandatory and Final tasks (MF)
- Initial and Mandatory tasks (IM)
- Initial, Mandatory and Final tasks (IMF)

However, this scheme presents some drawbacks as the
number of task in the system (three times the number of
jobs for IMF decomposition). To reduce this drawback
we can consider that all final tasks will use the same
output devices so, its concurrent execution will be
serialized by a resource management. The same
reasoning can be applied to initial tasks. In this way, a
reasonable solution is to define two server tasks to serve
the final and initial activit ies. These servers will have
the following characteristics:

1. Serve all the tasks of a band
2. Have a multiperiod resulting of all the tasks

periods in a band
3. Execute the activities of a singular task in each

activation
4. Apply the first come first server scheduling

policy

From the task synchronization point of view, a final
task has to wait its main task ending to be executed. On
the other hand, initial and main tasks are executed in the
correct order due to their priority assignation.

Figure 2 shows the task queues in the reduced scheme.

Final task server

Initial task server

Priority

highest

lowest
Main tasks

Fig. 2. Priority assignation to tasks

The shedulability analysis of the reduced scheme can be
considered the same developed in (balbastre,)
considering the union of all tasks served by the
respective served using shared resources.

3. IMPLEMENTATION IN RT -LINUX

The conventional approach for allowing real-time
features in Unix systems is to modify the kernel in order
to make it predictable and to provide an additional set
of system calls to gain access to real-time features. This
set of system calls has been standardized by POSIX.
Unlike this approach, RT-Linux does not modify the
Linux kernel or provides additional system calls.
Instead of trying to make the kernel of Linux
predictable, what it does is to build a kind small
microkernel or software layer, called RT -Linux, directly
on the bare hardware. Linux runs on top of this layer.

RT-Linux implements the concept of RT-task and
uses its own scheduler for these tasks. The default
scheduler that comes with RT-Linux is a preemptive,
fixed priority scheduler, but it can be easily customized.
Linux, including all its kernel and user processes, is
regarded by this scheduler just as another RT -task and
shares the processor with other RT-tasks (Figure 3).
More precisely, Linux is the lowest priority RT-task and
thus, it is executed as a background task, so it only runs
when no other RT-tasks are running. RT-Linux also
provides full control over interrupts, and it implements a
software interrupt manager. It allows either: to capture
and handle interrupts, or just bypass them to Linux.

RT-Linux

Linux RT-FIFOS

HardwareInterrupts

Linux user
processes

RT-tasks

Fig. 3. RT_Linux architecture

The implementation in RT-Linux will consider the
creation of two threads for the final and initial server at
the highest priority (FINAL_PRIORITY) and the next
(INITIAL_PRIORITY) respectively. Each main task will
have the priority inside the band. The priority order of
main tasks and jobs is kept in the system.

The data structure to store the information of final
and initials tasks is the following;

// Parameters for IMF tasks
struct server_params{
 int job_id; // job identifier
 int priority; // job priority
 hrt_time period, deadline, offset;
 hrtime_t next_activation;
 proc activity; / code to be executed
};

where next_activation will maintain the time for the next
task activation and activity is a pointer to the procedure
to be executed.

The initial and final servers will use the following
variables with the information of all instantiated initial
and final tasks

server_params final_server_info [MAX_TASKS];
server_params initial_server_info [MAX_TASKS];

To split a job into its initial, main and final task it is
necessary to provide the information associated to the
job: job_identifier, period, deadline and offset, the final
task offset and the procedures where the initial, main
and final activities are coded. The following code shows
the implementation filling the data structure of initial

and final tasks and creating the thread associated to the
main task.

int create_IMF_tasks (int job_id,int prio,
 hrtime_t period, hrtime_t deadline, hrtime_t offset,
 hrtime_t final_offset,
 proc p_mandatory, proc p_initial, proc p_final)
{
pthread_attr_t attr;
struct sched_param p;
// fill the parameters structure of initial and final .
 add_initial:task(job_id,prior,period,deadline, offset,
 p_initial);
 add_final:task(job_id,prio,period,deadline,
 offset+final_offset, p_final);
 init_semaphore(job_id);
// Creates the thread and make it periodic
 create_periodic_task(job_id,prio,period,deadline, offset,
 p_mandatory);
 NTASKS++;
 return 0;
}

To split job into M, IM, and MF tasks, the interface is
similar including only parameters associated to the
decomposed tasks. For example a MF decomposition
will have the following interface:

int create_MF_tasks (int job_id,int prio,
 hrtime_t period, hrtime_t deadline, hrtime_t offset,
 hrtime_t final_offset, proc p_mandatory, proc p_final)

The create_periodic_task operation consist in the thread
initialisation and the use of the RT_Linux function to
do it periodic.

// create_periodic_task MACRO CODE.
#define create_periodic_task(job_id,priority,period, deadline,
 offset, p_mandatory)
do {
 pthread_attr_t attr;
 struct sched_param p;
 pthread_attr_init(&attr);
 sched_params.sched_priority=priority;
 pthread_attr_setschedparam (&attr, &sched_params);
 pthread_create(&thread,&attr, (void *)
 mand_thread_code,(void *) mandatory,(int *)task_id);
 pthread_make_periodic_np(thread,(RTIME)
 (initial_time + .offset), (RTIME) period);
 } while (0)

Finally, the mandatory task has the following code:

// mandatory task thread code
void * mand_thread_code(void * arg){
long end=ITERS;
int index=(unsigned)arg;
 while(1){
 //execute mandatory under exclusion of final task
 execute_and_signal(sem[index],par[index].activity);
 pthread_wait_np();
 if (end<0) break; end--;
 }// end while
 pthread_exit(0);
 return 0;

}
4. SERVER IMPLEMENTATION

A multiperiod server is implemented as a thread that
consult the data structure associated to the server to
determine the next activation of any of the tasks
associated to their service. Each task is considered as a
piece of software executed by the server thread. The next
activation of the multiperiod server is calculated using
the function:

void get_next_final_delay(int *id, hrtime_t *delay);

which looks for the shortest time to wake up any of the
task. Tasks in table are sorted by priority and the
operation cost depends on the number of tasks.

Initial and Final servers have different behaviour. While
the server of initial tasks has a precedence relation
between the initial task and its main task which is solved
by design (the priority of the initial is higher than the
main, so it always will be executed first), the final
server has to handle its precedence relation by means a
protocol. The main task has to be finished before the
final task can run. The initial server has the following
code:

void * initial_server(void * arg){
 long end=ITERS;
 int index=(unsigned)arg;
 int id=0; hrtime_t delay;
 int i=0;
 while(1){
 get_next_final_delay(&id,&delay);
 clock_nanosleep(CLOCK_RTL_SCHED,
 TIMER_ABSTIME, hrt2ts(delay), NULL);
 do_initial_action(id); //
 }// end while.
 pthread_exit(0);
 return 0;
}

The server of final tasks has to implement a protocol
ensuring correct execution order of each pair main and
final tasks. This protocol has to consider that when a
final task reach its activation time, the main task has to
be finished. A semaphore provides the basic mechanism
to control this relation. However, if the final task is
blocked in the semaphore, it can cause the missing of
next activation of other final tasks. So, the access to the
semaphore has to be done using a non blocking
operation and tests the operation result to see if the
operation fails. In this case, the final task is labelled as
pendent and executed when the semaphore has been
signalled.

//final server task code.
void * final_server(void * arg){
 long end=ITERS;
 int index=(unsigned)arg;
 hrtime_t delay;
 int id=0,id_pendent, error;

 while(1){

 // look for next final activation.
 get_next_final_delay(&id,&delay);
 // is the next final activation pendent ?
 if pendent(id) {
 // next final activation task is pendent, so
 // looks for the highest priority pendent task.
 id_pendent=get_hprio_pendent();
 // wait for semaphore. Max wait time=delay.
 error=sem_timedwait(sem[id_pendent],
 hrt2ts(delay));
 // elapsed time.
 if (error !=0) {
 error=sem_trywait(sem[id]);
 if (error!=0) {
 mark_pendent(id);
 }
 else {
 do_action(id);
 mark_not_pendent(id);
 }
 }
 // next final activation task isn't pendent.
 // so, it is handled consequently.
 else
 {
 // suspend currend until next activation.
 clock_nanosleep(CLOCK_RTL_SCHED,
 TIMER_ABSTIME, hrt2ts(delay), NULL);
 //Wait_for mandatory task activation end
 // wait for semaphore. Max wait time=delay.
 error=sem_timedwait(sem[id],
 hrt2ts(delay));
 // elapsed time.
 if (error!=0) {
 mark_pendent(id);
 }
 else
 {
 do_action(id);
 mark_not_pendent(id);
 }

 } // end pendent if.
 //Exit when the simulation ends.
 if (end<0) break; end--;
 }// end while.
 pthread_exit(0);
 return 0;
}

The thread associated to the server are instantiated with
the next declaration:

pthread_t final_server, initial_server;
int Init_final_server(int FINAL_ID, int FINAL_PRIO);
int Init_Iniital_server(int INITIAL_ID,
 int INITIAL_PRIO);

5. EXAMPLE

In this section, we describe an example to show the
partitioning scheme, the split task, the main code, the
RT_Linux measures and a snapshot of the real
execution.

The system has the jobs described in Table 1.

Table 1 Jobs in the initial control system

 Job WCET Period Deadline Offset
1 6 50 50 0
2 13 80 80 0
3 15 110 110 0
4 16 120 120 0
5 20 200 200 0

The following table (Table 2) shows the use of external
interface of each job. A job that does not use to the
sensor or actuator means that use internal data as input
or output or the jitter does not affect to the control
performances.

Table 2 Input/output and job requirements

 Job Sensor Actuator Task type
1 Yes Yes IMF
2 No Yes MF
3 Yes Yes IMF
4 No No M
5 Yes Yes IMF

Using the method proposed in (Balbastre et al., 2000) we
obtain the next tasks associated to each job.

Table 3 Job decomposition into tasks

 Job Task WCET P D O

1 Initial 2 50 50 0
1 Main 2 50 50 0
1 Final 2 50 33 17
2 Main 10 80 80 0
2 Final 3 80 56 24
3 Initial 2 110 110 0
3 Main 10 110 110 0
3 Final 3 110 79 31
4 Main 16 120 120 0
5 Initial 2 200 200 0
5 Main 15 200 200 0
5 Final 3 200 132 68

The set of jobs presents large variable delay (evaluated
in terms of DAI and CAI) in input and output showed in
third and fourth columns of table 4. After the task
decomposition, these variable delays are reduced to the
values showed in the last two columns.

Table 4 Variable delays of the job set and the
decomposed tasks

Job DAI CAI DAI CAI

1 0% 0% 2% 4%
2 - 7.5% - 8%
3 17.5% 59.6% 12% 4.5%
4 - - - -
5 26.5% 28% 8.5% 5.5%

Initial Jobs Split tasks

The next code shows the main module to define and
create the task system. The procedures associated to the
main, initial and final operations are provided by the
control designer.

int init_module(void)
{
initialize_threads; // initialize both servers and a thread for
each main task.
 int i=0;
 // creates tasks of all jobs
 create_IMF_tasks (1, 10, 50, 50, 0, 12,
 main1, initial1, final1);
 create_MF_tasks (2, 9, 80, 80, 0, 20,
 main2, final2);
 create_IMF_tasks (3, 8, 110, 110, 0, 58,
 main3, initial3, final3);
 create_M_tasks (4, 7, 120, 120, 0,
 main4);
 create_IMF_tasks (5, 6, 200, 200, 0, 69,
 main5, initial5, final5);

 Init_final_server(1, 12);
 Init_Initial_server(2, 11);
 return 0;
}

The RT_Linux module obtained by this process design
generates a code overhead of 30Kb with respect to the
control application. Additionally, the RT_Linux kernel
requires 100Kb. From the point of view of number of
tasks, this design adds 2 tasks to the initial control
software design.

CONCLUSIONS

This paper describes how to implement real-time
applications using the decomposition method presented
in (Crespo et al., 1999). Each of control design
activities, called jobs, are divided in mandatory and
optional parts, and this allows to reduce the jitter
variation (Balbastre et al., 2000). A modular and
generic software design has been proposed to
implement the decomposed method using RT_Linux. In
this implementation every control task (mandatory), is
implemented as a thread. Final and initial tasks are
grouped and served by two dedicated servers. The
implementation of the server has been detailed in the
paper. Finally, an example showing the process design
and results has been reported.

REFERENCES

Albertos P., Crespo A., Ripoll I., Vallés M., Balbastre P.,

(2000) “RT control Scheduling to reduce control
performance degrading”. 39th IEEE Conference on
Decision and Control. Australia, December 12-15.

Audsley N., Burns A., Tindell K., Richardson M., Wellings A.
(1993) “Applying new schedulability theory to static
priority pre-emptive scheduling”. Software Engineering
Journal, 8(5):284-292

Balbastre P., Ripoll I., Crespo A., (2000) “Control Task Delay
Reduction under Static and Dynamic Scheduling Policies”
7th International Conference on Real-Time Computer
Systems and Applications (RTCSA’00). Cheju Island,
South Korea, 12-14 December, 2000

Balbastre, P. And Ripoll I. (2001) Integrated Dynamic
Priority Scheduler for RTLinux", Real time Workshop
2001.

Burns A., and A. Wellings (1996), Real-Time Systems and
their Programming Languages (2nd Edn), Addison-
Wesley.

Cervin A., Ecker. J. (2000)“Feedback Scheduling of Control
Tasks” Proceedings of the 39th IEEE Conference on
Decision and Control, Sydney, Australia, December 2000

Crespo, A., Ripoll I., and P. Albertos. (1999) “Reducing
Delays in RT control: the Control Action Interval" IFAC
World Congress, Beijing [7]Leung J., Whitehead J., "On the
Complexity of Fixed-Priority Scheduling of Periodic, Real-
Time Tasks", Performance Evaluation, Vol. 2(4), pp. 237-
250, December 1982.

Crespo A., P. Balbastre, and S. Terrasa. (2001) “Complex Task
Implementation in Ada” Proceedings 6th International
Conference on Reliable Software Technologies - Ada
Europe 2001, Leuven, Belgium, May 14-18, 2001, Dirk
Craeynest, Alfred Strohmeier (Eds.), Lecture Notes in
Computer Science, vol 2043, Springer-Verlag, 2001

Liu C.L. and J.W.Layland. (1973) "Scheduling algorithms for
multiprogramming in a hard real-time environment".
JACM, 20,46-61.

Seto D., J.P. Lehoczky, L. Sha. (1998) "Task Period Selection
and Schedulability in Real-Time Systems". IEEE Real-
Time Systems Symposium

Shin K. and C. Meissner (1999) “Adaptation of control system
performance by task reallocation and period modification”
In Proceedings of the 11th Euromicro Conference on Real-
Time systems, pp. 29-36

