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Abstract: Control applications require defining several parallel activities to model the 
environment. Periodic tasks model the activities to be executed at periodic instants of 
time. While the process of control design is focused on obtaining the regulator, later on 
translated into an algorithm, the software design is focused on producing pieces of 
software that will be executed concurrently under a scheduler. Nowadays, more and 
more applications require complex computation and the use of complex algorithms that 
can compromise the response time of the system. The activities involving a control loop 
task can be structured in some parts: data acquisition, computation of the control action, 
optional activities  and output of the control action. This decomposition is useful to 
improve the control performance and reduce delays due to the scheduler. This paper 
shows how to implement complex real-time control applications by means of periodic 
tasks in RT-Linux, using a task decomposition. Copyright © 2002 IFAC 
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1 INTRODUCTION? 

 
During the last years an emerging field of integrated 
control and scheduling has been object of several 
works. In this field a closer interaction between control 
design phase and control implementation (scheduling)  
is used to improve the control performances.  The 
development of scheduling techniques and control 
theory considering both aspects permits the definition 
of new flexible scheduling schemes where the control 
design methodology takes the availability of computing 
resources into account during the design phase and 
allows the optimization of control performance and 
computing resource utilization. 
 
In digital control, it is well known that the system is 
behaving in open-loop in between two sampling 
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periods. Thus, the control performance degrades as far as 
the sampling period increases and the degrading depends 
on the control effort applied to the plant (Albertos et al., 
1999). It is als o generally the case that delays between 
the measurement sampling and the control signal 
updating deteriorates the control performances (Albertos 
et al., 2000). 
A classical limitation in the selection of the sampling 
period is determined by the complexity of the control 
algorithm and the time needed by the CPU to compute 
the result. But, in the case of complex systems, there are 
many other limitations as the multitasking effects and 
the computation time variations and the control 
performances induced by the delays. 
 
To reduce these effects some previous work in the 
integration of control and scheduling can be found in the 
literature considering several aspects: 
  
- To increase the use of the CPU adjusting the control 
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loops frequency off-line taking into account the process 
dynamic and the system schedulability (Seto et al., 
1998). This method considers the period range of the 
tasks involved in a control design as criteria to obtain an 
optimal use of the system resources. In this integrated 
approach, the imple mentation is tuned translating a 
control performance index into task sampling periods to 
execute the control tasks at the maximum frequency 
while ensuring the system schedulability. The sampling 
periods were considered as variables and the method 
determine their values so that the overall performance 
was optimized subject to the schedulability constraints. 
An on-line application of the approach is suggested in 
(Shin and Meissner, 1999) . 
 
- To reduce the basic timing constraints of a control 
loop. The timing constraints associated to a control task 
are the period and the control delays due to the input/ 
output latency. If the delay is fixed and known, the 
control algorithm can be designed to counteract its 
effect. From a control point of view, sampling jitter and 
input-output jitter can be interpreted as disturbances 
acting on the control system. In (Crespo et al., 1999, 
Albertos et al., 2000, Balbastre et al., 2000, ) a task 
partitioning scheme is defined to reduce the variable 
task delays of the control loop implementation. 
 
- To reduce the control performance degrading 
identifying a parameter as the control effort and 
adjusting the priority scheme and splitting the task set. 
A methodology to consider all these aspects has been 
proposed in (Albertos et al., 2000). 
 
- To dynamically adjust the task periods to maintain the 
CPU load in bounds. In (Buttazzo et al. , 1998) a model 
based on an elastic task for periodic tasks is presented. 
Each task has associated an elasticity coefficient and 
may change its period within certain limits depending 
on the system load. This approach can be used under 
fixed or dynamic priority scheduling.  
 
- To consider the on-line use of the CPU as an input to a 
controller. A feedback controller adjusts the sampling 
frequencies to maintain the CPU utilization at a desired 
value. In (Stankovic et al. ,1999) it is proposed to use a 
PID controller as an on-line scheduler under the notion 
of Feedback Control-EDF. The scheme can be used to 
adjust the periods or to handle mode changes. 
 
- To handle abrupt variations of the execution time an 
on-line scheduling feedback control is proposed in 
(Cervin and Ecker, 2000). The proposed scheme 
attempts to keep the CPU utilization in a prescribed 
level avoiding overload situations.  
 
Thus, an important work has been done to integrate 
both phases, control design and implementation, but it 
is always assumed that the control algorithm is fixed 
and only some parameters (period and delay) can be 
adapted. While the process of control design is focused 
on obtaining the regulator, later on translated into an 
algorithm, the software design is focused on producing 
pieces of software that will be executed concurrently 
under the supervision of a scheduler. The software 

designer has to ensure that all the tasks meet their 
deadlines, i.e., the system is schedulable. Nowadays, 
more and more applications require complex 
computation and the use of complex algorithms that can 
compromise the response time of the system.  
 
In this work, we describe the implementation in RT-
Linux of the partitioning scheme proposed in (Crespo et 
al., 1999) in a efficient way.  In Section 2 the periodic 
task scheme is presented. In Section 3 details the task 
organization and the basic mechanism used to task 
synchronization and communication.. Section 4 details 
the main aspects of the implementation. Section 6 ends 
with some conclusions. 
 

2. PERIODIC TASK SCHEME 
 
The design of a control system involves the definition of 
several control loops (each one is a task) that have to be 
executed under the operating system scheduler. 
Therefore, periodic tasks are the main components in the 
design of real-time control applications, performing the 
actions at regular intervals of time. The periodic scheme 
is a well known model and there are several methods and 
techniques for the design, analysis and validation of this 
systems (Burns and Wellings, 1996). 

 
In (Crespo et al., 1999) an partitioning task scheme was 
proposed. This scheme an improve the control 
performances reducing the variable delay of all tasks. 
Under this scheme, the system priorities are split into 
three bands: final, initial and main bands. The final band 
covers the highest priorities, the initial band considers 
the intermediate priorities and the main band the lowest. 
A periodic job can be split  into three tasks: initial, main 
and final assigning a priority to each part in a the 
corresponding priority band.  
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Fig. 1. The initial control activity, Job, is split in three 

activities.  
 
In (Albertos et al., 2000) is stated the advantages of the 
variable delay reduction in combination with a control 
parameter as the control effort.  

 
A job can be decomposed into several tasks taking into 
account its control activities: 



  
 

- Mandatory task (M) 
- Mandatory and Final tasks (MF) 
- Initial and Mandatory tasks (IM) 
- Initial, Mandatory and Final tasks (IMF) 

 
However,  this scheme presents some drawbacks as the 
number of task in the system (three times the number of 
jobs for IMF decomposition). To reduce this drawback 
we can consider that all final tasks will use the same 
output devices so, its concurrent execution will be 
serialized by a resource management. The same 
reasoning can be applied to initial tasks. In this way, a 
reasonable solution is to define two server tasks to serve 
the final and initial activit ies. These servers will have 
the following characteristics: 

 
1. Serve all the tasks of a band 
2. Have a multiperiod resulting of all the tasks 

periods in a band 
3. Execute the activities of a singular task in each 

activation 
4. Apply the first come first server scheduling 

policy 
 

From the task synchronization point of view, a final 
task has to wait its main task ending to be executed. On 
the other hand, initial and main tasks are executed in the 
correct order due to their priority assignation. 

 
Figure 2 shows the task queues in the reduced scheme. 
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Fig. 2. Priority assignation to tasks 
 
The shedulability analysis of the reduced scheme can be 
considered the same developed in (balbastre, ) 
considering the union of all tasks served by the 
respective served using shared resources. 

 
 
3. IMPLEMENTATION IN RT -LINUX 
 

The conventional approach for allowing real-time 
features in Unix systems is to modify the kernel in order 
to make it predictable and to provide an additional set 
of system calls to gain access to real-time features. This 
set of system calls has been standardized by POSIX. 
Unlike this approach, RT-Linux does not modify the 
Linux kernel or provides additional system calls. 
Instead of trying to make the kernel of Linux 
predictable, what it does is to build a kind small 
microkernel or software layer, called RT -Linux, directly 
on the bare hardware. Linux runs on top of this layer.  

 

RT-Linux implements the concept of RT-task and 
uses its own scheduler for these tasks. The default 
scheduler that comes with RT-Linux is a preemptive, 
fixed priority scheduler, but it can be easily customized. 
Linux, including all its kernel and user processes,  is 
regarded by this scheduler just as another RT -task and 
shares the processor with other RT-tasks (Figure 3). 
More precisely, Linux is the lowest priority RT-task and 
thus, it is executed as a background task, so it only runs 
when no other RT-tasks are running. RT-Linux also 
provides full control over interrupts, and it implements a 
software interrupt manager. It allows either: to capture 
and handle interrupts, or just bypass them to Linux. 
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Fig. 3. RT_Linux architecture 

 
The implementation in RT-Linux will consider the 
creation of two threads for the final and initial server at 
the highest priority (FINAL_PRIORITY) and the next 
(INITIAL_PRIORITY) respectively. Each main task will 
have the priority inside the band. The priority order of 
main tasks and jobs is kept in the system. 
 
The data structure to store the information of final 
and initials tasks is the following; 
 
// Parameters for IMF tasks 
struct server_params{ 
 int job_id;                     // job identifier 
  int priority;            // job priority 
 hrt_time period, deadline, offset;  
 hrtime_t next_activation; 
  proc activity;        / code to be executed 
}; 

 
where next_activation will maintain the time for the next 
task activation and activity is a pointer to the procedure 
to be executed. 
 
The  initial and final servers will use the following 
variables with the information of all instantiated initial 
and final tasks   
 
server_params  final_server_info [MAX_TASKS]; 
server_params  initial_server_info [MAX_TASKS]; 
 
To split a job into its initial, main and final task it is 
necessary to provide the information associated to the 
job: job_identifier, period, deadline and offset, the final 
task offset  and the procedures where the initial, main 
and final activities are coded. The following code shows 
the implementation filling the data structure of initial 



  
 

and final tasks and creating the thread associated to the 
main task. 
 
int create_IMF_tasks (int job_id,int prio, 
     hrtime_t  period, hrtime_t  deadline, hrtime_t offset, 
     hrtime_t final_offset,  
     proc p_mandatory, proc p_initial, proc p_final) 
{ 
pthread_attr_t attr; 
struct sched_param p; 
// fill the parameters structure of initial and final . 
   add_initial:task(job_id,prior,period,deadline, offset,   
                          p_initial); 
   add_final:task(job_id,prio,period,deadline,  
                        offset+final_offset,   p_final); 
  init_semaphore(job_id); 
// Creates the thread and make it  periodic  
   create_periodic_task(job_id,prio,period,deadline, offset,  
                                 p_mandatory); 
   NTASKS++; 
   return 0; 
} 

 
To split job into M, IM, and MF tasks, the interface is 
similar including only parameters associated to the 
decomposed tasks. For example a MF decomposition 
will have the following interface: 
 
int create_MF_tasks (int job_id,int prio, 
     hrtime_t  period, hrtime_t  deadline, hrtime_t offset, 
     hrtime_t final_offset,  proc p_mandatory, proc p_final) 
 
The create_periodic_task operation consist in the thread 
initialisation and the use of the RT_Linux function to 
do it periodic. 
 
// create_periodic_task MACRO CODE. 
#define create_periodic_task(job_id,priority,period, deadline,  
                               offset, p_mandatory )  
do {   
  pthread_attr_t attr; 
  struct sched_param p; 
  pthread_attr_init(&attr);     
  sched_params.sched_priority=priority;  
  pthread_attr_setschedparam (&attr, &sched_params);   
  pthread_create(&thread,&attr, (void *)    
  mand_thread_code,(void *) mandatory,(int *)task_id);    
  pthread_make_periodic_np(thread,(RTIME) 
                       (initial_time + .offset), (RTIME)  period);  
 } while (0) 
 
Finally, the mandatory task has the following code: 
 
// mandatory task thread code 
void * mand_thread_code(void * arg){ 
long end=ITERS; 
int index=(unsigned)arg; 
  while(1){  
     //execute mandatory under exclusion of final task 
    execute_and_signal(sem[index],par[index].activity); 
    pthread_wait_np(); 
    if (end<0) break; end--;  
 }// end while 
  pthread_exit(0); 
  return 0; 

} 
4. SERVER IMPLEMENTATION 

 
A multiperiod server is implemented as a thread that 
consult the data structure associated to the server to 
determine the next activation of any of the tasks 
associated to their service. Each task is considered as a 
piece of software executed by the server thread. The next 
activation of the multiperiod server is calculated using 
the function:   
 
void get_next_final_delay(int *id, hrtime_t *delay); 
 
which looks for the shortest time to wake up any of the 
task. Tasks in table are sorted by priority and the  
operation cost depends on the number of tasks.  
 
Initial and Final servers have different behaviour. While 
the server of initial tasks has a precedence relation 
between the initial task and its main task which is solved 
by design (the priority of the initial is higher than the 
main, so it always will be executed first),  the final 
server has to handle its precedence relation by means a 
protocol. The main task  has to be finished before the 
final task can run. The initial server has the following 
code: 
 
void * initial_server(void * arg){ 
  long end=ITERS;  
  int index=(unsigned)arg; 
  int id=0; hrtime_t delay; 
  int i=0; 
  while(1){     
    get_next_final_delay(&id,&delay); 
    clock_nanosleep(CLOCK_RTL_SCHED,  
        TIMER_ABSTIME, hrt2ts(delay), NULL);  
    do_initial_action(id); // 
  }// end while. 
  pthread_exit(0); 
  return 0; 
} 
 
The server of final tasks has to implement  a protocol 
ensuring correct execution order of each pair main and 
final tasks. This protocol has to consider  that when a 
final task reach its activation time, the main task has to 
be finished. A semaphore provides the basic mechanism 
to control this relation. However, if the final task is 
blocked in the semaphore, it can cause the missing of 
next activation of other final tasks. So, the access to the 
semaphore has to be done using a non blocking 
operation and tests the operation result to see if the 
operation fails. In this case, the final task is labelled as 
pendent  and executed when the semaphore has been 
signalled.  
 
//final server task code. 
void * final_server(void * arg){ 
  long end=ITERS;  
  int index=(unsigned)arg; 
  hrtime_t delay; 
  int id=0,id_pendent, error; 
 
  while(1){     



  
 

    // look for next  final activation. 
    get_next_final_delay(&id,&delay); 
    // is the next final activation pendent ? 
    if pendent(id) { 
        // next final activation task is pendent, so 
       // looks for the highest priority pendent task. 
        id_pendent=get_hprio_pendent(); 
       // wait for semaphore. Max wait time=delay.  
       error=sem_timedwait(sem[id_pendent], 
                                           hrt2ts(delay)); 
      // elapsed time.   
      if (error !=0) { 
 error=sem_trywait(sem[id]); 
 if (error!=0) {  
     mark_pendent(id); 
 } 
 else { 
     do_action(id);  
     mark_not_pendent(id); 
 } 
   } 
  // next final activation task isn't pendent. 
  // so, it is handled consequently.  
  else 
  { 
      // suspend currend until next activation. 
     clock_nanosleep(CLOCK_RTL_SCHED, 
          TIMER_ABSTIME, hrt2ts(delay), NULL);  
     //Wait_for mandatory task activation end 
     // wait for semaphore. Max wait time=delay.    
     error=sem_timedwait(sem[id], 
                                        hrt2ts(delay)); 
    // elapsed time.   
     if (error!=0) { 
          mark_pendent(id); 
     } 
     else  
     { 
         do_action(id);  
          mark_not_pendent(id); 
      } 
 
  } // end pendent if. 
    //Exit when the simulation ends. 
    if (end<0) break; end--; 
  }// end while. 
  pthread_exit(0); 
  return 0; 
} 
 
 
The thread associated to the server are instantiated with 
the next declaration: 
 
pthread_t final_server, initial_server; 
int Init_final_server(int FINAL_ID, int FINAL_PRIO); 
int Init_Iniital_server(int INITIAL_ID, 
                                    int  INITIAL_PRIO); 

 
5. EXAMPLE 

 
In this section, we describe an example to show the 
partitioning scheme, the split task, the main code, the 
RT_Linux measures and a snapshot of the real 
execution.  
 
The system has the jobs described in Table 1. 
 

Table 1 Jobs in the initial control system 
 

 Job WCET Period Deadline Offset
1 6 50 50 0
2 13 80 80 0
3 15 110 110 0
4 16 120 120 0
5 20 200 200 0  

 
The following table (Table 2) shows the use of external 
interface of each job. A job that does not use to the 
sensor or actuator means that use internal data as input 
or output or the jitter does not affect to the control 
performances. 
 

Table 2 Input/output and job requirements 
 

 Job Sensor Actuator Task type
1 Yes Yes IMF
2 No Yes MF
3 Yes Yes IMF
4 No No M
5 Yes Yes IMF  

 
Using the method proposed in (Balbastre et al., 2000) we 
obtain the next tasks associated to each job. 
 

Table 3 Job decomposition into tasks 
 
 Job Task WCET P D O

1 Initial 2 50 50 0
1 Main 2 50 50 0
1 Final 2 50 33 17
2 Main 10 80 80 0
2 Final 3 80 56 24
3 Initial 2 110 110 0
3 Main 10 110 110 0
3 Final 3 110 79 31
4 Main 16 120 120 0
5 Initial 2 200 200 0
5 Main 15 200 200 0
5 Final 3 200 132 68  

 
The set of jobs presents large variable delay (evaluated 
in terms of DAI and CAI) in input and output showed in 
third and fourth columns of table 4. After the task 
decomposition, these variable delays are reduced to the 
values showed in the last two columns. 
 

Table 4 Variable delays of the job set and the 
decomposed tasks 

 
Job DAI CAI DAI CAI

1 0% 0% 2% 4%
2 - 7.5% - 8%
3 17.5% 59.6% 12% 4.5%
4 - - - -
5 26.5% 28% 8.5% 5.5%

Initial Jobs Split tasks

 
 
The next code shows the main module to define and 
create the task system. The procedures associated to the 
main, initial and final operations are provided by the 
control designer. 
 



  
 

int init_module(void) 
{ 
initialize_threads; // initialize both servers and a thread for 
each main task. 
  int i=0; 
   // creates tasks of all jobs  
  create_IMF_tasks (1, 10, 50, 50, 0, 12,  
                                  main1, initial1, final1); 
  create_MF_tasks (2, 9, 80, 80, 0, 20,  
                                  main2,  final2); 
   create_IMF_tasks (3, 8, 110, 110, 0, 58,  
                                  main3, initial3, final3); 
  create_M_tasks (4, 7, 120, 120, 0,  
                                  main4); 
    create_IMF_tasks (5, 6, 200, 200, 0, 69,  
                                  main5, initial5, final5); 
 
    Init_final_server(1, 12); 
    Init_Initial_server(2, 11); 
     return 0; 
} 
 
The RT_Linux module obtained by this process design 
generates a code overhead of 30Kb  with respect to the 
control application. Additionally, the RT_Linux kernel 
requires 100Kb. From the point of view of number of 
tasks, this design adds 2 tasks to the initial control 
software design.  
 
 

CONCLUSIONS 
 

This paper describes how to implement real-time 
applications using the decomposition method presented 
in (Crespo et al., 1999). Each of control design 
activities, called jobs, are divided in mandatory and 
optional parts, and this allows to reduce the jitter 
variation (Balbastre et al., 2000). A modular and 
generic software design has been proposed to 
implement the decomposed method using RT_Linux. In 
this implementation every control task (mandatory), is 
implemented as a thread. Final and initial tasks are 
grouped and served by two dedicated servers. The 
implementation of the server has been detailed in the 
paper. Finally, an example showing the process design 
and results has been reported.  
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