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Abstract: In this paper we propose a method, based on a Set Membership approach,
for the estimation of nonlinear regressions models. At the contrary of most of the
existing identi…cation approaches, the method presented in this paper does not need
any assumption about the functional form of the model to be identi…ed, but uses
only some prior information on its regularity and on the size of noise corrupting
the measurements. The aim is to evaluate not only a nominal model but a model
set, describing the inherent uncertainty of the regression function coming from …nite
and noise corrupted data. This is obtained by computing the optimal bounds on
the regression function , i.e. its tightest lower and upper bounds compatible with
measured data and with the given assumptions on the regression function and on
noise. Moreover, necessary and su¢cient conditions are given for validating the prior
assumptions. The e¤ectiveness of the method is tested on a water heater identi…cation
problem, where the obtained models are compared in simulation with other nonlinear
models obtained by neural networks, Just In Time and Fuzzy approaches.
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1. INTRODUCTION

Consider a nonlinear dynamical systems of the
form:

yt+1 = f
o ('t)

where 't is a regression vector consisting of lagged
input and output u and y:

't = [yt yt¡1 ::: yt¡¿yut ut¡1::: ut¡¿u ]
T

where t; ¿y; ¿u are positive integers.
Consider that the function fo is not known, but
a set of output noise corrupted measurements are
available:

zt = yt + et; t = 1; ::; N

where et is measurement noise.
The problem of identifying nonlinear regression
models, i.e. …nding from measured data a func-
tion that approximates fo, has been widely stud-
ied in the literature, (see e.g. (Sjöberg et al.

1 This research was supported in part by funds of Minis-
tero dell’Università e della Ricerca Scienti…ca e Tecnologica
under the project "Robustness techniques for control of
uncertain systems".

1995, Narenda and Mukhopadhyay 1997, Muller
et al. 1999) and the references therein). Most of
the existing identi…cation methods need the choice
of a functional form of regression function and this
choice is usually the result of heuristic searches.
These searches may be quite time consuming,
and lead only to approximate model structures,
whose errors may be responsible of bad perfor-
mances in the intended uses of the model, e.g.
prediction, control design, etc. Moreover, statisti-
cal assumptions on noise are typically taken such
as stationarity, ergodicity, uncorrelation, type of
distribution, etc., whose validity may be di¢cult
to be reliably tested in many applications.
In this paper, a method is presented which re-
quires only information on the regularity of the
regression function and on the size of noise. Fol-
lowing the set membership identi…cation philos-
ophy (Milanese et al. 1996, Garulli et al. 1999),
we investigate the problem of …nding not a single
model but a set of models, described by (possibly
tight) upper and lower bounds of fo:

f(') · fo(') · f(');8'
The problem investigated here can indeed be
viewed as a multidimensional interpolation prob-
lem from noise corrupted data, which has been
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mainly studied in the case of scalar real or com-
plex function, see e.g. (Ga¤ney and Powell 1976,
Golomb 1977) and many references in (Traub and
Wózniakowski 1980)).
Model set described by such bounds can be
used for robust prediction, see e.g. (Novara and
Milanese 2001), and robust control design, see
e.g. (Qu 1998). Robustness had become in past
two decades a central issue of system and control
theory. This need is motivated by the fact that
any model may be only an approximation of the
system to be analyzed or controlled. Then the
system is not supposed exactly described by the
model, but only belonging to a set of models
obtained by perturbations of the model, whose
size measures the model uncertainty. Such a set,
often indicated as uncertainty model set or model
set for short, has to be identi…ed from available
information and data in a suitable way to be used
for analysis and design purposes. There is now a
large literature on such topics. Most of the litera-
ture on model set identi…cation, see e.g. (Milanese
and Vicino 1991, Ninness and Goodwin 1995, Mi-
lanese et al. 1996, Garulli et al. 1999) and the
references therein, is related to linear systems,
while very few papers consider the model set iden-
ti…cation of nonlinear systems, see e.g. (Smith and
Dullerud 1999, Alessandri et al. 1999).
In this paper we show how to derive a nonlinear
model set described by upper and lower bounds
of the unknown function fo, on the base of avail-
able noise corrupted measurements and on some
assumptions on function regularity and on noise
bounds. An example, related to the model identi…-
cation for a heater, is presented to show the e¤ec-
tiveness of the proposed approach. Applications
to nonlinear time series prediction can be found
in (Novara and Milanese 2001, Novara 2002).

2. PROBLEM FORMULATION

Consider an unknown function:

fo(') : © µ <n ! <
and suppose that a set of noise corrupted values
of fo is given:

Zp
:
= fzk = fo ('k + e0k) + ek; k = 1; 2; :::; Ng

evaluated at the set of points:

©p
:
= f'k 2 ©; k = 1; 2; :::; Ng

In the paper, we investigate the following problem:

Problem:
Find lower and upper bounds f and f of fo:

f(') · fo(') · f(');8' 2 ©
It is clear that if no information is available on
function fo regularity and on the size of noises
e0ki and ek, no …nite bounds can be derived. In this
paper, the following assumptions are considered:

Assumptions on fo('):
fo 2 Kº

2
:
= ff 2 C1; krf (')kº2 · °;8' 2 ©g

Assumptions on noises:

je0kij · "0ki; i = 1; 2; :::; n; k = 1; 2; :::; Njekj · "k; k = 1; 2; :::; N

Here, jj ¢ jjº2 denotes the weighted euclidean norm
given by:

kxkº2 :=
vuut nX

i=1

ºix2i ; ºi > 0

A weighted norm is used in order to adapt to the
properties of data, by properly choosing weights
ºi. Such scaling is very important when the gradi-
ent components have quite di¤erent magnitudes.
A suitable choice for the weights ºi can be made
by deriving (e.g. from a neural approximation of
fo or directly from data) some estimates of the

quantities ¹i = max'2©
¯̄̄
@fo(')
@'i

¯̄̄
; i = 1; 2; :::; n.

Here, 'i denotes the i-th component of vector
' = ['1; '2; :::; 'n]. These estimates support the
evidence that:

fo 2 K¹1
:
= ff 2 C1; krf (')k¹1 · °;8' 2 ©g

where jj ¢ jj¹1 denotes the weighted `1 norm given
by:

kxk¹1 :
= max
i=1;:::;n

jxij¹¡1i ; ¹i > 0

Then, it is desired to approximate the set K¹1
with a set Kº

2 by suitably choosing º. Inner, e.g.
Kº
2 µ K¹1, or outer, e.g. Kº

2 ¶ K¹1, approx-
imations can be looked for. This is equivalent
to look, in the n-dimensional gradient space, for
inner or outer approximations of the weighted
`1 ball B¹1

:
= fx 2 Rn : kxk¹1 · 1g with a

weighted `2 ball Bº2
:
= fx 2 Rn : kxkº2 · 1g. By

taking the ratio of the volumes of the two sets
as measure of approximation goodness, maximal
volume inner approximation and minimal volume
outer approximation are optimal. The following
lemma shows how these optimal solutions can be
obtained.

Lemma 1.

i) The optimal (minimal volume) outer approxi-
mation is Bº2 , where:

ºi = (n¹
2
i )
¡1; i = 1; :::; n

ii) The optimal (maximal volume) inner approxi-
mation is Bº2 , where:

ºi = (¹
2
i )
¡1 i = 1; :::; n

Proof.
i) The sets B¹1 and Bº2 are axis aligned box and
ellipsoid, respectively, centered in the origin. The
minimal volume ellipsoid containing a box have to
be tangent to the vertices of the box. Such tangent
ellipsoids are such that

pPn
i=1 ºi¹

2
i = 1; ºi > 0.

Recalling that the volume of an ellipsoid is propor-
tional to the product of the lengths of his principal



axes, the minimal volume outer approximation Bº2
can be obtained by solving the problem:

max
ºi>0pPn

i=1
ºi¹2i=1

nY
i=1

ºi (1)

By using a Lagrangian technique, it is immediate
to verify that ºi is the unique solution of the
necessary and su¢cient conditions for being a
solution of (1).
ii) The proof is trivial.

Once the weights ºi have been chosen, in or-
der to simplify the notation, it is convenient to
take the following linear transformation T (') :=
[T ('1) T ('2) : : : T ('n)]

T : ©!W :

wi = T ('i)
:
=

1p
ºi
'i; i = 1; 2; :::; n

The evaluation set ©p is also transformed in the
set Wp de…ned by:

Wp
:
= fwk = T ('k) ; k = 1; 2; :::; Ng

In the following of the paper, the notation fo (w)
will be used for the transformed function instead
of fo

£
T¡1 (w)

¤
.

In the space of transformed variables w, the prior
assumptions on fo and on noises can be written
in the following simpler form, involving an un-
weighted `2 bound on rfo:
Assumptions on fo(w):

fo 2 K2 := ff 2 C1(W ); krf (w)k · °;8w 2Wg
Assumptions on noises:

jewkij · ±0ki; i = 1; 2; :::; n; k = 1; 2; :::; Njekj · "k; k = 1; 2; :::; N

Here k¢k = k¢kº2 with º = (1; 1; :::; 1), ewki := T (e0ki)
and ±0ki

:
= T ("0ki).

A key role in set membership identi…cation is
played by the Feasible Systems Set, often indi-
cated as “unfalsi…ed functions set”, i.e. the set of
all functions consistent with prior information and
measured data.

De…nition 1. Feasible Systems Set

FSS
:
= ff 2 K2 : zk = f (wk + ewk ) + ek;

(ewk ; ek) 2 Be;8kg

where: Be := f(ewk ; ek) : jewkij · ±0ki; jekj · "k; i =
1; 2; :::n; k = 1; 2; :::; Ng:

The Feasible Systems Set FSS summarizes all the
available information (measured data and prior
information on fo and noise e and e0). If prior
assumptions are “true”, then fo 2 FSS, an im-
portant property in view of subsequent use for
prediction or control. As required in any identi…-
cation theory, the problem of checking the validity
of prior assumptions arises. Indeed, the only thing

that can be actually done is to check if prior
assumptions are invalidated by data, evaluating if
no unfalsi…ed system exists, i.e. if FSS is empty.
However, it is usual to introduce the concept of
prior assumption validation as follows.

De…nition 2. Validation of prior assumptions
Prior assumptions are considered validated if:

FSS 6= ;

The tightest possible bounds, based on such as-
sumptions and on the information provided by
available measurements are:

f¤(w) := inf
f2FSS

f(w) · fo(w) ·
· sup
f2FSS

f(w)
:
= f

¤
(w); 8w 2W

giving rise to the following de…nition:

De…nition 3. Optimal bounds and central func-
tion

i) f¤(w) and f
¤
(w) are called optimal lower and

upper bound.

ii) The mean of the optimal bounds:

fc(w)
:
=
1

2

h
f¤(w) + f

¤
(w)

i
is called central function.

The two problems of giving conditions for prior
assumptions validation and evaluation of optimal
bounds are investigated in the next section.

3. PRIOR ASSUMPTIONS VALIDATION AND
OPTIMAL BOUNDS EVALUATION

In this section, necessary and su¢cient conditions
for checking the assumptions validity are given.
Let us introduce the quantities:

fU (w)
:
= min
k=1;:::;N

¡
hk + ° kw ¡wkk

¢
fL (w)

:
= max
k=1;:::;N

(hk ¡ ° kw ¡wkk)

where: hk
:
= zk + "k + °±k, hk

:
= zk ¡ "k ¡ °±k,

±k
:
=
qPn

i=1 ±
02
ki:

Theorem 2.

i) fU (wk) ¸ hk; k = 1; 2; :::;N;
is necessary condition for prior assumptions to be
validated.
ii) fU (wk) > hk; k = 1; 2; :::; N;
is su¢cient condition for prior assumptions to be
validated.

Proof.
i) First we show that fU (w) and fL (w) are the
solutions of the following optimization problems:



fU (w) = sup
f2F

f (w)

fL (w) = inf
f2F

f (w)

F
:
= ff 2 K2 : zk · f (wk) + "k + °±k; k = 1; ::; Ng

F
:
= ff 2 K2 : zk ¸ f (wk)¡ "k ¡ °±k; k = 1; ::; Ng

Suppose that wk is the noise-corrupted value ofbwk = wk + ewk . For mean value theorem, for each
w 2 W and each f 2 F a w0 2 W exists such
that:

f(w) = f( bwk) +rf(w0) ¢ (w ¡ bwk)
Being rf(w0) ¢ (w ¡ bwk) · krf(w0)k kw ¡ bwkk ;
f( bwk) · zk+ "k and krf(w0)k · °;8w0 2W and
using the inequalities:

kw ¡ bwkk· kw ¡wkk+ kbwk ¡wkk ·
· kw ¡wkk+ ±k

we obtain:

f(w) · zk + "k + °±k + ° kw ¡wkk ;8w 2W
This does hold for 8k; then fU is an upper bound
of f: Since every value of f below fU is al-
lowed by mean value theorem and since f is a
generic function belonging to F , then fU (w) =
supf2F f (w). In the same way it results that
fL (w) = inff2F f (w) :
Now suppose that a k exists for which fU (wk) <
hk. Being fL (wk) = hk; by de…nition, it follows
fU (wk) < fL (wk). This implies that F \ F = ;:
Since FSS = F \ F it results that FSS = ;.
ii) Now suppose that fU (wk) > hk;8k. Then,
by de…ning k1 = argmink

¡
hk + ° kw ¡wkk

¢
and

k2 = argmaxk (hk ¡ ° kw ¡wkk) we get the fol-
lowing inequalities:

fU (w)¡fL (w)=
=hk1¡hk2+° (kw ¡ wk1k+ kw ¡wk2k)¸
¸hk1¡hk2+° kwk1 ¡wk2k¸¸ fU (wk2)¡hk2> 0; 8w 2W

Being fU (w)¡ fL (w) > 0;8w 2 W; it is possible
to …nd a function belonging to FSS. To this end,
it su¢ces to …nd g (w) 2 K2 such that:

fL (w) · g (w) · fU (w) ;8w 2W (2)

since this implies that the condition zk =
g (wk + ewk ) + ek; (e

w
k ; ek) 2 Be; k = 1; 2; :::; N;

is ful…lled. Such function can be constructed by
considering the function:

fC (w) =
1

2
[fU (w) + fL (w)]

which clearly satis…es (2) but fC (w) =2 FSS: In
fact, fC (w) 2 C1 and krfC (w)k · ° almost
everywhere on W except on a set of points of
zero measure where rfC (w) is discontinuous (see
(Novara and Milanese 2000)). This means that
fC (w) =2 K2; only because of these gradient

discontinuity points. However, being fL (w) <
fU (w) ; it is possible to construct a function g (w)
satisfying the following conditions:
- for w belonging to a neighborhood of each
discontinuity point of rfC (w): (1) g (w) 2 C1

(2) krg (w)k · ° (3) f (w) · g (w) · f (w) ;
- for w out of the neighborhoods: g (w) = fC (w) ;
Thus, g (w) ful…lls all conditions de…ning FSS;
showing that FSS 6= ;:
The previous proposition can be used for choosing
values of " = ["1 ::: "N ]; ± = [±1 ::: ±N ] and
° assuring that prior assumptions are not inval-
idated by data. The space ("; ±; °) is divided in
two regions. One region corresponds to values of
"; ± and ° falsi…ed by data (FSS = ;), the other
corresponds to values of "; ± and ° validated by
data (FSS 6= ;). Clearly, "; ± and ° must be
chosen in the validated parameters region. In the
space ("; ±; °), the function:

°¤ ("; ±) := inf
FSS 6=;

°

individuates a surface that separates falsi…ed val-
ues of "; ± and ° from validated ones, The surface
°¤ ("; ±) can be evaluated by considering several
values of " and ± and obtaining the corresponding
values of °¤ ("; ±) by means of theorem 2.
The next result shows that, if prior assumption
are validated, then fU (w) and fL (w) are optimal
bounds.

Theorem 3.

If FSS 6= ;; then:
f
¤
(w) = fU (w)

f¤ (w) = fL (w)
Proof.
In the proof of Theorem 2, it has been shown that:
fU (w) = supf2F f (w) ; fL (w) = inff2F f (w)
with F :

= ff 2 K2 : zk · f (wk) + "k + °±k; k =
1; 2; :::; Ng and F :

= ff 2 K2 : zk ¸ f (wk) ¡
"k ¡ °±k; k = 1; 2; :::; Ng:On the other hand, it is
immediate to verify that:

sup
f2F

f (w) = sup
f2FSS

f (w)

inf
f2F

f (w) = inf
f2FSS

f (w)

and the claim follows.

The computational complexity of evaluating the
optimal bounds is O (nN). In many practical ap-
plications, series of less than few thousands data
are available. For such cases, the computing times
are quite acceptable, e.g. less than few second on
a personal computer for each step ahead predic-
tion. For larger set of data, the computational
complexity may be reduced using the approach
based on neural networks approximation and hy-
perbolic Voronoi diagrams proposed in (Novara
and Milanese 2000, Novara 2002) .

Up to now, a global bound on krfo(w)k over all
W has been considered. However, according to



what done in other contexts (see e.g. (Stenman
et al. 1996, Zheng and Kimura 2001)), a local
approach can be taken in order to obtain improve-
ments in identi…cation accuracy. A very simple
approach allowing to use local assumptions on
rfo(w), is based on the evaluation of a function
fa approximating fo (e.g. the central function
fc obtained by using a global bound or a neural
networks function) and on the application of the
method described in this paper to the residue
function, de…ned as:

¢(w)
:
= fo (w)¡ fa (w)

starting from the set of values:

¢zk = zk ¡ fa (wk) ; k = 1; 2; :::; N
See (Novara 2002) for more details about this local
approach.

4. EXAMPLE

In this example we investigate the water heater
identi…cation problem considered also in (Stenman
et al. 1996). The system is constituted by a volume
of water heated by a resistor element. The heating
process can be described by an output variable,
i.e. the temperature Tt of the water, and by an
input variable, i.e. the voltage ut that controls
the resistor by means of a thyristor. It is expected
that the main nonlinearities is due to nonlinear
characteristic of the thyristor.
The data set is the one used also in (Stenman
et al. 1996) and is given by a series of 3000
samples of Tt and ut recorded every 3 seconds.
The data set is divided into an estimation set,
composed by the …rst 2000 data, and a validation
set, composed by the remaining 1000 data. The
estimation set was used to identify two Nonlinear
Set Membership models and a neural networks
model, the validation set was used to test the
identi…ed models in simulation and to compare
the simulation performances with those presented
in (Stenman et al. 1996), where a just in time
model (JIT) and a fuzzy model are considered.
The following regression has been considered in
all these methods:

yt+1 = f ('t)

't = [Tt Tt¡1 ut¡3 ut¡4]
T

where the delay of the inputs is suggested by
the delay of 12 to 15 seconds between input and
output that can be observed on the data set, as
explained in (Stenman et al. 1996).

Nonlinear Set Membership model NSMG

The NSMG model is obtained by taking:

f (') = fcG (w)

wi = T ('i) =
1p
ºi
'i; i = 1; 2; :::; n

º = [2:367 6:925 0:014 0:009]

where fcG is the central function evaluated on the
base of the following assumptions:

"t =0:5; "
0
t1;2 = 0:5; "

0
t3;4 = 0:01; 8t

° =1:49

The weights ºi have been obtained by computing
approximate bounds on the partial derivatives of
a neural network Ão (') trained on the estima-

tion set: ¹i = maxk=1;:::;2000

¯̄̄
@Ão(')
@'i

¯̄̄
'='k

and by

choosing ºi = 1=¹2i : The selected ° appears to
be quite “cautious”, since the minimum value of
the bound on krfo (')kº2 for which the su¢cient
condition of Theorem 2 is satis…ed, resulted to be
°¤ = 1:1.

Neural Network model NN

The NN model is obtained by taking:

f (') = Ã (w)

where the function Ã is a one hidden layer neural
network (see e.g. (Hertz et al. 1991, Vapnik 1995))
composed by r neurons:

Ã (') =
rX
i=1

®i¾ (¯iw ¡ ¸i) + ³ (3)

Here ®i; ¸i; ³ 2 <; ¯i 2 <n; are parameters
and ¾ (x) = 2=(1 + e¡2x) ¡ 1 is a sigmoidal
function. Several neural networks of the form (3)
with di¤erent values of r (from r = 3 to r = 20)
have been trained on the estimation set. A neural
network with r = 8, showing good performances
in simulation, has been chosen for the model NN.

Nonlinear Set Membership model NSML

The NSML model was obtained by means of the
local approach mentioned in the previous section
with fa (w) = Ã (w) and by taking:

f (') = Ã (w) + fcL (w)

where fcL = 1
2

h
¢
¤
(w) +¢¤(w)

i
: The bounds

¢
¤
(w) and¢¤(w) on the residue function¢(w) :=

fo (w)¡Ã (w) have been evaluated on the base of
the following assumptions:

"t =0:5; "
0
t1;2 = 0:5; "

0
t3;4 = 0:01; 8t

° =0:26

The selected ° appears to be quite “cautious”,
since the minimum value of the bound on krfo (')kº2
for which the su¢cient condition of Theorem 2 is
satis…ed, resulted to be °¤ = 0:15.

Simulation performances

In table 1 the root mean squared errors (RMSE)
obtained by the mentioned methods in simulation
of the validation data set are reported.

Model NSMG NSML NN JIT Fuzzy
RMSE 0.974 0.789 0.798 0.886 1.020

Table 5. Simulation errors.



5. CONCLUSIONS

In this paper, following the Set Membership Iden-
ti…cation paradigm, the problem of estimating
regressions model sets is solved by evaluating up-
per and lower bounds of the unknown regression
function under some regularity conditions. The
interest of the method lies on the fact that it does
not need the choice of a functional form of the
regression function as required by most of exist-
ing nonlinear identi…cation methods. This choice,
that is usually the result of heuristic searches,
may be quite time consuming and leads only to
approximate model structures, whose errors may
be responsible of bad propagation of prediction
errors. Model set described by the derived upper
and lower bounds can be used for robust predic-
tion (Novara and Milanese 2001) and for robust
control design techniques for nonlinear systems
(Qu 1998).
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Fig. 1. Validation set: measured temperature (bold line)
and NSML simulation (solid line).
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Traub, J. F. and H. Wózniakowski (1980). A Gen-
eral Theory of Optimal Algorithms. Academic
Press, Inc.

Vapnik, V. (1995). The Nature of Statistical
Learning Theory. Springer Verlag.

Zheng, Q. and H. Kimura (2001). Just in time
modeling for function prediction and its ap-
plications. Asian Journal of Control, Vol. 3,
No. 1, pp. 35–44.


