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Abstract: In this paper we highlight the difference between observability bifurcation
and observing bifurcation. From t his, we deduce that one way to improve transmission
by synchronization of chaotic systems may be chaotic transmitter with also observ-
ability bifurcation. We e nd the paper, with an example of chaotic system wi th also an
observability bifurcation. Moreover this example point out some benefits of the step

by step sliding mode observer.

Keywords: Observability bifurcation, Chaotic system, Poincaré’s normal form,
Sliding mode observer, information transmission.

1. INTRODUCTION

In ( Nijmeijer and Maeels, 1997), H. Nijmeijer
and I. Mareels have pointed ut that classical
synchronization of two chaotic systems is, in fact,
an observation problem. From heir paper, many
techniques have been developed to design an ob-
server for chaotic system (Observing bifurcation
or chaos). Under, some appropriate assumptions,
as for example conditions of linearization by out-
put injection form (Krener and Isidori, 1983)(
Krener and Q Xiao, 2001) or conditions for ob-
taining a generalized Hamiltonian form ( Sra-
Ramirez and Cruz-Hernandez, 20(1), this design
may be done with out any difficulty. In other hand,
in ( Kang, 1998), W. Kang has introduced t he
concept of controllability bifurcation. This bifur-
cation characterized 1oss of linear controllability
with respect to small parameter or in aeigh-
borhood of some very mrticular point. In t he
same way of thinking, in ( Baotat-Baddas and
al., 2001) we have introduced the same concept
for observability ( Observability bfurcation) and
we recover naturally s ome properties as univer-
sal inputs, resonant terms and so one. After, we
highlight the difference between o bservability bi-
furcation and observing bifurcation. From this,

we deduce that one way to improve security of
transmission by s ynchronization d chaotic sys-
tems may be chaotic transmitter with also observ-
ability bifurcation. An example of chaotic system
with also an dservability bifurcation e nds the

paper.
2. OBSERVING CHAOS

From the article ( Nijmeijer and Maeels, 1997)
it is well-known t hat transmission b s ynchro-
nization of chaotic systems may be i nterpreted
as an observer design problem t chaotic system
(Observing chaos). The linearization by output in-
jection ( Krener and Isidori, 1983)( Krener and Q
Xiao, 2001) is an usual tool for design an observer
and c onsequently to resolve the synchronization
problem. In this section, we use the Chua circuit
to show t hat :

o firstly that linearization by output injection is a
very helpful tool to design an observer

¢ secondly, by considering an o ther output, it is
possible to design a step by step sliding mde
observer ( Barbot and al.,1996; Perruquetti and
Barbot, 2002) in spite of the fact that linearization
by output injection is not possible.

Let us consider the Chua circuit:



Fig. 1. Chua circuit

The states equations may be :

dv1 __ 1 (112—111

e - f(Ul))

L2 = 4 (B32 +13) (1)

@ = 1 (—v2 — Rois)
with f(v1) = Gpv1+5(Ga—Gb)(|v1+E|—|v1—E).
Setting 2 v1, T3 2 vy and T3 2 i3 and
z2 (w1, 22, 23)T, we obtain:

dx flx

d_tl = Gg (T1—@2) + (011)

dt T GRYYTYTG ()
x p—

d_t3 = A (xz2 + Roxs)

¢ 2 Az + F(x1)

Let choose as output y the state x1. It is clear

that; the system is globally weakly observable

( Hermann and Krener, 1977) and linearizable

by output injection. Then, there exist many ob-

servators for this system. At our knowledge the

first classical one was proposed in ( Parlitz and
, 1992):
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where, & = (21, #2,23)7 is the estimate state of =
and § is the estimate output. Since the article (
Nijmeijer and Mareels, 1997) the receiver design
was changed and was more closed to observer
design. As throughout the paper we will use a step
by step sliding mode observer, we give hereafter
such kind of observer for system (2) with y = x4
as output.

diy

L= & (274-1)) +Ausign(y - 9)
dff 6112 (y z2-|-963) +E1 dasign(Z,—32) (4)
d8s — 1(_5,—Ros) + Eyhgsign(fs—2s)

with the following conditions: if Z; = xz; then
E, = lelse Ey = 0 and if [# = %, and
E; = 1] then E; = 1 else E2 = 0. Moreover, by
definition we have the following auxiliary state:
To = g + ElClR)\lsign(y - :f]) and #3 = 23 +
EQCQ)\QSign(.’Z‘Q - .’22).

=

The proof of observation error convergence is a
particular case of the proof of the last section.

Fig. 2. Generalized phase plane x1,x2 for system
(2) and ‘- - - for system (3)
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Fig. 3. Observation error for systems (2) and (3)

Fig. 4. Generalized phase plane x1, x5 for system
(2) and ‘- - -’ for system (4)

Fig. 5. Observation error for systems (2) and (4)

Comparing the generalized phase plane of xy, x5
(system (2)) and £1,22 (system (3) dash line)
figure 2, with the generalized phase plane of
x1,%2 (system (2)) and #1,%2 (system (4) dash
line) figure 3, we note that, the state of classical
observer (system (3)), stays fare from the real
state longer than the state of the step by step
observer (system (4)). This was confirmed by the
figures 4 and 5, where the observation error was
shown respectively for the classical observer and
the step by step observer.

In ( Besangon, 1999; Plestan and Glumineau,
1997) a generalized output injection form was
introduced and following this way of thinking, a
very interesting relation between chaotic system



and generalized Hamiltonian system was done in
( Sira-Ramirez and Cruz-Hernandez, 2001). Un-
fortunately, considering equations (2), with z3 as
output, in stead of x1, the nonlinearity is not an
output function and result about output injection
( Besangon, 1999; Plestan and Glumineau, 1997;
Sira-Ramirez and Cruz-Hernandez, 2001) can not
be used to design an observer.

Nevertheless, the observer matching condition (
Perruquetti and Barbot, 2002) was verified (i.e.
the nonlinearity F(x1) is in ker(C,CA)). There-
fore, it is possible to design the following step by
step sliding mode observer:

9 = & (B2 —f(,)) +BaAisign(&,—21)
oy _ L (8122 40} 4 By Npsign(3,—82)  (5)
s = 1 (—#2—Rows) +Aasign(zg—E3)

with the following conditions: if 3 = &3 then
E; =1else E3 =0, and if [Z3 = &3 and E5 = 1]
then E5 = 0 else E; = 0. Moreover by definition
.’Z‘g = .’2‘2 - EgRio)\gSign(.’L‘g - .’23) and .’Z‘l = .’2‘1 -
E>CoRMNasign(Z2 — £2), the proof of observation
error convergence will be also done in the same
way of thinking that the proof of the last section.
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Fig. 6. Observation error for systems (2) and (5)

Figures 6 highlight the efficiency of the step by
step observer for the system (2) with z3 as output.
We note that, the simulation results, are very
closed to the previous one obtain with z; as
output.

This section may be sum up in two points :

e Considering xz; as output, using linearizable by
output injection, it is possible to observer the full
state of Chua system.

e Thank to a step by step sliding mode observer,
it is also possible to design a full state observer
for Chua system with a new output x3. For this
output, the system is only observable but is not
linearizable by output injection.

In the two next sections, we want to do some
thing different from this section and from the
classical literature results. We will consider a
system with observability bifurcation (i.e. lost of
linear observability in one direction). To do this,
we will recall, in the next section, some new results
on the observability bifurcation ( Boutat-Baddas
et al 2001)

3. OBSERVABILITY NORMAL FORM

Hereafter, we just recall one result of ( Boutat-
Baddas et al., 2001) on nonlinear system with
one real linear unobservable mode. This result is
necessary to study the example of the last section.
This example was a transmission by synchroniza-
tion of chaotic system with observability bifurca-
tion.

Let us consider a nonlinear single input single
output (SISO) system:

E=1(6) + g(O)u
{ y = CE = h(E) ©)

where, the vector fields f, g: U C R® — R" are
firstly assumed to be real analytic (we relax this
assumption later) and such that f(0) = 0.

Setting: A = g—’;(O) and B = g¢(0) around the
equilibrium point {, = 0, the system can be
rewritten in the following form:

{ 3= Az + Bu+ fA0) + ¢ (2)u + O ™

y=Cz
7 (2 9 (2)
= |7 O wma - %O
72 (2) i (z)

with for all 1 < ¢ < n the fi[2] (z) and 91[1] (z) are
respectively homogeneous polynomials of degree 2
and 1 in z ( Kang and Krener, 1992).

Definition 1. Let us consider the two following
systems

3= Az + Bu+ fA0) + ¢ (2)u + O ®)
y=Cz

and

& = Az + Bu+ f[2] (x) + g (x)u
+6%(y) + M yu+ 0 (2,0) ()
y=Czx

the system (8) is said to be quadratically equiv-
alent to system (9) modulo an output injection
(82 (y)+~4M(y)u) if there exists a diffeomorphism
of the form:

x=z- 0 (z)

which transforms the quadratic part of one to the
quadratic part of the other one. Where ®? (2) =

two homogeneous polynomial in z .

Remark 2. In this section, we deal with, system
with linearly observable part in the Brunovsky



form. Moreover the output is always taken equal
to the first state component. Consequently, the
diffeomorphism (z = z — ®(2)) is such that
% () =0.

Assumption A.1
The pair (g—’;(O), C) of system (6) has one unob-
servable real mode.

Under this assumption, there is a linear change
of coordinates (z = T¢) and a Taylor expansion
which transform the system (6) in the following
form:

% = Aobsz + Bobsu + f[2] (Z) + g[l] (Z)U
+0° (2,u)
n—1

Zn = QzZp + Z a;zi +bpu + fA(z)  (10)

i=1
+ gl (2)u+ 0® (z,v)
y= Cobsz

where: Z = [21, 22, ..., 2n—1]T and 2z = [3T, 2,,|T

ar 10.0

a2 010.
Aps = | . 0..01{,

Ap—2 0.01

Ap—1 0..0
Bops = [b1;...;bn—1]T and Cops = [1 0 . . 0]. The
quadratic observable normal form is given by:

Theorem 3. ( Boutat-Baddas et al., 2001) The
normal form with respect to the quadratic equiv-
alence modulo an output injection of the system
(10) is:

n
a121 + biu + Z kiizsu

T =
=2
n
To = asx1 + bou + E kosziu
=2
n
Tp—2 = Gp-2%1 + by_ou + E k(n—2)iTiu

=2

n
Tpno1 = Qp_121 +bp_1u+ E hij.’L‘i.’L‘j

j>i=2

n
+ hinZ12n + Z Kn-1)i%iv
i=2
n—1
Tn = QpZn + Z oa;x; + bru
i=1

n—1 [2]
oo
q)[g] .q)[.2]_ n A ~
+ a, P + E=1 o; P} EF obsZ

+ fP2) + Z k(n—1)iTiu

=2

and for the last equation, <I>L2 ] (z) must verified

n—1 . 8q)[2]
o, ®2 + Z ;0 = 8? AopsZ — fA(2)
i=1 z
+85 (21)

From classical results an normal forms and previ-
ous theorem, we obtain:

Corollary 4. Suppose A = g—g (0) is diagonalizable
with (A1, A, ...... s An—1,0p) as eigenvalues.Then,

if (See “resonance terms” for example in Wiggins
( Wiggins, 1990)),

n—1

n—1 n—1
an [I X II (@n=2X) [I (an—Xi=X;)(11)
i=1 i=1 i=1>j

- >
v

#0

we obtain:

n—1 n
Tn = Qnn + ) @i +bnu + 3 k(n—1)iTst
i =2

=1

and, moreover, if (11) is no verified, we have, on
eigenvectors basis:

a resonant term in xifor, o, =0.

a resonant term in xz;x,for, \; = a, = 0.
a resonant term in x?for, a, — 20, =0.
a resonant term in x;x;for, o, — A —A; =0

Remark 5. In fact, the restriction that A = g—’;(o)
should be diagonal is not necessary; it is well know
that works perfectly well in the cas of degenerete

eigenvalues, but with tedious calculus.

Remark 6. Thank to the kj,z,u terms in the
normal form, it is possible with a well chosen input
« (universal input ( Gauthier and Bornard, 1981))
to preserve the observability. Moreover, for a;,, < 0
it is always possible to design a partial estimator
and the most interesting case is a,, = 0 which will
be studied in more detail in a for coming paper.

Remark 7. Thank to the h;,x;x, terms in the
normal form it is also possible to recover the full
state observability locally all most everywhere.

In the next section, we will consider a system
without input, then we only used the remark 7.
Moreover, the analyticity assumption of the vector
fields f(£) and g(£) in (6) may be relaxed, by
considering the system

{ €= (&) +9(Outdy, ) +pE)w (19
y=C¢=h(¢)

where d(y,u) is discontinuous and p(§w is a
perturbation which verifies the observer matching



condition ( Perruquetti and Barbot, 2002)!. In
this case we are obliged to consider discontinuous
output injection and step by step observer as it is
shown in the next section.

4. OBSERVING CHAOS WITH
OBSERVABILITY BIFURCATION

Now in order to increase the security of transmis-
sion, we propose to add at the transmission by
synchronization of chaotic system some observ-
ability bifurcations. Here we just give an illustra-
tive example, so let us consider again the system
(2) with z; as output but with z4 = 1 as a new
state. The variation of L is the information to
pass on the receiver. Moreover, we assume that
there exist Ky and K such that |z4| < K7 and
|924| < K, this means that the information signal
and its variation are bounded. Thus, from these
assumptions, we obtain the following systems:

Zdwtl _C_lR (z1—x2) +f(w1)

;2_02}3 (:1:1 .’L‘g) +C 3 (13)
s = —(zy+Rows),

e

gt g

with ¢ an unknown bounded function (i.e. |o| <
K»).

This system has one unobservable real mode and
using the linear change of coordinate z1 = z1,

— _T1 T2 — 3 —_
2=crtcr 8= G6R and z4 = x4 wWe

obtain:
dz1 _ —(C1+Cs) f(z1)
gt~ CiGR T2t g
L B (C7))
dt 3 Clch (14)
ds _mm @A g
dt  CZR C, 34
das _
at 7

Equations (14) are on observability normal form
with @ = 0 and resonant terms hog = haog = 0,
hiy = ﬁ, hoy = C% and hgy = —Ryp, but with
o as a perturbation and a non smooth output
injection (J%Q, Cﬂl%%,o 0)T. From the remark
7 we conclude that the resonant terms h;s2;24
ensure the full state observability locally all most
everywhere. The observability singularity is for
5‘?73 - 5—22 — Rypzz = 0, and taking into account
this singularity we can design an observer. Nev-
ertheless, as the system (13) has also a particular
structure with z4 = z4 and z3 = CoC1Ryz3 we
can design an observer directly on the original

L For single output linear system the observer matching
A

condition is p(¢) = P € Ker[CT,(CA)T,...,(CA™2)T]

with n the state dimension.

state (the physical one). Obviously, the observ-
ability singularity is the same, the equation —z2 —
Ryx3 = 0 is equivalent to nglR - & — Roz3 =0.
So, we will use information contain in the terms
—x4%9 — Roxaxs in order to design a full state
observer and recover information on x4 contain in
the equation of %.

For this, we use the following sliding mode ob-
server:

Foken (i“’—f(y)) +Aisign(y — &)

% 012 (y £z +.’L‘3) +E1 Aosign(Z,—32) (15)
s = 34(—,—RoF3) + Eyssign(Z;—33)
% = E3hsign(&,—24)

with the following conditions:

if ;1 = x1 then Fy = 1 else E; = 0, similarly if
[£2 = 2 and Ey = 1] then E; =1 else E; = 0 and
finally if [#3 = &3 and E3 = 1] then E5 = 1 else
E35 = 0. Moreover, in order to take into account
the observability singularity (%2 + RoZ3 = 0), we
set B, = 1if &9 + RoZs # 0 else E; = 0. By
definition we take:

To =22+ ElClR)\lsign( - .’2‘1)

I3 =23+ EQCQ)\QSZgn( To — .’L‘z)
E3Es
(.’Z‘z + RoZs — 1+ Es))

Sketch of proof: In this sketch of proof we im-
plicitly assume that the system (13) has bounded
state (i.e. obvious due to energy consideration).
Consequently, in the observer we add saturation
on the integrator in order to also have a bounded
state observer. From these two boundness consid-
erations all \; may be easily chosen as constants
( Utkin, 1992).

¢ First Step: assuming that £y =0 (if By = 1
we directly move to the next step), the observation
error dynamics (e = — &) is:

~ ~

XTg=T4 —

Agsign(ig - .’2‘3)

é1= C 2 — \ysign(x; — &)
€3
— _€2 9
€9 = C2R + 02

és = [za(—x2 — Roxs)] — [Z4(—Z2 — Ros)]
és1=0

Due to the finite time convergence of the sliding
mode, there exists 7y > 0 such that Vi > T4
&1 = x1 and we pass to the:

e Second Step: As #; = x; then E; = 1 and as
e1 = 0for all ¢t > 74 then é; = 0 and consequently,
invoking the equivalent vector ( Utkin, 1992),
Zo = X2, and we obtain

€1 =

C?fR (.’L‘l —.’21) =0

é2 = %;L - )\gsign(xg - .’2‘2)



é3 = [z4(—x2 — Rox3)] — [Z4(—%2 — Roi3)]
é4=0
Due to the finite time convergence of the sliding
mode, there exists 7o > 71 > 0 such that Vi > 7o,
Zo = &2 = 9 and we pass to the:
e Third Step: As [#2 = z2 and E; = 1] then
FEy; =1and as e = 0 for all ¢t > 75 then é3 =0
and consequently, invoking the equivalent vector,
I3 = 3, and we obtain

él = % - Alsign(xl - .’2‘1) =0

é2 = 8—32 - )\gsign(xg - .’22) =0

é3 = —(.’L‘g + R0$3)64 — Agsign(xg — .’23)

é4=0
Due to the finite time convergence of the sliding
mode, there exists 73 > 72 > 71 > 0 such that
Vt > 13, 3 = T3 = 3 and we pass to the:
e Last Step: As [#3 = z3 and E5 = 3] then
FE3 =1 and we obtain :

él = C?R - Alsign(xl - .’21) =0

é2 = %32- - )\gsign(xg - .’22) =0
é3 = —(.’L‘g + R0$3)64 — Agsign(xg — .’23) =0

é4 = Es)\4sign(9~c4 - .’24)

Therefore, if E; = 1 then e4 goes to zero in finite
time, else E; = 0 and we frozen the ey dynamic
(the data acquisition). Nevertheless, the singular-
ity (x2 + Roxs) is local, so as the transmitter is
chaotic we never stay enough time on the singu-
larity to alter substantially the data acquisition.
A

Remark 8. In practice we add some law pass filter
on the auxiliary state Z; and we set F; = 1 for ¢ €
{1,2,3}, not exactly when we are on the sliding
surface but when we are enough close. Similarly,
E; = 0 when we are close to the singularity, not
only when we are on.

Fig. 7. €1,€2,€3 and .’24

Figure 7, shows that the observation errors e; go
to zero rapidly. Moreover, the observer state 4,
goes to a constant value 53.191 which is exactly

the value of + with L = 18.8mH (inductance of
the system (1)). Consequently, for information
transmission, we just must find a variation of
L which preserves the Chaotic behavior of the
system (1).
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