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Abstract: This paper deals with the problem of fault detection and isolation in nonlinear
systems. A new design method for residual generation is developed, based on geometric
approach. In this work, existence conditions given by De Persis and Isidori (C. De Persis
and A. Isidori, 1999 and C. De Persis and A. Isidori, 2000) are considered. In order to
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1. INTRODUCTION

Modern systems are increasingly complex and
require more and more sophisticated control
algorithms. Fault diagnosis consists in carrying out 3
main tasks: fault detection, fault localization and fault
estimation.
In the literature, the fault detection and isolation
stages are referred as F.D.I. Generally, performances
of a detection method are evaluated by considering:

- faults sensitivity: capacity of the method to
detect relatively small faults magnitude,
- detection delay: ability of the method to
detect faults with a relatively short delay,
- robustness: skill of the method to operate in
the presence of noises, disturbances and other
faults with few false alarm as possible.

The isolation performances of the method are closely
related to the structural properties of the system, in
particular fault distinguability according to their
sizes, and models, disturbances and noises.
In this paper, we focuss on methods based on an
explicit mathematical system model discribed by
differential equations (or equivalent representations),
but the main point is that nonlinear systems are
considered. Fault diagnosis in nonlinear systems, can
be carried out using analytical redundancy, allow
residual generation for wich several approaches exist:
Kalman filter (D. Aubry, 1999, M.S. Grewal and A.
P. Andrews, 1993), observer (G. Besançon, 1999, D.
G. Luenberger, 1971, E. A. Misawa and J. K.
Hedrick, 1989), parity relations (V. Krishnaswami,
1995, R. J. Patton and J. Chen, 1991, M.
Staroswiecki, G. Comtet-Varga, 2001) and
parameters estimation (M. Basseville and Q. Zhang,
1999, R. Isermann, 1993). A detection filter approach
(C. De Persis and A. Isidori, 2000, J.J. Gertler, 1991)

is considered in this work because, under some
conditions, it allows fault isolation using two distinct
ways (J.J. Gertler, 1991):

- structured residual set: each component of
the residual vector (i.e. each residual) is
designed to be sensitive to a subset of faults,
while remaining insensitive to the others,
- directional residual set: the residual vector
lies in a fixed and fault-dependent direction
(or subspace) in the residual space.

In the case of nonlinear systems, analytical
approaches (E. A. Garcia and P.M. Frank, 1997) are
not much developed because of complexity of
calculations. In addition, these methods are not
generic because they depend on the particular kind of
nonlinearities considered. In this article, we proposed
a residual generation method based on a geometrical
approach. We also believe that such an approach is
more generic because it simply consists in
partitioning the state space in subspace characteristic
of the different faults.
In this paper, our work is based on the results of
C. De Persi and A. Isidori to propose a method
according to fault isolation filter synthesis. But we
choose to design only one filter being able to detec
and isolate all faults. That is to say that it is not
necessary any more to synthesize a bank of several
filters for all faults isolation (C. De Persis and A.
Isidori, 2001).
This paper is organized as follows. Section 2 presents
a method to verify that the isolation fault filter
existence conditions are satisfied by the nonlinear
system considered. In section 3, assuming that these
conditions are satisfied, the filter synthesis is
presented. Finally, the application of method
(existence conditions, filter design) is illustrated on
two academic examples.
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2. EXISTENCE CONDITIONS OF AN ISOLATED
FAULT FILTER

The objective of this paper is the design of a
nonlinear filter for the detection and the isolation of
faults. This type of filter cannot always be feasible.
For this reason, existence conditions developed in (C.
De Persis and A. Isidori, 1999) and (C. De Persis and
A. Isidori, 2000) are recalled in this section.
Synthesis of an isolated fault filter and the resolution
of some associated problems will be based on these
results. Consider the system described by:
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where input ( )tu , state ( )tx , fault ( )tw  and output

( )ty  are respectively vectors of dimensions

plnm ,,, .

The writing of fault contribution only on state vector
is not restrictive. Indeed, using a state augmentation,
the previous system (1) can always be obtained if
sensor faults are considered (for more precision, see
the paper J. Park and al, 1994). In the next, it is
supposed that the number of faults is less than the
number of sensors ( pl ≤ ). In the contrary case, there

would be no solution with the problem arising.
Problem is to design a filter taking the following
form:
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with the output injection noted ( )..Ψ .

The objective is to solve the Fundamental Problem of
Residual Generation i.e. this filter must allow the
detection and the isolation of all faults. To this end,
residuals will be generated as follows:

( ) ( ) [ ]T
ljz rrryyr ��1=Θ−Θ= (3)

where each component jr  of r  is designed to be

sensitive to only one fault jw , which must be

sufficient to take decisions.
The table of signature is particular and can be
described as a diagonal structure (J.J. Gertler, 1998).
Moreover, this type of residual’s structure allows the
detection of several faults appearing simultaneously.
The existence conditions of such a filter (2) will be
determine by referring to work of A. Isidori (A.
Isidori, 1995). Two steps will be distinguish, related
to:

- the existence of an output injection ( ).•Ψ
to obtain a diagonal residual structure,
- the existence of an indicator ( ).Θ .

The first step is the determination of the smallest
invariant distribution for the dynamics of the system
(via an output injection) enclosing { }jpSpan . They

are the state variables (or a state variables
combination) not being able to be written without the

knowledge of the fault. This distribution is
determined using the following nondecreasing series:
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jp

iS  corresponds to the smallest involutive

distribution containing jp

iS . The stopping conditions

of this serie are:
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We define ( ){ } ( ){ }xdhKerxdhKer i

p

i 1=
= �  with ( )xdh ,

the Jacobian Matrix of ( )xh .

Thus, to the distribution noted ⊥)( *
jp

S , corresponds

the state combination being able to be observed
(using the filter) without the knowledge of the
unknown input jw . The variation of these

distributions, associated to each fault, will allow the
deduction of the output injection ( ).•Ψ .

Note that if all states variable are measured, the
existence condition of the output injection is reduced

to: ( ){ } { }0)( * =∩ T
j

jp
pSpanS  with [ ]lj �1∈∀  and

ljjj ppppp �� ,,,, 111 +−= .

However, in the general case, all the state variables
are not measured. Moreover, the residuals are
generated considering the difference between outputs
combinations of system (1) and filters (2). As in (C.
De Persis and A. Isidori, 2001), a bank of residual
generators solves the problem of detection and
isolating each individual faults. The aim of the series,
of nondecreasing co-vectors (6), is to take into
account the additional constraint due to the output
vector
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with the same stopping conditions (5) and jp
Q*  is the

result so obtained. This serie is called in (C. De Persis
and A. Isidori, 1999) and (C. De Persis and A.
Isidori, 2000), Observability Co-distribution

Algorithm of ⊥)( *
jp

S , or )).((.. *
⊥jp

Saco . This

algorithm allow to determine the output combinations
which can be written without the knowledge of the
input jw . We can build an output combination

allowing the residual generation insensitive to jw  if,

with { }0* ≠jp
Q , it exists a vector function

( ) { }0. ≠Θ jp
 such as:

{ } { }))((* xhdSpandhSpanQ jpjp οΘ=∩ . Note that

existence conditions in the simple case 2=l  are
reduced to:

( )( ){ }( ) ( ){ } { }02
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⊥ Tp pSpanxhdSpan  and

( )( ){ }( ) ( ){ } { }01
2 =∩οΘ

⊥ Tp pSpanxhdSpan (7)



We point out that the objective is the design of a filter
making possible faults detection and isolation using a
residual vector. But for a diagonal structure the
synthesis requires relatively restrictive conditions of
construction:
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- with each fault jw  it must be possible to

associate the vector function ( ).jpΘ  such as
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[ ]l1j �∈∀ .
In this section, a method, allowing to ensure the
existence of a solution to the problem of the residual
generation (with a diagonal structure signature) in the
multivariable case, has been recalled. However, that
is only the first step of the reasoning. Indeed, the
filter must be now built. That is the subject of the
following paragraph.

3. SET OF PROBLEMS RELATED TO THE
FILTER GENERATION

Assuming that the previous conditions are satisfied,
the detection and isolation of all faults are achieved
by the design of only one filter instead of a bank of
filters, in this section.
This filter synthesis is made up of two stages:

- determination of the output injection
( ) ( ) ( )uy,z,uyz,yz, 21 ΨΨΨ =+  making

possible the decoupling of the various
components of the faults vector w ,
- determination of the output combination

( )•hΘ  which allows residual generation

according to the isolation properties given by
equation (3).

The first step is detailed in the following section.

3.1 Calculation of the output injection

Associated to the fault jw , the distribution jp
S*  can

be defined. The common parts (in a strict sense),

between two distributions, noted ( )jpip ,φ , is defined

by: { }0)()()( **

, ≠∩=φ jpipjpip
SS  with ji ≠ , and

{ }0)()( *

, =∩φ ⊥kpjpip
S  ( )jik ,≠∀ . Consequently to
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with ij ≠  and lqk ≤≠ . γ  defines a distribution,

orthogonal with the others distributions, such as
( )xΦ  is a diffeomorphism. The state subspace

insensitive to all faults, via an output injection, is
included in γ .

Moreover, according to the existence conditions,
particularly
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1)( ≥φ jp
dim , ( )xj,∀ . However it is not always

easy to choose the vector field (making up the
distribution γ ) so as to facilitate the integration

necessary to the deduction of ( )xΦ . From a

qualitative viewpoint, it is preferable to choose, as
much as possible, some constant vector fields, i.e.
independent of x. With regard to the other
components of ( )xΦ  (which are imposed), they are

obtained by successive derivations of the system
outputs. Their integrations don’t pose any problem.
By applying the change of coordinates (9), it is
possible to determine a new way to write equations of
system (1):
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with  [ ]Tqkjil xxxxxx γ= ,,,1 L
�� ,

( ) ( )xfxf Tp ×φ= •
• )( , ( ) ( )xgxg Tp ×φ= •

• )(  and

( )xx 1−Φ=  since any diffeomorphism is invertible.

The components, γxxxxx qkjil ,,,1 L
�� ,

are respectively sensitive to faults : [ ]1w , …, [ ]lw ,

[ ]ji ww , …, [ ]qk ww � , no fault. The objective

is the determination of an output injection (knowing

that it exists) enabling us to express, on •x�  equation,

the contribution of any state sensitive to the other
faults defined previously. It is then possible to write
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where [ ]T
qkjil zzzzzz γ= ,,,1 L

��  is the

state filter (in the base associated with the
diffeomorphism (9)). But the most interesting filter
form is undoubtedly :
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 represents if i=• , qk ,,�=•  and γ=•
respectively [ ]γzzi , [ ]γzzzz qkqk ,,L�  and

[ ]γz . To find the function ( )uyz ,,•
•Ψ �

 (associated

with the fault •w ) presents a priori no difficulties.



Determination of ( )uyz ,,•
•Ψ �

( )uy,,•
• z
�Ψ  must replace (using the measured

variables y and u) all nonlinear combinations
dependant of an another state that •z

�
 in its

respective state equation ( )•z� .
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The filter corresponding to system (10) can be written:
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We note:
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Following the determination of the output injection,
work in the natural coordinates base of the system is
often simpler. This is why, the inverse transformation

is used, i.e. the diffeomorphism ( )zz 1−Φ= . Thus

(12) becomes:
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. This first

stage does not make it possible to detect and isolate
faults. For this aim, it is necessary to generate
residual from outputs combinations.

3.2 Residual generation

According to equations (4)-(9) and the checking of
the existence conditions (8), there are at least l
outputs defined by nonlinear vector functions

( ).•Θ p . Thus, for each fault it exists a nonlinear

function, such as
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following residual vector is generated:

( ) ( )

( ) ( )

( ) ( ) 





















Θ−Θ

Θ−Θ

Θ−Θ

=























z
lplp

z
jpjp

z
pp

lp

jp

p

yy

yy

yy

r

r

r

�

�

�

�

11
1

(14)

Determination of ( ).•Θ p :

Each function ( ).•Θ p  is obtained by integration of

{ }dhSpanQ p
* ∩• . This step does not constitute a

major difficulty but is based on a strong existence
condition. In this section, a sufficient condition with
the F.P.R.G. to design a residual vector has been
described. However, it is possible to increase the
dimension of each residual sensitive to a fault.

Indeed, { } )()( **
•• ≤∩ pp QdimdhSpanQdim . Meaning

it is possible, after derivation of { }dhSpanQ p ∩•
* , to

increase the dimension of 
•p

r . By this operation, the

redundancy is increased and thus the non-detection
and false alarm rates can be reduced.

3.3 Comments

Following the step described previously, several
points can be clarified. The first difficulty is the
choice of the distribution γ  completing the

diffeomorphism. This distribution must be
nonsingular, involutive and the most easily integrable
possible. Then, several integration stages are
necessary to obtain (13) and (14). To finish, we do
not have to speak about stability, but there are a
certain number of degree of freedom (the output

injection : ( )uyzl ,,,,1LΨ  if it exists) allowing to act

on the system dynamics and also offering
possibilities of stabilization.

4. NUMERICAL EXAMPLES AND
SIMULATIONS

In this section, the techniques described previously
are illustrated using two examples. For each example,
the possible existence of a solution will be sought,
and then, the method described in section 3 will be
applied to search this solution (if it exists).

4.1 Example 1

A nonlinear system, referenced in (A.J. Fossard et D
Normand-Cyrot, 1995) and described by (15), is
considered. Actuator faults 1w  and 2w  are

considered.
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The application of the vector field series (4) allows to

determine the smallest distributions 1
*
pS  (resp. 2

*
pS )



(h, f)_invariant containing 2w  (resp. 1w ). In the

same way, the application of the co-vector series (6)
identifies the output combinations which would solve
this problem:

- associated to the fault 1w  and 2w ,
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are satisfied but the condition allowing the 2
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building from an output combination is not. That is to

say it doesn’t exist a vector function 2pΘ  which
verify:

{ } ( )( ){ }xhdSpandhSpanQ pp οΘ=∩ 22
* (18)

This problem is due to the apparition of the state 3x

within the co-distribution 2
*
pQ . Indeed, this state

component does not appear in any output equations,
so it is not possible to observe it from these
equations. It is not possible to build an isolated fault
filter with a diagonal type structure. On the other
hand, obtaining a such structure is not a necessary
condition to the fault isolation (C. Join and al, 2001).
Indeed, the isolation will be possible only if the
signature associated with each fault is independent
with the other fault signatures. It is an example to the
contrary of the proposed method and highlights that
the isolation conditions are necessary.

4.2 Example 2

In this section, the system (15) will be considered
with the following modified output equation:
y=(x1 x3)

T. As previously, the different distributions
are calculated in the following cases:
- associated to the fault 1w  and 2w ,
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These results are obtained by developing calculations
(4) and (6). The three conditions (16), (17) and (18)
are satisfied. So, it exists a solution to the residual
generation problem with a diagonal structure.
In reference to the paragraph 3, the following change
of coordinates is defined as in equation (9):
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The diffeomorphism making it possible to return in
the original base is defined by:
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The original system can be written in the new base
by:
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With ( ) ( )Tuyuyz 000,, 21=Ψ , the filter is

written: 
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The residual verifying (14) is defined by:

( ) ( )TT

pp
zxzxrr 1133

21
−−= (21)

with ( ) ( )Tyyy 12=Θ .

These results are illustrated by simulations.

4.3 Simulation results

These simulations concern the system studied in the
previous paragraph.
First, the fault free case is considered, with w1=w2=0
(Figure 1). The outputs (Figure 1c) have a completely
normal behavior. A Gaussian white noise (N(0, 0.1))
is added on each output. When there is no fault, the
two residuals are identically null (Figures 1a and 1b).
Then, in order to show the advantage of a diagonal
residual type structure, a simulation has been
performed with two simultaneous faults (Figure 2).

Two sinusoidal actuator faults of magnitude 310−  and
210−  (0.1 % of input) occur at time 30sec. In this

case, outputs deviate (Figure 2c) and the two
residuals are not equal to zero (Figures 2a and 2b).
Indeed, only the fault w1 (resp. w2) has influence on
residual r1 (resp. r2).

4.4 Comments

At first, nonlinear system (15) has been considered
and the necessary existence condition solution are not
satisfied for the diagonal residual type structure
problem. However, in case of initial system (15),
there is no solution to the F.P.R.G. with a diagonal
type structure (3). But since only two faults can

appear and it exists a function ( ).1pΘ , it is possible

to detect and localize these faults. But an additional
assumption (not very restrictive in practice) is
necessary: the faults should not appear
simultaneously.

With the modified output vector, it has been proved
that it exists a solution to F.P.R.G. Only one isolation
filter is synthesized following the proposed method.
Results are shown on simulations.
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Figure 1: Fault free case
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c): System outputs

5. CONCLUSION

In this article, the fundamental problem of residual
generation with diagonal type structure has been
considered for nonlinear system. A new geometrical
method which allow the building of a such filter is
developed (in case of it exists), with the
determination of an output injection. In reference
with works of Massoumnia (M.-A Massoumnia,
1986 and M.-A Massoumnia and al, 1989) (linear
theory) and of A. Isidori et al. (A. Isidori and al,
1981 and A. Isidori, 1995) (nonlinear theory), the
existence conditions of a fault isolated filter are
recalled. Simulation results has been done in order to
show the ability and performances of such filter.
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