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Abstract: This paper sho ws how w ell-established control system techniques can
be in troduced to formulate guidelines for clinical testing and measurement of the
HIV/AIDS disease for the estimation of HIV/AIDS parameters. It is assumed that
the viral load and CD4+ T cell count in plasma blood are measured. The objective
is to estimate all parameters in the basic three dimensional HIV/AIDS model. F or
this purpose, through an observabilit y analysis, the minimal number of measurement
samples for the CD4+ T cell and the viral load counts is �rst obtained. The paper
determines then the HIV progression stages when an estimation of all parameters is
impossible. Outside these stages, the paper proposes tw o on-line estimation algorithms
for all HIV parameters based on the well-known techniques of adaptive identifers and
adaptive observers. Conditions for parameter convergence are discussed. Simulation
results are demonstrated for the parameter estimation using adaptive observers.
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1. INTRODUCTION

Over the last tw o decades tremendouse�ort has
been applied to the mathematical modeling of
the epidemiology and immunology dynamics of
HIV (P erelson and Nelson, 1999; Now ak and
May, 2000; Covert and Kirschner, 2000). There
are sev eral approaches to the modeling of the
infectious diseases at the cellular level to describe
the immune system and the host-pathogen inter-
action. These modeling approaches give profound
insights to the dynamics of the disease (Ho, et
al, 1995; Wei, et al, 1995).

While many of the models have tended to focus
on explaining the dynamics of CD4+ T cells and
viral load in blood, model parameters were only
estimated for the virus clearance rate and the
death rate of infected CD4+ T cells for a post-
treatment period of very strong chemotherapy
of rev erse transcriptor inhibitors and protease

inhibitors in (Ho, et al, 1995;Wei, et al, 1995), and
later re-calibrated in (Perelson, et al, 1996). These
early estimations are very rough, because the
key assumption that inhibition is 100% e�ective
has not been veri�ed and is hardly practical.
As for other parameters, very little atten tion
has been given to the estimation except for an
analysis based on the quasi-steady state of the
asymptomatic period before it is disturbed by
chemotherapy (Wein, et al, 1997).

This paper shows ho w w ell-established con trol
system techniques can be introduced to formulate
guidelines for clinical testing and measurement
of the HIV/AIDS disease for the estimation of
HIV/AIDS parameters. It is assumed that the
viral load and CD4+ T cell count in plasma
blood are measured. The objective is to estimate
all parameters in the basic three dimensional
HIV/AIDS model. For this purpose, through an
observabilit y analysis inx2, the minimal number
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of measurement samples for the CD4+ T cell
and the viral load counts is �rst obtained. The
paper determines then the HIV progression stages
when an estimation of all parameters is impos-
sible. Outside these stages, the paper proposes
in x3 and x4 two on-line estimation algorithms
for all HIV parameters based on the well-known
techniques of adaptive identi�ers and adaptive ob-
servers. Conditions for parameter convergence are
discussed. Simulation results are demonstrated in
x5 for adaptive observers. In x6, some conclusions
are drawn.

2. MODEL OF HIV/AIDS AND ITS
OBSERVABILITY

Consider the following three dimensional model of
HIV/AIDS 8<

:
_x1 = s� dx1 � �x1x3
_x2 = �x1x3 � �1x2
_x3 = kx2 � �2x3

(1)

A description of the model follows:

The �rst equation is the population dynamics
of the uninfected CD4+ T cells. Since it is a
one-compartment model, x1 is identi�ed with the
CD4+ T cell counts in blood per cubic millimeter.
s represents the rate at which new CD4+ T cells
are created from sources within the body, such as
the thymus. T cells can also be created by pro-
liferation of existing T cells. A proliferation term
can be added to the right hand side (Perelson,
et al, 1993; Kirschner, et al, 1997; Perelson and
Nelson, 1999; Alvarez-Ramirez, et al, 2000). Some
authors assume, however, that the source term
s is constant, and the proliferation e�ect may
be lumped into the constant d (see (Nowak and
May, 2000) and references therein). In this paper,
the proliferation term is not considered separately
for simplicity reasons. In the presence of HIV, T
cells become infected. This infection is represented
by a \mass-action" term in which the rate of infec-
tion is given by �x1x3, with � being the infection
rate constant. x3 is explained below.

The second equation is the population dynamics
of the infected cells. Infected cells are produced at
a rate of �x1x3 from the infection of healthy cells
by HIV. �1 is the death rate of infected cells.

The last equation represents the dynamics of the
concentration of free virions. The free virions are
produced by the infected CD4+ T cells at a rate
constant k, and �2 is the death rate of free virions.
In this equation, the loss of virus due to infection
of a cell is ignored.

This basic model has been considered in (Nowak
and Bangham, 1996; Nowak and May, 2000; Perel-
son and Nelson, 1999). To reveal more detailed

progression of the disease, the model has also
been extended to higher dimensions in (Perelson,
et al, 1993; Kirschner, et al, 1997; Perelson and
Nelson, 1999; Alvarez-Ramirez, et al, 2000; Nowak
and May, 2000). The identi�ability properties of
some higher dimensional models will be discussed
elsewhere.

In this paper, it is assumed that the measurement
of the viral load and the CD4+ T cell counts
in plasma is available. This assumption is in
accordance with the current prevailing medical
practice. Also since the number of infected CD4+
T cells (x2) is found to be too small compared
to the number of healthy CD4+ T cells (x1)
(Embretson, et al, 1993; Janeway and Travers,
1997; Chun, et al, 1997), one can safely assume
that the CD4+ T test gives the healthy CD4+ cell
counts. That is, the measured outputs are y1 = x1
and y2 = x3.

Observability is a basic system property of whether
all state variables can be calculated from the mea-
sured output, even though many other de�nitions
of observability of nonlinear systems exist (Conte,
et al, 1999). In this basic sense, the system (1)
is observable, since one calculates that x1 = y1,
x2 = ( _y2 + �2y2)=k, x3 = y2, for k 6= 0. Note that
k = 0 corresponds to the case that no HIV virus
matures despite the CD4+ T cells being infected,
which is not the case for most HIV patients.

Then higher order di�erential equations of the
output can be obtained as,

_y1 = �1 + �2y1 + �3y1y2; (2)

�y2 = �4 _y2 + �5y2 + �6y1y2; (3)

where � = (�1; : : : ; �6)
T = (s;�d;��;��1 �

�2;��1�2; k�)
T . � is invertible for � 6= 0 and

�1 6= �2. It is known that for most HIV patients,
� 6= 0 and �2 > �1 (Nowak and May, 2000). In
this case, it has the following inversion,
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From equation (4), the identi�ability of the orig-
inal parameters of (1) is equivalent to that of �.
Thus, all the original parameters are identi�able
from the measurement of the viral load and the
CD4+ T cell counts in the blood of an HIV pa-
tient.

Identi�ability means that all parameters can be
determined from measuring the output. To actu-



ally determine these parameters, it is necessary to
generate a minimum of six equations based on (2)
and (3), three from each equation. One concludes
that at least four measurements of the CD4+ T
cell count y1 and �ve measurements of the viral
load are needed for a complete determination of all
the HIV/AIDS parameters in the 3-dimensional
model (1).

For simplicity, assume that the following measure-
ments are available,

y01 = y1(t0); y
1
1 = y1(t0 + d1)

y21 = y1(t0 + d1 + d2); y
3
1 = y1(t0 + d1 + d2 + d3);

y02 = y2(t0); y
1
2 = y2(t0 + d1);

y22 = y2(t0 + d1 + d2); y
3
2 = y2(t0 + d1 + d2 + d3);

y42 = y2(t0 + d1 + d2 + d3 + d4):

The CD4+ T cell counts and the viral load may be
measured at di�erent time intervals, in this case,
interpolation and/or expolation can be used.

From these measurements, the following three
equations can be generated based on (2), in which
the derivative of y1 is approximated by �y1=�t,
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If the matrix A is nonsingular, then there is
a unique solution for �1; �2 and �3, and hence
estimates for s; d and �.

On the other hand, when either y1 or y2 is
constant, then A can never be nonsingular for
any choice of measurement interval. In the long
asymptomatic stage, the viral load y2 remains
constant, and in the short period after chemother-
apy treatment, the CD4+ T cell count does not
change much (see the assumption made in (Ho, et
al, 1995; Wei, et al, 1995)). Therefore during these
two time periods, a complete determination of s; d
and � is impossible.

Similar conclusions can be drawn from working
with (3).

3. ESTIMATION USING ADAPTIVE
IDENTIFIERS

The estimation described in the previous section
requires the approximation of the derivatives of
y1 and y2, as is sensitive to noise. It is a stan-
dard practice in adaptive estimation to design a
suitable �lter for the available signals (Sastry and
Bodson, 1989).

Let �1(s) = s + �11, �2(s) = s2 + �22s + �21 be
two Hurwitz polynomials, i.e., �11; �21 and �22
are all positive. Denote the Laplace transforms
of y1(t); y2(t) and y1(t)y2(t) as y1(s); y2(s) and
y1y2(s), respectively. Then from (2) and (3),

y1(s) =
1

�1(s)
�11 +

y1(s)

�1(s)
�21 +

y1y2(s)

�1(s)
�31;

y2(s) =
sy2(s)

�2(s)
�12 +

y2(s)

�2(s)
�22 +

y1y2(s)

�2(s)
�32;

where the new parameterization is,
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De�ne the following time-domain realizations

8<
:

_�1 = ��11�1 + 1;
_�2 = ��11�2 + y1;
_�3 = ��11�3 + y1y2;�
_�21 = �22;
_�22 = ��21�21 � �22�22 + y2;�
_�31 = �32;
_�32 = ��21�31 � �22�32 + y1y2;

and denote
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5 ;

and one can de�ne the following identi�er output

Yi(t) =

�
yi1(t)
yi2(t)

�
= �TW (t); (5)

and the identi�er error

E(t) =

�
e1(t)
e2(t)

�
= Yi(t)� Y (t); (6)

in which

Y (t) =

�
y1(t)
y2(t)

�
:

Then the parameter updating law is given by the
following standard gradient algorithm

_� = � [g1e1(t)W1(t) g2e2(t)W2(t)] ; (7)

in which g1 > 0 and g2 > 0.

An alternative is the normalized gradient algo-
rithm

_� = �

�
g1e1(t)W1(t)

1 + 1W T
1 W1

g2e2(t)W2(t)

1 + 2W T
2 W2

�
; (8)

in which W1(t);W2(t) are the columns of W (t),
and 1 > 0 and 2 > 0.



In any case, Yi(t) approaches Y (t). In order for
the parameters to converge (Sastry and Bod-
son, 1989), it is necessary for the vector �W (t) =
(w11(t), w21(t), w31(t), w12(t), w22(t), w32(t))

T to
be persistently exciting (PE). Note that the trans-
fer function from �u = (1; y1(t), y2(t), y1(t)y2(t))

T

to �W (t) is
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2
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Decomposing �W (t) into �W 1(t) + �W 2(t) such that

�W (s)
def
= �W 1(s) + �W 2(s)
def
= H1(s)�u(s) + (0; 0; 0; y2(s); 0; 0)

T

The following two assumptions are made:

Assumption 1: �u(t) = (1; y1(t); y2(t); y1(t)y2(t))
T

satisfy the persistent excitation condition, i.e.,

t+TZ
t

�u(�)�u(�)T d� � k > 0

is satis�ed for some T > 0, and every t � 0.

Assumption 2: y2(t) 2 L2, that is, the viral load
is a square integrable function of time.

Since H1(s) is stable, minimum phase and ratio-
nal, by Assumption 1 and Lemma 2.6.7 of (Sastry
and Bodson, 1989), �W 1(t) is PE. By Assumption
2 and Lemma 2.6.6 of (Sastry and Bodson, 1989),
�W (t) is PE.

The technical Assumption 1 and 2 may not look
easy to understand. But an intuitive interpreta-
tion of the above analysis is that when the curve
of y1 and y2 are bent enough and \the cumulated
strength of the virus" (y2) is bounded, then all
six parameters can be accurately estimated. Two
typical such phases in HIV/AIDS progression are
the primary infection stage and the period after
chemotherapy treatment when both the viral load
and CD4+ T cell counts are changing.

Coincidentally, one notices that all previous esti-
mations of the virus clearance rate (�2) and the
death rate of infected cell (�1) were made for a
post-treatment period of very strong chemother-
apy using reverse transcriptor inhibitors and pro-
tease inhibitors (Ho, et al, 1995; Wei, et al, 1995;

Perelson, et al, 1996). This choice becomes obvi-
ous from the above analysis of parameter conver-
gence.

4. ESTIMATION USING ADAPTIVE
OBSERVERS

It will be shown in this section that adaptive
observers of the Marino-Tomei type provide an-
other globally convergent parameter estimator.
Refer to (Marino and Tomei, 1995; Marino and
Tomei, 2000; Xia, 2000) for details of the de-
sign and some recent applications of adaptive ob-
servers.

The procedures for designing adaptive observer
estimators is described as follows.

For the system (1), let z1 = x1; z2 = kx2 +
�1x3; z3 = x3, when k 6= 0, this transformation is
invertible, and the system (1) can be transformed
into the following observer form:8>>>><

>>>>:

_z1 = �1 + �2y1 + �3y1y2;
_z2 = �6y1y2 + �5y2;
_z3 = z2 + �4y2;
y1 = z1;
y2 = z3:

(10)

De�ne the �ltered transformation,

�1 = z1; �2 = z2 � �6�1 � �5�2 � �4�3; �3 = z3;

in which

_�1 =�b�1 + y1y2;

_�2 =�b�2 + y2;

�3 =�b�2;

with b > 0, then the system can be transformed
into an adaptive observer form:8>>>><

>>>>:

_�1 = �1 + �2y1 + �3y1y2;
_�2 = b[�6�1 + �5�2 + �4(�3 + y2)];
_�3 = �2 + [�6�1 + �5�2 + �4(�3 + y2)];
y1 = �1;
y2 = �3:

(11)

An adaptive observer can then be designed as the
following

_̂�1 = k1�̂1 + �̂1 + �̂2y1 + �̂3y1y2 � k1y1;

_̂�2 = k2�̂3 + b[�̂6�1 + �̂5�2 + �̂4(�3 + y2)]� k2y2;(12)

_̂�3 = k3�̂3 + �̂2 + [�̂6�1 + �̂5�2 + �̂4(�3 � y2)]� k3y2;
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3
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where �1;�2 are symmetric positive de�nite ma-
trices, k1 is any negative number, k2 = �b and
k3 = �b� � for � > 0.

The estimation of the original parameters can be
determined by the estimation of � through (4).

The convergence of parameters using adaptive
observers can be discussed along similar lines as
for adaptive identi�ers, and it is omitted due
to space limitation. It can be noted that the
parameter convergence conditions for adaptive
observers are the same as for adaptive identi�ers.

5. SIMULATION

The simulation is carried out in the Matlab/Simu-
link environment. Results are shown only for
parameter estimation using adaptive observers.

Assume that the model has the following param-
eters: s = 7, d = 0:007, � = 0:00000042163,
�1 = 0:0999, �2 = 0:2, k = 90:67.

Using these parameters, the HIV progression is
depicted in Figure 1. It can be noted that this
set of parameter corresponds to a typical HIV
infection and progression over a four year period.
After the initial infection, the healthy CD4+ T
cell drops from the usual 1000 per milli cubic
meter to less than four hundred in about four
months' time. The viral load increases dramat-
ically in the acute infection stage and peaks at
about three months after infection. A quasi-steady
state is reached after about �ve hundred days.

Since the numerical values of the CD4+ T count
and the virus load are not in the same order of
magnitude, the variables are �rst normalized in
the simulation. The adaptive observer is chosen
to start from day 225 after infection. This choice
is arbitrary subject to the condition that the
signals are suÆciently excited. The results are
demonstrated in Figure 2. It can be found from
these results that very good estimations can be
obtained using about 3 months' data. It can also
be found that the estimates of s; d; � and k are
relatively smooth, while the estimations of �1
and �2 undergo some small uctuations. This
phenomenon is in accordance with the fact that
virus and infected cells have a very rapid turnover
(Ho, et al, 1995; Wei, et al, 1995).

6. CONCLUSION

In this paper, the problem of estimating all pa-
rameters in the basic HIV/AIDS model is studied

by making use of well-established control system
techniques. Through an observability analysis, the
minimal number of sample measurement for the
CD4+ T cell and the viral load was obtained
for a complete model parameter estimation. The
HIV progression stages when an estimation of all
parameters is impossible were then determined.
Outside these stages, on-line estimations of all
parameters were given based on two well-known
techniques in control theory: adaptive identi�ers
and adaptive observers. Conditions for parame-
ter convergence were discussed. Simulation results
were shown for the adaptive observers.

This study enables one to formulate the following
guidelines for the clinical testing and measure-
ment, as far as the estimation of all six HIV/AIDS
parameters in the basic model is concerned.

(1) At least four measurements of CD4+ T cell
count and �ve measurements of viral load are
needed for a complete determination of all
the HIV/AIDS parameters;

(2) In the asymptomatic stage of HIV, a com-
plete determination of all parameters is im-
possible;

(3) In the short period after chemotherapy treat-
ment when the CD4+ T cell count does not
change much, a complete determination of all
parameters is impossible;

(4) It is most probable to determine all parame-
ters in the primary infection stage;

(5) All parameters can be estimated by suÆ-
ciently disturbing the quasi-steady state in
the asymptomatic stage of HIV using e�ec-
tive anti-retrovirus drug.

Remaining issues to be investigated include clin-
ical data veri�cation. For this purpose, the as-
sumption that daily blood samples are available is
of course not very practical. Interpolation must be
implemented. In practice, samples are sometimes
taken more frequently, e.g., hourly (Perelson and
Nelson, 1999), especially after treatment. This will
certainly improve the eÆciency of the estimation.

Estimation algorithms will be useful in a study
of drug resistance, since resistance can be repre-
sented by the fact that the parameters � and/or
k become smaller. A quantitative study about
resistance can be given by detecting the change
of the estimates of � and k.
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