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Abstract In this paper, we present a new approach to system identifiction and stochastic
adaptive control, by viewing these as problems in statistical learning theory.

This approach leads to finite time estimates for the distance between the
system being identified and the unknown system. This approach permits one to combine

system identification with robust control. learning theory. As an illustration
of the approach, a result is derived showing that in the case of systems with fading

memory, it is possible to combine standard results in statistical learning theory
(suitably modified to the present situation) with some fading memory arguments to
obtain finite time estimates of the desired kind. Though the actual results derived
here are rather restricted in scope, it is hoped that future researchers will pursue

the ideas presented here to extend the theory further.
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1 Introduction

The aim of system identification is to fit given data, usu-
ally supplied in the form of a time series, with models
from within a given model class. One can divide the
main challenges of system identificdation into three suc-
cessively stronger questions, as follows: As more and
more data is provided to the identification algorithm,

1. Does the estimation error between the outputs of the
identified model and the actual time series approach
the minimum possible estimation error achievable by
any model within the given model class?

2. Does the identified model converge to the best possi-
ble model within the given model class?

3. Assuming that the data is generated by a ‘true’ model
whose output is corrupted by measurement noise,
does the identified model converge to the ‘true’
model?

From a technical standpoint, Questions 2 and 3 are easier
to answer than Question 1. Following the notational
conventions of system identifiction, let ������ � � ��
denote the family of models, where � denotes a parameter
that characterizes the model, and � is a topological space
(usually a subset of �� for some �). Since identification is
carried out recursively, the output of the identification al-
gorithm is a sequence of estimates �������, or what is the
same thing, a sequence of estimated models ����������.
Traditionally a positive answer to Question 2 is assured
by assuming that � is a compact set, which in turn
ensures that the sequence ����� contains a convergent
subsequence. If the answer to Question 1 is ‘yes,’ and
if �� is a limit point of the sequence, it is usually not
difficult to establish that the model ����� is an ‘optimal’
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fit to the data among the family ������ � � ��. Coming
now to Question 3, suppose ����� is the parameter of
the ‘true’ model, and let ����� denote the ‘true’ system.
Suppose �� is a limit point of the sequence ����. The
traditional way to ensure that ����� � �� is to assume that
the input to the true system is ‘persistingly exciting’ or
‘sufficiently rich,’ so that the only way for ����� to match
the performance of ����� is to have �� � �����.

With this background, the present paper concentrates on
providing an affirmative answer to Question 1. In a sem-
inal paper [10], Lennart Ljung has shown that indeed
Question 1 can be answered in the affirmative provided
empirical estimates of the performance of each model
���� converge uniformly to the corresponding true perfor-
mance, where the uniformity is with respect to � � �.
Very closely related results are proven by Caines [3].
Ljung also showed that this particular uniform conver-
gence property does hold, provided two assumptions are
satisfied, namely:

� The model class consists of uniformly exponentially
stable systems, and

� The parameter � enters the description of the model
���� in a ‘differentiable’ manner. Coupled with the
assumption that � is a compact set, this assumption
implies that various quantities have bounded gradi-
ents with respect to �.

The uniform convergence property in question is referred
to hereafter as UCEM (uniform convergence of empirical
means). A precise definition of the UCEM property, as
well as a rationale for its name, is given in subsequent
sections.

Now it turns out that a study of the UCEM property in
various forms lies at the heart of a branch of applied
probability theory, variously known as empirical pro-
cess theory or statistical learning theory. One of the
distinguishing features of statistical learning theory is its
emphasis on finite time estimates. This is in contrast to
the asymptotic results provided by nearby branches of
probability theory such as large deviation theory. Note
that the main results of system identification theory of
relevance to the present discussion, such as [10], Lemma
3.1, or [11], Theorem 2B.3, are also asymptotic. Actually,
the proofs of these results can in fact provide finite time
estimates. However, these estimates are not very tight,
possibly because by tradition the emphasis in system
identification theory has not been on deriving finite time
estimates.

This brings us to the motivation of the present paper,
which is to apply the techniques of statistical learning

theory (if not exactly the actual results from that theory)
to the problem of system identification. The results pre-
sented here are among the first attempts at applying sta-
tistical learning theory to the long-standing problem of
system identification. See [14, 15, 4, 16] for related re-
sults. Undoubtedly it is possible to improve both the re-
sults themselves and also the proofs of the results. It is
the hope of the authors that the paper will spur further
research in the subject.

2 Problem Formulation

2.1 Preliminaries

For the class of systems under study, the output set is
some � � �

� , while the input set is some � � �
� for

some � and �. To avoid technicalities, let us suppose that
the inputs are restricted to belong to a bounded set � ; this
assumption ensures that any random variable assuming
values in � has bounded moments of all orders. There is
also a “loss function” � � � � � � ��� �	.

To set up the time series that forms the input to identi-
fication or stochastic adaptive control, let us first define
� ��

��

�� � , and define 	 analogously. Equip the dou-
bly infinite cartesian product	�� ��

��
���� ���with

the product Borel 	-algebra, and call it 
�. Next, intro-
duce a probability measure 

��� on the measurable space
�	�� �
��. Now let us define a ‘stochastic process’ as a
measurable map from �	 �� �
�� 

���� into 	 �� . Let
the coordinate random variables ���� ��� be thought of as
the components of the time series at time , and let us as-
sume that the time series is stationary (which means that
the probability measure 

��� is shift-invariant). Let 

���

denote the one-dimensional marginal probability associ-
ated with 

��� on � , and note that 

��� is a probability
measure on the set � � � . Let � �

�� denote the one-
sided infinite cartesian product� �

�� ��
��
�� � , and for

a given two-sided infinite sequence � � � , define

�� �� ������ ����� ����� � � �� � ��
���

With this preliminary notation, we can set up the problem
under study.

2.2 System Identification

Let us begin with the problem of system identification,
as the stochastic adaptive control problem is a ready
modification thereof. The input to the identification
process is a time series ����� ������� generated through
a stochastic process, as described above. To fit this time
series, we use a family of models ������ � � ��, where



each ���� denotes an input-output mapping from � �
��

to � , and the parameter � captures the variations in the
model family. Thus the output at time  of the system
parametrized by � to the input sequence � � � is given
by ���� � ��. Note that this definition automatically
guarantees that each system is time-invariant.

For each parameter � � �, define the objective function

���� �� ������� ���� � ���� 

���	�

Thus ���� is the expected value of the loss we incur by
using the model output ���� � �� to predict the actual out-
put ��. Note that, since the only value of � that appears
within the expected value is ��, we can actually replace
the measure 

��� by 

���. In other words, we can also
write

���� �� ������� ���� � ���� 

���	� (2.1)

Thus the expectation is taken with respect to the ‘one-
dimensional’ marginal measure 

��� on � �� . One of the
most commonly used loss functions is the squared error;
thus

���� �� ��� �  � ���

where � � � is the usual Euclidean or ��-norm. In this case
���� is the expected value of the mean squared prediction
error when the map ���� is used to predict ��. Note that,
by the assumption of stationarity, the quantity on the
right side of (2.1) is independent of . The objective of
identification is to determine a � � � that minimizes the
error measure ����.

Suppose the measured output �� corresponds to a noise-
corrupted output of a ‘true’ system �����, and that � is the
squared error, as above. In such a case, the problem for-
mulation becomes the following: Suppose the input se-
quence ����

�
�� is i.i.d. according to some law 
 , and

that ������� is a measurement noise sequence that is zero
mean and i.i.d. with law�. Suppose in addition that � �� ��
are independent for each �� �. Now suppose that

�� � ����� � �� � ��� �� (2.2)

In such a case, the expected value in (2.1) can be ex-
pressed in terms of the probability measure ��
�, and
becomes.

���� � ��� ������  ����� � �� � �� �
�� �� 
�	(2.3)

� ��� 
���� � �� �
�� 
�	 ���� � ��� �	�

where 
���� �� ����  �����. Since the second term is
independent of �, we effectively minimize only the first
term. In other words, by minimizing ���� with respect to
�, we will find the best approximation to the true system

����� in the model family ������ � � ��. Note that it is
not assumed the true system ����� belongs to ������ � �
��. In case there is a “true” value of �, call it ����� such
that ����� � ��������, then an optimal choice of � is �����.
If in addition we impose some assumptions to the effect
that the input sequence ���� is sufficiently exciting, then
� � ����� becomes the only minimizer of ����.

3 Uniform Convergence of Empiri-
cal Means

In this section, it is shown that if a particular prop-
erty known as UCEM (uniform convergence of empirical
means) holds, then a very natural approach of choosing
�� to minimize the empirical (or cumulated) average error
will lead to a solution of the system identification prob-
lem. Note that such an approach is already adopted in the
paper of Ljung [10].

Theorem 1 For each  � � and each � � �, define the
empirical error

������ ��
�



��
�	�

����� ���� � ��	�

At time , choose ��� so as to minimize ������; that is,

��� � �������

�������

Let
�� �� ���

��

�����

Define the quantity

��� �� �� 

�������
��


� ������ ����� � ��� (3.1)

Suppose it is the case that ��� ��� � as ��. Then



���� �����
�
� � � �� � �� � � as ���

Remark: The condition that ��� �� � � as  � �
is usually referred to in the statistical learning theory
as the property of uniform convergence of empirical
means (UCEM). Thus the theorem states that if the
family of error measures ������ � � �� has the UCEM
property, then the natural algorithm of choosing � � so
as to minimize the empirical estimate ����� at time  is
‘asymptotically optimal.’ Moreover, the ‘asymptotic’
result can actually be used to provide finite time estimates
as well.

Thus the sample complexity of ensuring that ��� �� �
�� � � is at most equal to the sample complexity of



���� ����. This naturally brings up the question as to
what kinds of families ������ � � �� have this particu-
lar UCEM property, and what their sample complexities
are like. These questions are given a very simple-minded
answer in the next section.

4 A UCEM Result

In this section, it is shown that the UCEM property of
Theorem 1 does indeed hold in the commonly studied
case where �� is the output of a “true” system corrupted
by additive noise, and the loss function � is the squared
error. By Theorem 1, this implies that by choosing the
estimated model ����� so as to minimize the cumulated
least squares error, we will eventually obtain the best pos-
sible fit to the given time series. Note that no particular
attempt is made here to state or prove the ‘best possible’
result. Rather, the objective is to give a flavour of the the
statistical learning theory approach by deriving a result
whose proof is free from technicalities.

We begin by listing below the assumptions regarding the
family of models employed in identification, and on the
time series. Recall that the symbol 
���� � �� denotes the
function ����������� ���. Define the collection of func-
tions � mapping � into � as follows:

���� �� � ��� ��  ����� � �� �
�� � � ��

� �� ����� � � � ���

Now the various assumptions are listed.

A1. There exists a constant � such that

����� � ��� ��� �� � ��� � � �

This assumption can be satisfied, for example, by as-
suming that the true system and each system in the
family ������ � � �� is BIBO stable (with an upper
bound on the gain, independent of �), and that the set
� is bounded (so that ���� is a bounded stochastic
process).

A2. For each integer � � �, define

����� ��� �� ���� � ������ ����� � � � � ����� �� �� � � ���

With this notation, define

�� �� ���
���

���
��


������ ������ � ����

Then the assumption is that �� is finite for each � and
approaches zero as � � �. This assumption essen-
tially means that each of the systems in the model

family has decaying memory (in the sense that the
effect of the values of the input at the distant past on
the current output becomes negligibly small). This
assumption is satisfied, for example, if

� Each of the models ���� is a linear ARMA
model of the form

�� �

	�
�	�

��������� � ����������

� The characteristic polynomials

 ��� �� �� �	�� 

	�
�	�

������
	��

all have their zeros inside a circle of radius ! "
�, where ! is independent of �.

� The numbers ����� are uniformly bounded with
respect to �.

The extension of the above condition to MIMO sys-
tems is straight-forward and is left to the reader.

A3. Consider the collection of maps � � ������ � � �
��, viewed as maps from� � into �. For each �, this
family has finite P-dimension, denoted by #���. (See
[13], Chapter 4 for a definition of the P-dimension.)

Now we can state the main theorem.

Theorem 2 Define the quantity ��� �� as in (3.1) and
suppose Assumptions A1 through A3 are satisfied. Given
an � � �, choose ���� large enough that �� � ��� for all
� � ����. Then for all  � ���� we have

��� �� � �����
�
��

�

�� ��

�

������
� ��� ������������������ (4.1)

where ������� denotes the largest integer part of �����.

Remark: From the proof of Theorem 1, it follows that the
rate of convergence of the estimated model to the optimal
performance can also be quantified.

5 Bounds on the P-Dimension

In order for the estimate in Theorem 2 to be useful, it is
necessary for us to derive an estimate for the P-dimension
of the family of functions defined by

�� �� ������ � � � ��� (5.1)

where ����� � �� � � is defined by

�������� ��� ��  ����� � �� �
��



where

�� �� �� � � � �� ��� ����� � � � � ��� �� �� � � ���

Note that, in the interests of convenience, we have de-
noted the infinite sequence with only � nonzero elements
as ��� � � � � �� rather than ��� � � � � ���� as done earlier.
Clearly this makes no difference. In this section, we state
and prove such an estimate for the commonly occuring
case where each system model ���� is an ARMA model
where the parameter � enters linearly. Specifically, it is
supposed that the model ���� is described by

$��� �

	�
�	�

��  ��$�� ���� �� � $�� (5.2)

where � � ���� � � � � �	� � � � �
	 , and each  ���� �� is a

polynomial of degree no larger than % in the components
of $�� ��.

Theorem 3 With the above assumptions, we have that

P-dim���� � �& � �&� �� %� (5.3)

Remarks: It is interesting to note that the above estimate
is linear in both the number of parameters & and the
duration of the input sequence �, but is only logarithmic
in the degree of the polynomials  �. In the case of
linear systems, Dasgupta and Sontag [5] have derived
VC-dimension bounds that are logarithmic in �. Their
problem formulation is a little different; however, perhaps
with a little effort their result can be incorporated into the
present formulation as well. That is a problem for future
research.

Proof: For each function ����� � �� � � defined as in
(5.1), define an associated function � �� � �� � ��� �	 �
��� �� as follows:

��������� '� �� ����������  '	�

where ���� is the Heaviside or ‘step’ function. In other
words, ��(� � � if ( � �, and ��(� � � if ( " �. Let � ��
denote the associated family of functions � ����� as � varies
over �. Then it is known (see [12] or [13], Lemma 10.1)
that

P-dim���� � VC-dim�� ����

Next, to estimate VC-dim�� ���, we use a result due to
Karpinski and Macintyre [8, 9], with a refinement due to
[13], Corollary 10.2. This result states that, if the condi-
tion ��������  '	 � � can be stated as a Boolean for-
mula involving ( polynomial inequalities, each of degree
no larger than #, then

VC-dim�� ��� � �& ����)#(�� (5.4)

Thus the proof consists of showing that the conditions
needed to apply this bound hold, and of estimating the
constants # and (.

Towards this end, let us back-substitute repeatedly into the
ARMA model (5.1) to express the inequality

� ��  ������� �
� ' " �

as a polynomial inequality in � and the �-parameters. To
begin with, we have

$��� �

	�
�	�

��  ��$� � ���

�
	�

�	�

�� �

�
�

	�
�	�

��  ��$���� �����

�
� � � � �(5.5)

Thus each time one of the functions  � is applied to its
argument, the degree with respect to any of the � � goes up
by a factor of %. In other words, the total degree of $ ���

with respect to each of the �� is no larger than ��%�%��
� � �� %��� � %�. Next, we can write

� $��� �
� ' " � � $����$���  ' " ��

This is a single polynomial inequality in the components
of � of degree at most �%� . Thus we can apply the bound
(5.5) with # � �%� and ( � �. This leads to

VC-dim�� ��� � �& ����)%���

The desired estimate now follows on noting that �� ) "
���, so that ����)� " ���.

6 Conclusions

In this paper, a beginning has been made towards showing
that it is possible to use the methods of statistical learning
theory to derive finite time estimates for use in system
identification theory. Obviously there is a great deal of
room for improvement in the specific results presented
here. For instance, in Sections 4 and 5, it would be
desirable to combine the fading memory argument and
the ARMA model into a single step. This would require
new results in statistical learning theory, whereby one
would have to compute the VC-dimension of mappings
whose range is an infinite-dimensional space. This has
not been the practice thus far.

As it stands, the bound derived in Theorem 3 is linear
in the length �. In [5], an improved bound for VC-
dimension is derived for linear systems; however, that



problem formulation differs slightly from the present
one. It is an interesting (and perhaps not very difficult)
problem for future research to use their approach in the
present context and to improve the bound in Theorem 3
to be logarithmic in �.

In summary, the message of the paper is that both system
identification theory and statistical learning theory can en-
rich each other. Much work remains to be done to take
advantage of this potential.
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