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Abstract: For a class of nonlinear systems which perform a given task repetitively,
an extended type of a direct learning control(DLC) is proposed using the
information on the (vector) relative degree of the a multi-input multi-output system.
DLC method can generate the desired control input directly from prestored control
input profiles with different time scales without any repetitive learning process. It is
shown that existing DLC methods can be applied only to a certain limited class of
nonlinear systems and the information on the relative degree of a nonlinear system is
essential to find the desired control input if the system has higher relative degree.

Copyright © 2002 IFAC

Keywords: Learning control, nonlinear systems, relative degree, iterative methods,

robot manipulators, tracking systems.

1. INTRODUCTION

For precise tracking control of a system which
performs a repeated operation over a finite time
interval, various types of iterative learning
control(ILC) methods have been presented. Since the
pioneering work called Betterment Process (Arimoto
et al., 1984), various types of ILC methods have
been proposed and applied mainly to the control of
robot manipulators and rolling mill processes which
perform a given task repetitively ( Bondi and
Gambardella, 1988; Oh, et al., 1988; Ahn, et al.,
1993; Moore, 1993; Bien and Xu, 1998; Garimella
and Srinivasan, 1998). Although ILC has merits in
the sense that it does not require an exact
mathematical modeling of a controlled system, there
are a few problems which prohibit further practical
applications of ILC to industrial systems.

Basically, ILC requires a lot of iterations until the
tolerance error bound on the output trajectory is
satisfied. Moreover, even if a small change occurs in
the desired output trajectory due to the variation of

control objectives, the previously learned control
inputs have not been used for the generation of
desired control input and hence, the learning process
has to be resumed from the beginning. For example,
consider a XY-table drawing several circles in a
specified time periods. The first case is assumed to
draw all circles with the same radius but different
time. And the second case is to draw all circles with
the same period but different radii. Obviously, the
control inputs in these cases are correlated since they
are generated for the same dynamics. The control
problem is, for a new output trajectory which is
different from all the previous ones in both
magnitude scale and time scale, to find the
corresponding control input so as to drive the system
to follow the given output trajectory and make
effective use of pre-obtained control input profiles.
This kind of control problem was recently defined as
a nonrepeatable learning control problem by Xu et
al. (1999) compared to a repeatable learning control
like ILC.

Kawamura and Fukao (1995) presented a time-scale



interpolation method for the input torque patterns of
the robot obtained through learning control. Xu et al.
(1998, 1999) suggested a DLC method which can
find the desired control input profile for a new output
trajectory directly from the learned control inputs
corresponding to other output trajectories under the
assumption of full rankness of control input and
output matrices.

For linear systems, however, Ahn (2000) showed
that the class of systems to which existing DLC is
applicable is limited to a set of systems whose
relative degree is only one due to the strict
assumption on the system matrices and how the
relative degree of a system can be used to find the
desired control input for linear systems with relative
degree more than one.

In this paper, first, the class of nonlinear systems to
which existing DLC can be applied is clarified and
an extended type of DLC is proposed using the
relative degree of a nonlinear system. The
information on the (vector) relative degree of a
multi-input multi-output(MIMO) nonlinear system is
shown to be essential to find the desired control
input through mathematical analysis and simulation
results for the tracking control of SCARA robot
manipulators are presented to show the validity of
the proposed DLC.

2. MOTIVATION AND PRELIMINARIES

Consider a class of single-input single-output(SISO)
nonlinear systems described by the following state
space equations

x(1) = f(x(1) + g(x()u(?)

. (1)
v =¢'x(1)

where x(¢) € R" is the state vector, u(¢) and y(¢)
are the input and the output, respectively. The
functions f()e R" and g()e R" are analytic on
their domain of definition and ¢ is a constant vector.
Xu (1999) suggested a DLC law with a strict
assumption that the product of control input matrix

and the output matrix to be nonsingular as well as
these matrices are constant matrices.

For the SISO system in (1), this assumption implies
that g(x(¢)) should be a constant vector and

¢’ g(x(t)) should be

assumption makes the DLC applicable only to a very
limited class of nonlinear systems and it can be
shown apparently that a nonlinear system whose
relative degree is more than one cannot be controlled
by this method.

nonzero. However, this

We recall that the definition of the relative degree of
a nonlinear system to characterize the system for
which the above assumption is not satisfied. It is
necessary to define some notations. The derivative of

a scalar function @

[fis - f, 1" is defined by

along a vector f=

0 n o
L,o(x) =a—‘ff<x)= Ea_f ® ©

where x =[x,,.., X, 1", and the derivative of ¢ taken

first along f and then along a vector g is

a(Lf(P)

Lo Lrp(x)= g(x). €)

If @ is being differentiated j times along f , the
notation Ljf(P(X) is used with L(}(D(X) =0(x).

Let the nonlinear system in (1) have the relative
degree ¢, then we have (Isidori, 1995)

LgL’}.(ch):o, 0<k<qg-2 (4)

Lng:l (c'x)=0. (5)

If ¢ 22 for a nonlinear system to be controlled, we
get LgL?f (e"x)=c"g=0. However, Xu et al. (1998,

1999) required an assumption that CB has full rank
where C is the output matrix and B is the control
input matrix, respectively. For the case of SISO

systems as in (1), this reduces to ¢’ g #0. Hence,

this type of DLC method may not be applied even for
the systems of relative degree two. Actually, we may
often see such a system in typical electro-mechanical
systems such as a DC motor with a load or a robot
manipulator. If we let the torque as the input and the
position as the output for these systems, we can
easily show that the relative degree of such systems
is two. In order to find the control input for this
problem, a new type of DLC for linear SISO systems
was suggested using the relative degree of a system
(Ahn, 2000).

In this paper, the DLC method for linear systems is
extended to nonlincar MIMO systems to handle
practically controlled systems. Before introducing the
extended DLC, we need to define the relations
between output trajectories which are given with
different time scales.

Definition 1. Trajectory y;(¢;) t;€[0,7;] is said to
be proportional to another trajectory y(¢), t€[0,7]
in time scales if and only if y,(¢;)=y(s) , where
p,(t)=t,=p;t is the time scaling factor satisfying
p,(0)=0 and p (T)=T,.

Assumption 1: There are [(=2)

The corresponding

prestored
trajectories y,(¢;),t; €[0,T;] .
control input profiles u,(#;) have already been

obtained a priori through iterative learning process.
For any prestored trajectories y, and y, (i# ), it



should be p#0 , p;#0 and Pi#D; for

Lj =1 N

Now, the control problem in this paper is, for a new
desired output trajectory y,(¢,),t, €[0,7,] which
is proportional to other prestored output trajectories,
to find the desired control input profile u,(z,) ,

which yields y,(¢;) directly from the prestored
u;(¢;) (@=1--,1).

3. DLC FOR MIMO SYSTEMS

First, it is observed that the nonsingularity
assumption mentioned in the above section still
limits the application of DLC in MIMO systems.
Consider a class of MIMO systems as follows:

X(t) = f(x(1)) + G(x(1))u(r) ©
¥(O) = h(x() = CTx(0)

where Y(t)z[ylv'"aym]ERm > u(t):[ulv“'vum]

eR" > G(x):[gla“'sgm]ERnxm > CZ[CI,“',Cm] P

€ R™™ and h(x) =[h(x),-,h, (x)]" € R™.

Definition 2(Isidori, 1995): A MIMO nonlinear

system of the form (6) has a (vector) relative
degree{r, ---, r,}at xq if

(i) L, Lih(x)=0 for all 1<j<m , 1<i<m ,

k <r,—1 and for all x in a neighborhood of x

(ii) the decoupling matrix

-1
Lgm L,} hl (X)

LgmLf?._lhz(x) o

Ly L™ 1y (%)

Ly L}y (x)
-1
J(X) — LglL? ) hZ (X)

-1
LglL? hm (X)
is nonsingular at X =X,

There may be points where a relative degree cannot
be defined. However, we’ll consider the system
whose relative degree at x(¢) can be defined for all
t in a given finite time interval. Note that each
integer r, is associated with the i th output channel

of the system and the i th row of C'G is
[@n; /0x)g1. . (@h; fox)g,, ). ie.

lcl-Tg], T czTng

For a nonlinear system whose relative degree is more

than one, these row vectors are identically zero for
i=1,---,m from Definition 2. Thus, the assumption

of the nonsingularity of C'G cannot be satisfied for
these systems as well as for SISO systems.

Let the nonlinear system in (6) have the (vector)

relative degree q = {q1,~~~,qm} and ylgk) be the kth

order time derivatives of the output, then high order
derivatives of the output are found such as

yl-(j) :Lif(ciTx), j<g;i—1

v =19 (e %)

] 1
+[Lg]L‘j£ (c,Tx),...,Lgij; (c,-Tx)Ju ®)
Define y(q):[yl(ql), y,(,({’")}r, then we can

rewrite (8) as the following.

L9 (ef x(0)

y@ () =| LF ©2XO) |, 5y,

LY (epx(1))

= A‘}. (x(0))+J(x)u )

L9 (ef (x()
where A‘j,(x(t)): : .
LY (¢ x(1))

Assume that all the output channel of the system
have the same relative degree in this paper. As a
practical example which satisfies this assumption for
the output channels with the same relative degree,
consider an n degree-of-freedom robot manipulator
which performs a given task repetitively. If we let the
input of the robot be # joint torques and the output of
the robot be n joint angles, then the (vector) relative
degree of the robot system is {2, 2, ..., 2} where the
number of elements is 7.

In the following theorem, we show that the desired
control input, which yields the given desired output
trajectory, can be generated from the prestored
control input profiles. Note that the prestored input
profiles were obtained from other output trajectories
with different time scales by iterative learning
control methods.

Theorem: For the nonlinear system (6) whose
(vector) relative degree is q = {q, . -~,q}, the desired

control input profile u,(t;) , which yields the
yqa(tg),t; €[0,T;], can be directly generated from

the prestored u;(¢;) as follows:

u ()= Nw', (10)
where

wh=w? wy'wl | w = @), u] 1",



and
pl_ql 1
—-q
W= pz. 1 1
p 1

Proof: For a nonlinear system with a (vector) relative
degree q = {q, q} where the number of elements

is m, the desired control input can be found from (9)
as follows:

(@) =IxO) " Iy P 0) - A% x@)] te[0,7] (1)

For the new desired output y,;(¢;), t; €[0,7;], we
can have

wa(ta) = Ixg () Y@ 00~ A% (xg (007

,t, €[0,T,] (12)

where yi,q) (tq)= lyglq,l)’ yc(lg’

that u,(z;) is not available directly in terms of

y;q’r)n J . Note

above formula due to the existence of system
uncertainties in f() , g() and c¢; . Now choose

prestored trajectories y;(¢;),t; €[0,7;] , i=12,.,/

whose control input profiles have been obtained a
priorii.e.,

w (1) = 305 @) - A% (0,0

, 1,€[0,T;] (13)
where yl(-q) (t)= lyi(j), yl.(’%), yl((ng Noting
that ¢, = p;(¢,) and differentiating the first element
of y,(t;) withrespectto z,,

dy,,(t;) d dp,(t,)
S = (5 1)
d i d (14)
_4d )
dr, Yiill;) p;
where p, :%. Continuing the differentiation
d
q times, we get
d1 t d9y; (1
Yai(ta) _d7yiy( I)'P?~ (15)

q q
d’ dt

Thus, we have y(dq) ty)= plqyl(-q) (t;) . We also have

X;(t;)=x4(ty) from y;(#;)=y,(t) . Hence, (13)
becomes

W (Pt ) = T (kg 0™ [y W (0) - A% (x 1)

(16)

Let d;(xg(tg))=J (x4 (t4)"" -yﬁ;‘) (xg(tq))
and dy (xg (1g)) =~ (xg (1) A% (x4 (1)
then we have

p 1 ui(p1(tq))

pa 11 I |:d1(xd(td)):|: uy (pa(tq)) (17)

: Sld2(xg (2g)) :
p 9 I u;(py(tg))

or Wd =u; where d = [le(Xd(td)), dg(xd(td))]T-

Since WTW is invertible from the Assumption 1, we
can solve d in (17). Recall that, from (12),

di(xg(tg))+da(x4(14))
=302 ) YO0 =29 (xg100)]

=uy(ty) (18)

Combining (17) and (18), we obtain u ,(¢;) as
shown in (10). VvV

In the Theorem above, it is shown that the relative
degree g of the system should be included in W

which is different from the result in Xu et al. (1998,
1999).

Remark 1. Now, we consider a linear system as a
special case of the system (6). Let a linear SISO
system with the relative degree ¢ be represented by

X(t) = Ax(t) + bu(t)

19)
y(ty=e"x(0)

and y; in (8) be the single output y in (19). For this
system, (8) becomes

y(qi) — L‘;: (CTX)

| |
g L 'x), -, Ly, LY (ch)Ju

=l A9x(t) + ¢! 49 bu(r) . (20)

Since (20) is the same as (4) in Ahn (2000), we can
find that the result for nonlinear systems obtained in
this paper completely includes the previous result for
linear systems.

Remark 2: If control input profiles corresponding to
output trajectories with different time scales are
obtained from iterative learning process, DLC may



not yield the exact desired control input profile
directly. However, the smaller we set the tolerance
error bound in ILC, the better the actual output
converges to the desired output. Even in case that the
system is slightly changed, the DLC control input
can be used as the best initial control input profile for
the new ILC process.

4. APPLICATION TO ROBOT MANIPULATORS

To show the validity and the effectiveness of the
proposed extended DLC, some simulation results are
performed for the tracking control of a SCARA robot
manipulator where the characteristics of the given

task is repetitive. Let x(t):[xlT(t),xg(t)]T ,

X () =[01(0,0,01 . x3(0)=[6,(1),6,(1)] , and
u(t) =[7(¢),75(¢)], then the dynamic equation of a

2-link SCARA robot manipulator in the state- space
is described by

) 1 o X5 (?)
(1) = 2 2
0 -M7'x;(0) ||V (xi (), x2 () + F

+ 0 t
RO

y(©) =x,(0) (2]

where M(x(¢))e R?*? is the inertial matrix,

V(x,,X,)€ R**is the Coriolis and centrifugal force,

and Fe R*! is the friction force. The (vector)
relative degree of the robot system in (21) is easily
found as {2, 2} from the Definition 2.

The desired output trajectory is specified as

3
ty(4-3t;)

=] Lt el00] (22
ta’(4_3ta’)

It is assumed that control input profiles concerning
the following output trajectories have been obtained
a priori by using the iterative learning control (Ahn,
1993) with the tolerance error bound on the output
error 0.05.

[125 15
S

y| = , 1, €[0,0.8]
B su-Ly)
| 64 ! 4
125 5
= 5(4-=1)
216 2

V2= , 1, €[0,1.2].
125 B4-20)
(216 2% 27

The proportionality between output trajectories is

satisfied since ¢ =(4/5)t; and t, =(6/5)t; ie.,
p1=4/5 and p, =6/5. The desired control input
is calculated using (10) as follows:

-1

4 5

(D) "I I t
ud=[12 12] g—z {:litl))}
(g) I, I 22
:0.352u1(t1)+0.648u2(t2) (24)

where u; and u, are the inputs corresponding to y;
and y,, respectively. In Fig. 1 and Fig. 2, the actual
output trajectories ( 6,(¢),0,(t) ) are shown to

converge well to the given desired output trajectories
without iterative process by using the proposed DLC.
The output error can be further reduced if we
decrease the tolerance error bound in the iterative
learning process, moreover, the perfect tracking can
be obtained if the exact modeling of the system is
known as in Xu (1999).
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Fig. 1. Output trajectories for the link 1.
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Fig. 2. Output trajectories for the link 2.

5. CONCLUSION

An extended type of DLC has been proposed for a
class of MIMO nonlinear systems with the relative
degree more than one. It has been first observed that
the existing DLC is effective only to nonlinear



systems with the relative degree one as well as to
linear systems. The information on the relative
degree of a system was shown to be essential to find
the desired control input directly using DLC through
the mathematical analysis. Simulation results for the
tracking control of a SCARA robot manipulator have
shown the validity of the proposed DLC scheme.
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