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Abstract: This paper presents part of the work being carried out to obtain parallel
versions of the main SLICOT routines for model reduction. It is focused on the
parallel solution of standard Ly apunov equations obtaining the Cholesky factor of
the con trollabilit yand observabilit y Grammians. This operation is an important
basis for model reduction methods. Routines from the standard libraries BLAS,
LAPA CK,SLICOT, PBLAS and ScaLAPA CKha vebeen used whenever possible
in the parallelisation process. How ev er, ithas been necessary to dev elopsome new
routines. Experimental results obtained using a cluster of PC's are shown.
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1. INTRODUCTION

High order systems appear commonly in con trol
problems. They allow to increase precision of the
results in con trol or simulation processes. How-
ever, a larger size of the system involv eshigher
resources needs, both in memory and computing
terms. Thus, there is a necessity of reducing high
order models of linear control systems.

Reducing a model consists in obtaining a low er or-
der model with a similar behaviour. By using this
reduced model in the control or simulation pro-
cess, necessary requirements are decreased. But
the process of obtaining the reduced order model
is also an expensive process itself, since it has to
work with the original unreduced system. Thus,
it is con venient to develop parallel algorithms of
the main reduction methods to decrease the time
involv ed in the process.

SLICOT is a con trol library which incorporates
several model reduction routines. It is freely avail-
able and it has many desirable features for a
standard control library .Thus, it is a suitable
sequential starting point. It implements most of
the model reduction methods used, such as those

based on Square-R oot, Balancing-Free Square-

R oot,Singular Perturbation Approximation and
Hankel-Norm Approximation.

One important operation in these model reduction
methods is the solution of standard Lyapunov
equations. Developing a parallel solv er for this
equation is a �rst step to parallelise the full
process of model reduction.

There are sev eral sequential implementations to
solv e this equation (Penzl, 1996). How ev er,the
parallel case has not been explored in suc h an
extended way. This paper shows the work carried
out to obtain a parallel solv er for the standard
Ly apunov equation following the Hammarling's
method (Hammarling, 1982).

In the next sections, �rst a brief description of
the main model reduction methods is given. Then,
the SLICOT library is presented as part of the
NICONET project. Later, model reduction rou-
tines of the SLICOT library are enumerated. The
method used to solv e standard Lyapunov equa-
tions is explained, and then the parallel approxi-
mation is described. Finally, some experimental
results obtained in a cluster of PC's are shown.
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2. MODEL REDUCTION METHODS BASED
ON BALANCING TECHNIQUES

Model reduction methods based on balancing
techniques are appropiate to be applied to stable
systems. These methods rely on the same basic
operations, thus allowing to develop them by im-
plementing these basic operations. Some of these
methods based on or related to balancing tech-
niques are implemented in SLICOT (Varga, 1999).

Moreover, the basic methods combined with co-
prime factorisation or spectral decomposition
techniques can be used to reduce unstable systems
or to perform frequency-weighted model reduc-
tion (Varga, 1999). Implementing the methods for
stable systems can be seen as a previous step in
the process of obtaining general model reduction
codes for general systems.

Starting from an n-th order original state-space
model G = (A;B;C;D) with corresponding
transfer-function matrix (TFM) G(�) = C(�I �
A)�1B + D, the goal is to obtain an r-th order
approximation Gr = (Ar ; Br; Cr; Dr) of the origi-
nal model (with r < n) with TFM Gr = Cr(�I �
Ar)

�1
Br + Dr. Many model reduction methods

can be seen as computing a similarity transforma-
tion Z which leads to

�
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5 : (1)

Then, a reduced model (Ar; Br; Cr; Dr) can be
formed by taking Ar = A11, Br = C1, Cr = C1

and Dr = D.

If matrix Z used in the transformation is chosen
as Z = [T; U ], Z�1 = [LT

; V
T ]T with LT = Ir,

the reduced system is (LAT;LB;CT;D).

A singular perturbation approximation (SPA) can
be formed using the expressions

Ar =A11 +A12(I �A22)
�1
A21; (2)

Br =B1 +A12(I �A22)
�1
B2; (3)

Cr =C1 + C2(I �A22)
�1
A21; (4)

Dr =D + C2(I �A22)
�1
B2; (5)

being  = 0 for the continuous-time case and
 = 1 for the discrete-time case.

Frequently, matrices L and T are computed from
two positive semi-de�nite matrices P and Q which
have special representation of the properties of
the system. These matrices correspond to the
Grammians of the system. They can be obtained
in the form of Cholesky factorisation, that is
P = S

T
S and Q = R

T
R. Then, L and T matrices

can be computed by obtaining the singular value
decomposition (SVD)

SR
T = [U1U2]diag(�1;�2)[V1V2]

T
; (6)

with �1 = diag(�1,: : :,�r), �2 = diag(�r+1,: : :,�n)
and �1 � : : : � �r > �r+1 � : : : � �n � 0.

The square�root (SR) method determines L and
T as

L = �
�

1

2
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T

1 R; T = S
T
U1�

�
1

2

1 : (7)

The use of these matrices for the transformation
leads to a system in which the Grammians are
diagonal and equal. This is called a balanced real-
isation of the system. The SR method is appropi-
ate for well-equilibrated systems. However, if the
original system is highly unbalanced, the reduced
model can su�er a lost of accuracy. To avoid this, a
new approach called balancing-free (BF) has been
proposed. However, this new approach can be less
accurate for moderately ill-balanced systems. A
balancing-free square-root (BFSR) approach has
been introduced, which combines the advantages
of the BF and SR approaches (Varga, 1999).

3. SEQUENTIAL ROUTINES FOR MODEL
REDUCTION

3.1 NICONET

NICONET (www.win.tue.nl/niconet, Numerics in
Control Network) is an European thematic net-
work project with the aim of formalising and ex-
tending current collaboration with respect to ro-
bust numerical software for control systems anal-
ysis and synthesis. Activities in the past have
resulted in two control libraries, SLICOT and
RASP, that are still in active development.

The research within the NICONET project is
organised in �ve tasks:

� I: Basic Numerical Tools for Control.
� II: Model Reduction.

� II.A: Development of standard software
for model reduction.
� II.B: Development of standard software
for controller reduction.
� II.C: Development of standard software
for model reduction of high order sys-
tems.

� III: Subspace Identi�cation.
� IV: Robust Control.
� V: Nonlinear Systems in Robotics.

This work is part of the Task II.C, which is in
charge of developing standard software for model
reduction of high order systems. Dealing with
high order systems involves the necessity of high
performance computing techniques to be applied,
such as parallel computing, to reduce time and
memory requirements.



Both direct methods and iterative methods are
used in Task II.C. This paper is oriented to
the direct methods approach since it uses as a
main operation the Schur decomposition. Iterative
methods are based on the matrix sign and disk
functions. Work being performed with iterative
methods is described in (Benner et al., 1999).

3.2 SLICOT

The freeware subroutine library SLICOT provides
Fortran 77 implementations of numerical algo-
rithms for computations in systems and control
theory. Based on numerical linear algebra routines
from BLAS and LAPACK (Anderson et al., 1992),
SLICOT provides methods for the design and
analysis of control systems. The basic ideas be-
hind the library are usefulness of algorithms, ro-
bustness, numerical stability and accuracy, perfor-
mance with respect to speed and memory require-
ments, portability and reusability, standardisation
and benchmarking.

The current version of SLICOT consists of about
250 user callable routines in various domains of
systems and control. These routines have asso-
ciated on-line documentation. About 150 routines
have associated example programs, data and re-
sults. New routines are still in preparation. Due to
the use of Fortran 77, reusability of the software
is obtained, so SLICOT can serve as the core
for various existing and future CACSD platforms
and production quality software. SLICOT rou-
tines can be linked to MATLAB through a gate-
way compiler, e.g. the NAG Gateway Generator.
SLICOT is freely available through anonymous ftp
(wgs.esat.kuleuven.ac.be/pub/WGS/SLICOT/).

3.3 Routines for model reduction of stable systems

These are the main routines of the SLICOT li-
brary for model reduction of stable systems:

AB09AD computes reduced (or minimal) order
balanced models using either the Square-Root
or the Balancing-Free Square-Root Balance &
Truncate method.

AB09BD computes reduced order models using
the Balancing-Free Square-Root Singular Per-
turbation Approximation method.

AB09CD computes reduced order models using
the optimal Hankel-Norm Approximation me-
thod based on Square-Root balancing.

AB09DD computes a reduced order model by
using the Singular Perturbation formulas.

The work described in this paper has been ori-
ented to parallelising routines AB09AD, AB09BD and
AB09DD, whose main operations are the solution
of Lyapunov equations (obtaining the Cholesky

factor of the solution) and the singular value de-
composition.

4. HAMMARLING'S METHOD FOR
LYAPUNOV EQUATIONS

4.1 Standard Lyapunov equation

The standard Lyapunov equation is presented in
two forms, one for continuous-time systems (8)
and one for discrete-time systems (9):

A
T
X +XA = �E; (8)

A
T
XA�X = �E: (9)

Here A and E are real square matrices of size n.
Matrix E is symmetric, as well as the solution
matrix X when unique.

The most typical method used to solve these equa-
tions is due to Bartels and Stewart (Bartels and
Stewart, 1972). It is based on transforming the
equation to a reduced form, solving this reduced
form and then transforming back the solution.

4.2 Hammarling's method

Hammarling's method (Hammarling, 1982) is an
alternative for solving Lyapunov equations when
their right-hand side is positive semide�nite and
matrix A is stable. In these cases, the right-hand
side of the equation is usually in the form of the
product of a matrix by its transposed matrix, and
the Cholesky factor U of the solution matrix X is
the desired output. The above equations become

A
T
U
T
U + U

T
UA = �BT

B; (10)

A
T
U
T
UA� U

T
U = �CT

C: (11)

This method allows to obtain the Cholesky fac-
tor of the solution directly without computing
explicitly the product in the right-hand side of the
equation. It is similar to Bartels-Stewart method
in that both of them work by transforming the
equation to a reduced form, then solving this
reduced equation and later obtaining the solution
to the original equation by a back transformation.
These steps are going to be described in detail for
the continuous case of Hammarling's method.

Transformation to reduced form

The transformation to reduced form is performed
to obtain the equation

A
T

s
Xs +XsAs = �BT

s
Bs; (12)

where Bs is an upper triangular matrix of size
n�n, and As is an upper quasi-triangular matrix



of the same dimensions. This form of the equation
is obtained by reducing matrix A to the real Schur
form As, via computing the orthogonal matrix Z
which veri�es As = Z

T
AZ , being As an upper

quasi-triangular matrix, that is, upper triangular
with the exception of some nonzero elements in
the �rst subdiagonal. As can be seen as an upper
block triangular matrix, whose diagonal is formed
by 1� 1 or 2� 2 blocks corresponding to real or
complex eigenvalues of A, respectively.

In this transformation to reduced form (12), ma-
trix Bs is obtained as the upper triangular matrix
R from the QR factorisation of the product BZ.

Solution of the reduced equation

To solve equation (12) for Us, Cholesky factor of
the solution (Xs = U

T

s
Us), the involved matrices

As, Bs and Us are partitioned in a way that yields
a 2 by 2 or 1 by 1 Lyapunov equation and two
other equations. This small Lyapunov equation is
solved as a linear system of equations (by Kro-
necker products). Then the other two equations
are updated. One of them is solved as a reduced
Sylvester equation in which involved matrices
are upper quasi-triangular. The other equation is
transformed by a QR decomposition and matrix
products to a reduced Lyapunov equation which
can be solved by this same procedure.

The solution of this reduced equation in parallel
has been treated previously for the generalised
case (Guerrero et al., 1998) and for the standard
case (Guerrero et al., 2001).

Back transformation

Once the solution of the reduced equation has
been computed, another transformation is re-
quired to obtain the solution of the original equa-
tion. In Hammarling's method, this transforma-
tion consists in obtaining the QR factorisation of
the product of matrix Us, solution of the reduced
equation, and the transpose of matrix Z, coming
from the transformation to real Schur form, that
is, computing UsZ

T = QUU .

With this transformation, the upper triangular
matrix U , Cholesky factor of the solution X of
equation (8), is obtained.

5. PARALLEL IMPLEMENTATION

The procedure to obtain a parallel code for the
complete solution of Lyapunov equations by Ham-
marling's method is based on using available pa-
rallel routines for each of the basic operations
performed in every step. However, some of those
operations had not still been implemented in pa-
rallel. New parallel routines have been developed
for them.

Next, the new parallel routines developed by the
authors of this paper are described briey. The
names of these routines are in bold type in the
text.

PDLPHM is the main routine to be called
for solving Lyapunov equations by Hammarling's
method. It allows to solve both continuous and
discrete time Lyapunov equations, as well as their
transpose versions.

The routine performs the reduction of the equa-
tion, solving of it, and back transformation of the
�nal solution, using new developed routines.

PDGEES routine obtains the real Schur form of
a generic matrix. The resulting Schur form is in
standard form, that is, the 2 � 2 blocks which
may appear in the main block diagonal are in the

form

�
a b

c a

�
where b � c < 0, being a �

p
bc the

corresponding eigenvalues of that block.

PDORGHR routine converts the input orthogo-
nal matrix stored as reectors and � values to a
regular matrix.

PDLANV routine has been required since the
routine PDLAHQR currently available in ScaLA-
PACK does not return the 2�2 blocks of the real
Schur form matrix in standard form. This routine
converts these blocks into standard form and it
also accumulates in the appropriate way the used
transformations in the orthogonal matrix which
represents the operations performed to transform
the original matrix to Schur form.

PDGEMM2 routine performs the operation
B  op(A)�B or B  B � op(A), where op(A)
is A or AT , i.e. it computes the product of two
general matrices overwriting one of them with the
result.

PDSHIFT routine performs a horizontal dis-
placement of a matrix. It is needed in the trans-
pose case of the equation if the original matrix B
of the right hand side is not square.

PDDIAGZ routine is used several times in the
code to make the elements in the main diagonal
of a matrix non-negative by scaling with minus
one the rows (or columns) corresponding to nega-
tive diagonal elements. Trapezoidal matrices are
allowed.

PSB03OT routine is a parallel version of the SLI-
COT routine SB03OT, which is used to solve a re-
duced Lyapunov equation obtaining the Cholesky
factor of the solution. More information about this
routine can be found in (Guerrero et al., 2001).

PDTRSCAL routine allows to scale a triangular
(or trapezoidal) distributed matrix by a value.



PSB03OR is a parallel version of the SLICOT
routine SB03OR. In the same way that SB03OR
is for SB03OT, PSB03OR is a service routine

for PSB03OT, that is a routine developed to
complement the need of solving a type of Sylvester
equation in PSB03OT. PSB03OR allows to
solve in parallel Sylvester equations whose matri-
ces are in Schur form.

PMB04OD and PMB04ND routines are pa-
rallel versions of the SLICOT routines MB04OD
and MB04ND. However, they are light versions
in the sense that the parallel versions do not
have all the functionality o�ered by sequen-
tial ones. They have only the functionality re-
quired by PSB03OT. These routines perform
QR (PMB04OD) or RQ (PMB04ND) factori-
sations and apply the corresponding orthogonal
transformations to a speci�ed matrix.

PDTRMM2 routine performs a product of a
general matrix with a triangular matrix storing
the result in the triangular matrix, which must
have enough space to store it (the result will not
be triangular in general).

6. EXPERIMENTAL RESULTS

6.1 Parallel platform

The parallel platform used to test the routines
is a cluster of PC's. Each node in the cluster
is a biprocessor computer with 2 Pentium III
processors at 866 MHz, 512 Mb of RAM and
Redhat Linux operating system. Each node also
has three network interfaces: two Fast Ethernet
interfaces integrated in the motherboard and one
Gigabit Ethernet card.

The implemented routines have been tested with
up to 5 nodes. However, each node has been
treated as a single processor machine. The bipro-
cessor feature has not been exploited. This is done
to avoid confusing communications through the
network with communications via shared memory.

6.2 Problem to solve

The Lyapunov equation used to test the routines
is generated in a way similar to that explained
in (Penzl, 1996), but specialised for the standard
case and generating a square matrix B (in the
reference B was a transposed vector).

The matrix A of size n � n, n = 3q, is generated
as A =W

�1
n

diag(A1; : : : ; Aq)Wn, with

Ai =

0
@ si 0 0

0 ti ti

0 �ti ti

1
A : (13)

Wn is a matrix of size n � n whose elements are
all one except those of the main diagonal which
are zero. The parameters si and ti determine the
eigenvalues of the generated matrix. They are
chosen as si = ti = t

i (continuous case).

The matrix B of size n � n is generated as the
symmetric positive de�nite matrix with elements
bij = n� ji� jj; 1 � i; j � n.

Two di�erent problems have been generated to
test the parallel routines. Both of them are con-
tinuous cases and are generated with values 1:0
and 1:01 for parameter t.

6.3 Timing results

Parallel executions have been done for problems of
size 2001 with t = 1:0, block size 24, and t = 1:01,
block size 16. These block sizes have been the
better ones in the execution of the main routine
in a single node. Each of these cases has been
executed both using the Fast Ethernet network
and the Gigabit Ethernet network.
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Fig. 1. Parallel execution times for t=1.0.
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Fig. 2. Parallel execution times for t=1.01.

The times obtained (in seconds) can be seen in
�gures 1 and 2. As expected, the times using the
Gigabit Ethernet network are lower than those of
the Fast Ethernet network. However, di�erences
are not as big as they may be expected. The reason
for this can be that the developed algorithm does
not have a large communications/computations



ratio. Computation is still the most costly part.
The algorithm seems to use a suÆciently coarse
grain, since a better network does not increase
performance too much.

Table 1. Speedups and eÆciencies.

Sp P=1 P=2 P=3 P=4 P=5

t=1.0 1 1.9 2.98 3.58 3.88

t=1.01 1 1.46 2.04 1.58 2.49

E P=1 P=2 P=3 P=4 P=5

t=1.0 1 0.95 0.99 0.90 0.78

t=1.01 1 0.73 0.68 0.40 0.50

Speedups and eÆciencies are shown in table 1.
The case with t = 1:0 has shown very good per-
formance. EÆciencies of 90% up to 4 processors
for a problem size of 2001 can be considered good
results for this kind of problems (dense matrices).

However, the problem with t = 1:01 has much
worse results. This implies that the cost of com-
puting the Schur form depends most on the values
of the initial problem, has better parallelism for a
simpler matrix.

7. CONCLUSIONS

In this paper, the integration of routines to obtain
a parallel algorithm to solve standard Lyapunov
equations by Hammarling's method has been pre-
sented. It is a basic operation needed in the pri-
mary model reduction methods used in the SLI-
COT library. Thus, this is a �rst step to parallelise
SLICOT model reduction routines, which is the
main goal of Task II.C in the NICONET project.

Only a part of the necessary routines was imple-
mented in the standard parallel library ScaLA-
PACK, thus implementations for the rest of the
operations have been done. The main new rou-
tines are those in charge of the Schur factorisation
(PDGEES routine is not completed in ScaLA-
PACK, yet the major part of its required routines
are), the step of solving the reduced equation
(explained in (Guerrero et al., 2001)), and some
other routines needed in the transformations (e.g.
to compute the product of two matrices storing it
in one of them).

Once all the necessary routines were available,
the integration of calls among them has been
implemented. The result is a main routine (PD-
LPHM) which allows to solve standard Lyapunov
equations in parallel, both continuous and discrete
versions, both in transpose or non-transpose form.
This new routine and all the newly developed ones
follow the same syntax and calling convention of
ScaLAPACK, thus allowing any user of ScaLA-
PACK to work easily with them.

The parallel implementation has been tested with
some problems in order to see the performance

it can achieve. This performance has shown to
be rather good. Only a part of the algorithm
seems not to have good time results. This is
the part in charge of the Schur factorisation, in
particular the ScaLAPACK routine PDLAHQR.
However, it may be due to the complexity to
parallelise this operation, since the remainder of
used ScaLAPACK routines work well.

As a parallel routine to solve standard Lyapunov
equations is available, it is possible to deal with
the parallelisation of the main SLICOT routines
for the reduction of stable systems. This work is
now being performed by the authors.
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