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Abstract: This paper proposes an adaptive speed/position tracking control of an in-

duction motor subject to unknown load torque via strictly positive real (SPR) analy-

sis. The controller is developed under a special nonlinear coordinate transform such

that either speed or position control objective can be fulfilled. The underlying design

concepts are to endow the close-loop system while under lack of knowledge of some

key system parameters, such as the rotor resistance, motor inertia and motor damp-

ing coefficient. The proposed control scheme comes along with a thorough proof de-

rived based on Lyapunov stability theory. The experimental results are also given to

validate the effectiveness of the presented control scheme. Copyright © 2002 IFAC
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1. INTRODUCTION

The induction motor control is an important issue

in both motion control and servo control applications,

because the induction motor can operate in a

wide-range of both torque and speed. And, their effi-

ciency and robustness are useful features in industry.

The control schemes based on indirect FOC are much

more popular due to the advantages in applications

(Marino, et al., 1999; Tajima and Hori, 1993;

Espinosa, et al., 1998). In general applications, indi-

rect vector control of induction motor is widely ap-

plied, where the rotor flux is estimated rather than

being measured. This requires a priori knowledge of

the machine parameters, which makes the indirect

vector control scheme machine dependent. Given the

fact that parameters may change significantly with

temperature and there are some states that are not

easily acquired, design of appropriate observers be-

comes crucially important to the success of the con-

trol (Krishnan and Bharadwaj, 1990; Shin, et al.,

2000). Recently, the sensorless field oriented control

scheme gradually appears as a popular control

method for induction motor (Marino, et al., 1996; Lin

and Fu, 2000). On the other hand, the load torque

structure is also a very important knowledge for con-

troller design to achieve high performance control.

There have been many research results in the litera-

ture about the torque control of induction motor so

far (Lee and Fu, 2001; Lascu, et al., 2000; Ortega and

Espinosa, 1993).

Given the above observation, we propose a
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speed/position tracking control scheme based on the

indirect FOC with the strictly positive real (SPR)

property (Narendra and Annaswamy, 1989). More-

over, the proposed control scheme handles the prob-

lems with both uncertainties of rotor resistance and

load torque, respectively. The system parameters of

the induction motor, except its rotor resistance, and

mechanical parameters, are known as mentioned pre-

viously. For rigorousness, the developed control

scheme is thoroughly analyzed via Lyapunov stability

theory, and the asymptotic convergence property is

soundly proved. The experimental results are given to

validate the performances.

2. PRELIMINARIES

In this section, we will first review the mathemati-

cal description of the operational principle of an in-

duction motor in the following sections. Before we

continue the control of speed/position of the induc-

tion motors, we first make some basic assumptions as

shown below:

(A.1) The induction motor is assumed without satura-

tion, hysteresis, eddy currents, and spatial flux

harmonics.

(A.2) All the states are measurable except the rotor

flux. Parameters including rotor resistance,

rotor inertia, damping coefficient, and the

payload coefficient are assumed unknown.

Proposition 1. Under the assumptions (A.1), if the

input voltages in d-q frame of the voltage-fed induc-

tion motor are defined as

2 2

dr
qs

qr dr

cV V
λ

λ λ
=

+
and

2 2

qr
ds

qr dr

cV V
λ

λ λ
−

=
+

(1)

then the power transferred to the rotor of induction
motor is maximal subject to the constraint

2 2 2( ) ( / )qs dsV V V c+ = at any time (Lee and Fu, 2001;

Lee, et al., 2000a; Lee et al., 2000b).

Of course, V does not have to be a constant. In-

stead, it offers one D.O.F. (Degree of freedom) con-

trol to the system. For general mechanical systems,

the load torque is a function of the rotor speed ωr,

which normally has the form

2
0 1 2sgn( ) sgn( )

rL L r r r rT J b b bω ω ω ω ω= + + + ( )L r L rJ fω ω= + .

This assumption is more realistic than a constant load

torque. Therefore, the mechanical load in the form

aforementioned can be rearranged as T
L rT W= Θ

with the constant parameter vector Θ , and the

known function vector T
rW . In the sequel, we will

assume that Θ is unknown.

On the other hand, we would like to show that,

given a desired speed command
dω , there exists a

proper input signal V such that the steady state of the

system exactly achieves the purpose of speed track-

ing, i.e.,
r dω ω= , and the objective of maximal

power transfer (Proposition 1). To this end, we first

introduce a reasonable result 2 2
2 qr drx λ λ= + > 0, and

then further simplify the dynamics model of an in-

duction motor with Proposition 1, as shown in (Or-

tega and Espinosa, 1993; Lin and Fu, 2000):

4
1 1 1 2 3

2

2
2 2

hx
x a x a x V

x
= − + +

2 4 2 3 32 2x a x a x= − +

3 3 1 2 2 1 4 3 5 4( )x a x a x a a x px x= + − + +

4 5 3 1 4 4 2( )x px x a a x x V= − − + +

5 5 4 5( )LJx a x f x= − , (2)

where the parameters
1 2 3 4 5, , , , anda a a a a are defined

in the nomenclature.

3. OBSERVERS AND CONTROLLERS

To proceed with the controller design, we first in-

troduce the observers to estimate the unmeasurable

rotor flux, and the unknown rotor resistance.

3.1 Observer Design

Due to Assumption (A.2), we have to build an ob-

server and a parameter estimator to estimate the rotor



flux as well as the rotor resistance. There exist vari-

ous types of flux observers and parameter estimators

in the literature, which have been described in (Lin,

and Fu, 2000), which we omitted here.

3.2 Speed Tracking Controller

Before we introduce the design of the controller, in

order to avoid dealing with the discontinuous func-

tion sgn(x), we approximate it by the so-called sig-

moid function smod(x) defined below:

sgn( ) smod( )
x x

x x

e e
x x

e e

γ γ

γ γ

−

−

−≈ =
+

, (3)

where 1γ > determines the slope of the function.

By taking such approximation, we will be able to

differentiate the payload function ( )L rf ω for the

subsequent purpose of controller design. To proceed

with the design, we first write down the speed track-

ing error equation from (2) as:

5 5 4
TJe a x W= − Θ , (4)

where 5 5 de x ω= − ,
0 1 2[ ]TJ b b bΘ = , and

2
5 5 5 5[ smod( ) smod( ) ]T

dW x x x xω= . After differen-

tiating both sides of (4), we obtain the following:

5 5 1 4 4 5 3 5 5 2( ) TJe a a a x a px x a x V W= − + − + − Θ , (5)

which clearly relates the voltage input V to the

tracking error 5e , and lays down a ground for con-

structing an adaptive controller. However, there re-

main two difficulties before the controller design.

One is we need to establish a S.P.R. (strictly positive

real) transfer function from the parametric error term

to the tracking error 5e , and another is to decom-

pose the uncertainty terms into a product of unknown

parametric vector and known function vector. To

solve the above difficulties, we apply some algebraic

manipulation on both Equation (4) and (5) to obtain

5 1 5 2 5 5 1 4 4 5 3 5( ) [ ( ) ]J e e e a a a x a px xκ κ+ + = − + −

1 5 4 5 2a x a x Vκ+ + 2 5 1 ' 'T TJe W Wκ κ+ − Θ − Θ

1 1 1 5 2( ) Tg x W a x V= − Θ + ,

for some
1 2, 0κ κ > , where we redefine the un-

known parameter vector 'Θ as well as the known

function vector 'W in the uncertainty term TWΘ ,

i.e., T TW W′ ′Θ = Θ ,
1 1 2[ , ' , ]T T T Jκ κΘ = Θ Θ and

1 5[ , ', ]W W W e= − , and then design the input V as

1 1 1 1

5 2

1 ˆ[ ( ) ( )( )]TV g x L s
a x

= − + Θ Π , (6)

where
1 1( ) ( )L s s β= + , for some

1 0β > ,

1
1 1 1( )L s W−Π = , and

1Θ̂ is the estimate of
1Θ . It

then follows that the design (6) will yield

1
5 1 1 1 1 12

1 2

( )
( ) ( )( )

( )
T Ts

e M s
J s s

β
κ κ
+= Θ Π = Θ Π

+ +
,

where
1 1 1

ˆΘ = Θ − Θ , and the transfer function

1( )M s can be made S.P.R. by proper choice of

1 2,κ κ and
1β . It is thus clear from the literature of

Narendra and Annaswamy (1989) that if we choose

the parameter adaptive law as:

1 1 1 5 1
ˆ eΘ = Θ = −Γ Π , (7)

for some 1 0Γ > , then both
5e ,

1Θ̂ , and hence
5x

are bounded. But in fact we can show that the pro-

posed nonlinear adaptive S.P.R. speed controller

consisting of control law (6) and adaptation law (7)

will guarantee the boundedness of all signals in the

closed-loop, and yield convergence of tracking error

5e . Such fact is stated in the following theorem.

Theorem 1. Consider an induction motor whose dy-

namics are governed by system (2) with unknown

load torque under the Assumption (A1) and (A2).

Given a twice-differentiable smooth desired speed

trajectory
dω with ,d dω ω and

dω being all

bounded, then the stator voltage designed as Propo-

sition, where V is given by Equation (6) subject to

adaptive law (7), will guarantee boundedness of all

signals in the closed-loop and convergence of the

rotor speed tracking, i.e.,
r dω ω→ as t → ∞ .

Proof: The proof is a continuation of the former dis-

cussion. First, since the state
5x is bounded and the

mechanical subsystem is passive, the electrical

torque, which is state
4x , is also bounded; otherwise,



there will be a contradiction. Then, to show bound-

edness of the rest of states, we can use the technique

as in the previous section and discuss two cases. The

first case is trivial since if the stator currents are

bounded, then all the states are bounded (Lee and Fu,

2001). The second case is if the stator currents grow

unbounded, then
2x will grow unbounded as well

due to
2x and 2

si grow at the same rate. On the

other hand, we can rearrange the dynamical equa-

tions from system (2) as shown below:
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where A can be shown to be Hurwitz. After review-

ing definitions of x3 and V, respectively, we found

that the first entry of u will be bounded because x2

grows no slower than x3 if x3 does grow unbounded

(due to the 2nd equation of (2)). Hence, u is appar-

ently bounded, and hence X will be bounded. But this

fact leads to contradiction to the hypothesis in the

second case. This then proves the boundedness of all

the states. For convergence of tracking error e5, we

note that
5e is bounded, and thus

5 0e → as t → ∞

from Barbalat’s Lemma. Q.E.D.

After the design of the proposed speed controller, we

then expand it to the position controller as follows.

3.3 Position Tracking Controller

In order to design the position tracking controller,

we augment the system (2) with additional previous

defined Equation (8) as shown below:

6 5x x= , (8)

where
6 rx θ= indicates the rotor position of the

induction motor with an assumption as follows:

(A.3) The desired position command 3
d Cθ ∈ is

three-time differentiable smooth function with

, , ,d d dθ θ θ and
dθ being all bounded.

To proceed with the design, we first define the joint

tracking error 5 3 6e eε κ= + and then write down

the associated differential equation from (2) and (8)

as:

5 3 6 5 4 3 5
TJ Je Je a x W Jeε κ κ= + = − Θ + , (9)

for κ3 > 0,where e5 = x5 − ωd, e6 = x6 − θd, and

0 1 2[ ]TJ b b bΘ = , 2
5 5 5 5[ smod( ) smod( ) ]T

dW x x x xω=

as defined previously. After differentiating both sides

of (9), we obtain the following:

5 1 4 4 5 3 5 5 2( )J a a a x a px x a x Vε = − + − + ,

3 4 4 3
T TW Ja x J Wκ κ− Θ + − Θ (10)

We first apply some algebraic manipulation on both

(8) and (10) to obtain

2 3 4 3 4 3 4 5[ ' , ( ) , , , ]T T TJ J a J Jκ κ κ κ κ κΘ = Θ + Θ ,

2 4 5[ , ', , , ]W W W x e ε= − ,

and then design the input V as

2 2 2 2

5 2

1 ˆ[ ( ) ( ) ( )]TV g x L s
a x

= − + Θ Π , (11)

for some 4 5, 0κ κ > ,
2 0β > , 1

2 2 2( )L s W−Π = , and

2Θ̂ is the estimate of
2Θ . Similar to the previous

subsection the transfer function
2( )M s can be made

SPR by proper choice of
4 5,κ κ and

2β . If we

choose the parameter adaptive law as:

2 2 2 2
ˆ εΘ = Θ = −Γ Π , (12)

for some
2 0Γ > , then both ε ,

2Θ̂ , and hence

5 6,x x are bounded. The following theorem con-

cluded.

Theorem 2. Consider the induction motor system (2)

and the Equation (8) under the Assumption (A1), (A2),

and (A3). The stator voltage designs similar to the

one suggested in Theorem 1, where V is given by

Equation (11) subject to the adaptive law (12). Then,

boundedness of all signals in the closed-loop and

convergence of the position tracking error, i.e.,

r dθ θ→ as t → ∞ , can both be guaranteed.

Proof: The proof follows that of Theorem 1, but note

that it is ε , rather than 5e , which is bounded and

converges to zero. However, boundedness and con-



vergence of ε readily leads to boundedness of 5e

and convergence of 6e . The rest of proof will be the

same. Q.E.D.

4. EXPERIMENTAL RESULTS

To validate the performances of the proposed

controller, we hold a series experiments. Whose pa-

rameters are listed as follows: Rs = 0.83Ω, Rrn =

0.53Ω, Ls = 0.08601(H), Lr = 0.08601(H), Lm =

0.08259(H), 4 poles, rated current 8.6 A, 220 V, 60

Hz, AC. mJ and mB are assumed unknown. The

mechanical load torque is TL = JL rω +
2

1 2sgn( ) sgn( )
r

o r r rb b bω ω ω ω+ + . In the experiment,

there is no load applied on the induction motor. The

gains are 1 2 1 2 3 4 5[ , , , , , , ]β β κ κ κ κ κ = [50, 80,

300, 50, 10, 500, 80], in the nonlinear adaptive SPR

speed/position controller, and all the adaptation gains

1~2Γ are set to unity of the controller design. Ac-

company with 1 2 1 2 0.003d d q qk k k k= = = = , and

0 0.01, 200Rk k= = of the observers’ gains. The

experimental results of both speed and position

tracking are demonstrated in the following cases:

Case 1. The speed command is a sort of step-type

command to validate the proposed controller. Figure

1 shows the boundeness of estimated parameters and

also the performances of the proposed controller with

a benchmark speed command. The estimated values

of the unknown parameters are truly bounded. And,

the errors of both speed tracking and the deviation of

rotor resistance are rapidly converged. The control

objective is achieved even with the crucial condition.

Case 2. The position tracking controller is operated

in a critical situation of ramp-type commands. Figure

2 shows the satisfactory performances of the position

tracking.

All the experiments are conducted without the in-

formation of the deviation of rotor resistance, the

motor inertia and the damping coefficient of the in-

duction motor. And, the parameters of load torque are

unknown, either.

5. CONCLUSION

There are some concluding remarks summarized as

below: The proposed control scheme is developed

based on a novel dynamical model of induction motor.

The proposed speed/position tracking controller of

induction motor, which copes with unknown motor

parameters (Jm and Bm), the uncertainty of rotor re-

sistance, and unknown load torque TL, is a

Lyapunov-based design. Although the speed/position

command is assumed being a twice/(three-times)

differentiable trajectory, but the step type command

can be directly applied to the proposed controller

with satisfactory performances, i.e., the assumption

can be relaxed in reality.
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Fig 1. Experimental results of a step-type speed

tracking.

Fig. 2. Experimental results of position tracking

(ramp-type).

NOMENCLATURE

2( )s r mD L L L= − /mL Dβ =

2 /m sa L R D= 3 /m ra L R D=

4 /s ra L R D= 5 /r ta L K D=

mr LDLL /0 = msr LRLL /2
1 =

3 / 2t m rK pL L= 1 /r sa L R D=


