
A REAL-TIME CONTROL SYSTEM FOR

INDUSTRIAL ROBOTS AND CONTROL

APPLICATIONS BASED ON REAL-TIME LINUX

Alessandro Macchelli ∗ Claudio Melchiorri ∗

∗ DEIS, University of Bologna,

Via Risorgimento 2, 40136 Bologna, Italy

email: {amacchelli, cmelchiorri}@deis.unibo.it

Abstract: Rapid prototyping is a well recognized need in the design and development
phases of advanced systems for automation. In particular, this concept is also impor-
tant for the design and experimentation of control algorithms and new mechanical
prototypes in advanced robotics. Moreover, flexibility, short development times and
contained economical costs are other important features considered in developing new
industrial applications and, of course, new robotic and control system experimental
set-ups. Recently, the growth in performances of low-cost PC-based architectures
and the diffusion of free-distributed software packages has given the possibility of
developing rapid prototyping tools taking into account all these needs. In this work,
we present the real-time control system of an industrial manipulator, the Comau
SMART 3-S, developed under RTAI-Linux, a real-time variant of Linux. The main
goal was to build a flexible and highly configurable robotic setup to quickly test new
control algorithms and to easily (and safely) use the robot in different manipulation
tasks.

Keywords: real-time operating systems, industrial robots, robot programming

1. INTRODUCTION

In a sense, the advent of real-time variants of
the popular desktop operating system Linux could
be considered a sort of milestone for the devel-
opment process of real-time applications. As a
matter of fact, this kind of systems provide no-
ticeable performances that, together with avail-
ability of the source codes, powerful develop-
ment tools and, generally speaking, detailed doc-
umentation, could be the starting point for set-
ting up new standards for advanced development
environments. These operating systems are dis-
tributed under the GNU Public License, so they
are freely available and configurable to meet the
desired requirements. According to this model, the
RT-Linux (Barbanov, 1997), (RT-Linux web site,
2001), and RTAI-Linux (Bianchi et al., 1999),
(RTAI-Linux web site, 2001) projects took place,

both with the aim of giving Linux the possibility
to implement hard real-time applications.

In this paper, the real-time control system of an
industrial robot (a Comau SMART 3-S) under
RTAI-Linux is described, as well as the creation
of a flexible experimental set-up for using the
robot in different tasks and with different tools
(in particular a vision system and an advanced
gripper). This project is still under development
at the Laboratory of Automation and Robotics
(LAR) of the University of Bologna.

2. THE EXPERIMENTAL SET-UP

The main component of the experimental set-up
is a Comau SMART 3-S robot. This is a standard
industrial 6 degrees of freedom anthropomorphic

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



C3G−9000
Controller

Comau
SMART 3−S

Vision System

A.S.I. Gripper

RTAI−Linux
System

High−speed
link

Frame−grabber

Vision Soft.

Vision sub−system

TCP/IP link
over Internet

(client/server appl.)

A.S.I. Gripper
Sub−system

D
S

P Gripper
Software TCP/IP link

over Internet

USER
(keyboard, mouse, joystick)

ROBOT

Fig. 1. The experimental set-up: a general overview.

manipulator with a non-spherical wrist. Each joint
is actuated by a DC-brushless motor, and its
angular position is measured by a resolver.

The robot is equipped with the standard con-
troller C3G-9000. Basically, this controller is com-
posed of three parts: a user interface, a control
unit, and a driver unit. The control unit consists
of a Motorola VME bus rack with two boards. The
first board (SCC) is equipped with a DSP and
carries out all the control tasks (trajectory plan-
ning, direct and inverse kinematics, etc.), while
the second board (RBC) is responsible for the
man-machine interface and for interpreting PLD2
user’s programs. A shared memory area is avail-
able on this board: this is a memory area accessi-
ble from each board connected to the VME bus.

In the experimental set-up available at LAR, the
C3G-9000 controller is open, that is the VME bus
is connected with an ISA-PC bus via a pair of
Bit3 boards, one inside the controller and the
other inside a PC, running under RTAI-Linux,
that implements the real-time control algorithms.
The two boards are connected with a high-speed
cable. A data exchange between PC and controller
is possible via the shared memory area on the RBC
board inside the controller and synchronization
can be achieved by an interrupt signal generated
by the controller itself. In this configuration, po-
sition and velocity loops managed by the C3G-
9000 are opened, and all the safety protections
are disabled. As a matter of fact, the controller
is only used as an interface between the resolvers
and drives on the robot and the PC. Therefore, in
each sampling period the real-time control system
running on the PC must acquire the data from the
encoders, compute the new control input for the
actuators and send their values to the C3G-9000.

On the robot wrist, besides a standard force/torque
sensor acquired by the RTAI-Linux PC, a vi-
sion system and the A.S.I. Gripper (Biagiotti et

al., 2000), (ASI-Gripper web site, 2001) are in-
stalled. The vision system is used to provide vi-
sual information about the environment and, in
particular, about objects within the workspace of
the robot. These information are needed when we
decide to track a moving object in the workspace
with the robot, or to move the robot in a de-
sired position in order to grasp an object with
the gripper. At the moment, the vision system is
connected to a frame-grabber board installed in
another PC, and the information exchange with
the robot control system occurs by the Internet
via TCP/IP. The vision software runs under a non
real-time Linux system, so it will not be discussed
in detail in the following sections.

The A.S.I. Gripper has three degrees of freedom,
and is particularly suited for no-gravity manip-
ulation tasks in space applications, since it can
interact with free-floating and irregularly shaped
objects. Its control algorithms are executed on
a custom DSP board (based on the TMS320C32
chip) that is installed, at the moment, in a third
PC. For this board, a loader and a DSP-monitor
have been developed under Linux, together with
some drivers for the DSP board. By now, we are
still developing the information exchange mech-
anisms between the robot/vision system and the
gripper: the idea is to use the visual information
and all the data that the sensory equipment on
the gripper provides in order to move the robot
in ‘optimal’ configuration for grasping objects or
tracking moving targets. At the moment, the vi-
sual information can be used only to place the
gripper in a position of the robot’s workspace so
that the object framed by the vision system can



Control

Security

Communication

SMART 3S
Comau

Security configuration

Vision Subs. Client

RTMon

Mouse Interface

Virtual Teach−Pendant

Kernel space User space

FIFOs

Fig. 2. The real-time module: organization and user-space communication channels.

be grasped. Fig. 1 gives a general overview of the
set-up.

3. REAL-TIME CONTROL OF THE ROBOT

The software developed for the control of the
Comau SMART 3-S is divided into two distinct
modules: a real-time module (see Sec. 3.1), which
executes the control algorithms and communi-
cates directly with the plant (robot), and a non
real-time application (see Sec. 3.2) that provides
a user interface for the real-time module. Clearly,
some communication mechanisms exist to provide
an information exchange between the two parts.
Moreover, the real-time module is periodically ac-
tivated by an external interrupt signal generated
by the C3G-9000 controller.

The adopted real-time Linux variant is RTAI,
already successfully used in other robotic appli-
cations developed in the past at LAR, (Arduini
et al., 2001; Macchelli et al., 2000). A notice-
able experimental activity has been carried out
in this context, also comparing the performances
of control system based on RTAI-Linux with
other commercially available OS, such as QNX,
(Melucci, 2000).

3.1 The real-time module

The starting point in the development of the real-
time control module for the SMART 3-S robot
was to create a modular and flexible structure in
order to have the possibility of a quick testing of
new control algorithms and fast implementation of
new robot applications. The code is divided into
three main sub-modules, providing:

• communication with robot SMART 3-S;
• security tests;

• implementation of the robot control algo-
rithms.

The communication module is used for reading
and writing data on the shared memory area
in the C3G-9000 controller. In particular, this
module reads the six joint positions and writes six
current set-points for the DC drives. Moreover, it
implements the drive on/off function. This is the
only module that gets access to the shared area
on the RBC board in the controller. In presence
of an externally generated interrupt (in this case,
the synchronization interrupt is originated by the
robot controller), RTAI does not automatically
save the FPU contest before a task switching, so it
is this module that have to provide this function.

The security module implements software range
delimiters (saturation). Two kinds of range delim-
iters have been implemented: absolute and rela-
tive. The relative saturation is really useful when
we want to check the stability around a certain
configuration of a control algorithm without any
risk. Moreover, the security module limits the
joint speeds, checks if some of the joints is blocked
or if the current set points are too high. In par-
ticular, the last two tests are needed to prevent
drives damages. If the first three tests are not
passed, then the robot is stopped; as regard the
last one, we only execute a software saturation to
the maximum allowed current value.

The control module implements the control al-
gorithms and, in particular it is responsible for
trajectory planning, both in joint and Cartesian
space, and for robot regulation. The sub-module
that implements the regulation algorithms may
change according to the control scheme under
development. e.g. decentralized control, multi-
variable centralized control, and so on.
As far as the trajectory planning in concerned,
since in most of the application (e.g. with the



(a) Virtual Teach-Pendant. (b) Mouse-Interface.

Fig. 3. Two screen-shots of user interface applications.

vision system) the desired trajectory is not known
before the execution of a task, we have im-
plemented a trajectory generator using a non-
linear filter with constraints on maximum speed
and acceleration (Melchiorri, 2000; Zanasi and
Morselli, 2001).

All these real-time functions are compiled in a
kernel module and dynamically linked to the real-
time kernel of the operating system. Since the user
needs to interact with the robot, some commu-
nication channels between kernel space and user

space are needed.
Each module can exchange data with the user
space applications by its own channels. Since in
all the situations the amount of data that we
send from/to the kernel module is not relevant, we
decided to implement all the communication chan-
nels using FIFOs. This solution provides robust-
ness and a built-in coordination/synchronization
mechanism between sender and receiver.

From the user space it is possible to send the drive
on/off command to the communication module of
the real time process, and it is possible to change
in run-time some parameters in the security mod-
ule (this is a function that must be disabled
when testing new control schemes). Concerning
the control module, it can receive commands from
user space applications and send back to them
information about internal variables of the robot
(e.g. joint positions and drive currents). In this
manner, it is possible to move the robot with
a keyboard, a mouse or a joystick , to interface
it with other applications for state-tracing or for
movements under vision system control.

Fig. 2 gives a general overview of the real-time
module and of the communication channels with
user space applications.

3.2 The user-space applications

The user-space software can be divided into two
main categories: i) user-to-robot and application-

to-robot interface applications, ii) robot-state-
monitoring applications.

With user-to-robot we intend any application that
will help the user to move the robot. The Virtual
Teach-Pendant and the Mouse-Interface belong to
this category: with them the user can easily move
the robot in joint and Cartesian space. In the
last case the reference frame can be chosen either
on the base of the robot or on the end-effector.
Moreover, an interface with a joystick is provided.
In Fig. 3 two screen-shots of the user interface
applications are shown.

With application-to-robot interface we intend an
application that provides a basic interface for
a stand alone software that needs to communi-
cate with the real-time module and, clearly, with
the robot itself. For example, by means of this
interface the vision system can send commands
to the Comau SMART 3-S in order to follow a
user-selected object in the workspace. Since the
TCP/IP protocol is used to connect robot and
vision system, a simple client/server application
has been developed: the client application runs
on the RTAI-Linux system and the server on the
Linux PC that manages the vision tasks.

In control applications, it is important to be able
to check the state of the plant and the behav-



(a) RTMon: the main window. (b) RTMon: the main configuration window.

Fig. 4. RTMon: two screen-shots.

ior of the controller: every application needs a
proper monitoring software that should be easily
configurable and with a user-friendly interface.
Following these criteria, we have equipped our
system with a specific monitoring application: the
RTMon.
Using the FIFO channels between user and kernel
space, RTMon can display and continuously plot
the state of the internal variables of the robot
(angular joint position, working space position,
set-points, drive currents, etc.) and save the de-
sired data in Matlab compliant format. In fig. 4
two screen-shots of the RTMon application are
reported.

4. COMAU SMART 3-S WITH CAMERA AND
GRIPPER

As already mentioned in Sec. 1, the vision al-
gorithms are implemented under another Linux-
based system, connected via Internet with the
real-time system that directly controls the robot.
The communication protocol between the two sys-
tems consists in a set of commands that the vision
system sends to the robot, in order to execute
specific tasks/movements. In Fig. 5, the Comau
SMART 3-S with both the camera system and
the A.S.I. Gripper mounted on wrist is shown.

A typical task for of this system is to take an
object selected by the user within the robot’s
work-space by using the gripper mounted on its
wrist. The procedure can be divided into five main
steps.

(1) The user moves the robot using the keyboard,
mouse or joystick until the vision system
frames the object to be grasped;

(2) The vision system automatically moves the
robot in order to align the end-effector (i.e.
the gripper) with the object. The vision al-
gorithms can deal even with slowly moving
objects: it is the network delay that mainly
reduces the tracking performances.

(3) Since an estimation of the actual distance
between object and end-effector is needed
and the vision system is not stereo, the robot
is moved along the camera-object direction
in order to take two pictures of the object
and then calculate the unknown distance.

(4) Using the distance information, the robot is
moved in order to reach a given distance from
the object.

(5) Finally, the right position for the grasp of
the object is achieved; at the moment this
step is executed simply moving the robot of
a fixed distance: we are working on the use of
the informations provided by the proximity
sensors of the gripper (Biagiotti et al., 2000)
in order to obtain a better positioning of the
gripper itself.

The robot’s movements in step 2 and 4 are man-
aged by the vision system sending roll-pitch-yaw

and normal-slide-approach commands to the ma-
nipulator in order to reach the object aligned
with the camera. As regard steps 3 and 5, at the
moment these movements are pre-calculated.

These operations are executed safely and further
modifications of the control systems, as well as
the development of new tasks, can be easily ac-
complished with this control architecture.



(a) (b)

Fig. 5. The robot Comau SMART 3-S with the camera system and the A.S.I. Gripper both mounted on
wrist.

5. CONCLUSIONS AND FUTURE WORK

In the present work, we have briefly described
the main components of our robotic and control
system research experimental set-up, i.e. the in-
dustrial manipulator Comau SMART 3-S, its real-
time control system, the vision subsystem and
how we have assembled these two sub-systems
for real-time operations using standard network
facilities provided by the Linux operating system.

Our future work will be aimed at improving per-
formances of the current system in particular with
a better integration between robot-vision system
and the A.S.I. Gripper.
Other activities will be devoted to further study
the real-time performances of RT-Linux, to com-
pare it to commercial products, and to develop
applications for high-dynamic motion-control sys-
tems.

Acknowledgments. This work has been sup-
ported by MISTRAL, a PRIN’00 project funded
by MIUR. The authors wish to thank D. Pescoller
for the implementation of the Comau SMART 3-S
control software and J. Aguilera for the implemen-
tation of the vision algorithms.

6. REFERENCES

Arduini, D., P. Arcara and C. Melchiorri (2001).
An experimental set-up for robotics and con-
trol systems research using real-time linux
and comau smart 3-s robot. Milan, Italy.

Barbanov, M. (1997). A Linux-based Real-Time

Operative System. New Mexico Institute of
Mining and Technology. Socorro, USA.

Biagiotti, L., C. Melchiorri and G. Vassura (2000).
Control of a robotic gripper for grasping

objects in no-gravity conditions. ICRA’01,
IEEE Int. Conf. on Robotics and Automa-
tion, Seoul, Corea.

Bianchi, E., L. Dozio, P. Mantegazza and D. Mar-
tini (1999). Applications of a new variant of
rt-linux in digital control of dynamic systems.
Dipartimento di Ingegneria Aerospaziale, Po-

litecnico di Milano.
Macchelli, A., C. Melchiorri and D. Arduini

(2000). Real-time linux control of a haptic
interface for visually impaired persons. IFAC
Symposium on Robot Control – SYROCO’00,
Vienna, Austria.

ASI-Gripper web site (2001).
http://www-lar.deis.unibo.it/activities/asi/.

RT-Linux web site (2001).
http://www.rtlinux.org/.

RTAI-Linux web site (2001).
http://www.rtai.org/.

Melchiorri, C. (2000). Traiettorie per azionamenti

elettrici. Esculapio Ed.. Bologna, Italy.
Melucci, P. (2000). Confronto di applicazioni di

controllo in tempo reale sviluppate in RTAI-

Linux e QNX. Laurea Thesis (in italian),
DEIS. Univ. of Bologna, Italy.

Zanasi, R. and R. Morselli (2001). Second order
smooth trajectory generator with nonlinear
constraints. European Control Conference –
ECC’01, Oporto, Portugal.


