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Abstract: This paper considers modeling and control problems of the non-stationary 
nonlinear processes whose dynamics depends on the working point. A hybrid 
RBF-ARX model-based predictive control (MPC) strategy without resorting to 
on-line parameter estimation for this kind of processes is presented. The RBF-ARX 
model is composed of the RBF networks and a rather general form of ARX model, 
which is identified off-line, and whose local linearization may be easily obtained. A 
quickly-convergent estimation method is applied to optimize the RBF-ARX model 
parameters. The modeling validity and the MPC performance is illustrated by an 
application to Nitrogen Oxide (NOx) decomposition process in thermal power plants. 
Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Many nonlinear MPC methods and applications have 
been reported, in which some control schemes (see e. 
g. Mahfouf and Linkens 1998) are based on the direct 
use of nonlinear models, but resulted in on-line 
solving a higher order nonlinear optimization problem, 
which is computationally expensive and may get 
stuck in a local minimum. Some methods (see e. g. 
Prasad et al. 1998) used the piecewise linearization 
technique to describe the nonlinear behavior of a 
system, so the model was linearized at each sampling 
interval, which resulted in the solution of a (or a set 
of) quadratic programming problem at each such 
interval, as in the case of linear MPC. However, the 
estimation of many linear models to be valid only in 
each small region is not easy in practice. Ayala Botto 
et al. (1999) proposed an affine neural network based 

MPC method, in which input-output feedback 
linearization of the affine nonlinear model was carried 
out first, and then it used an iterative algorithm to 
cope with the nonlinear input constraint problem. In 
that method, at each sampling interval the quadratic 
programming routines needed to be used iteratively 
for satisfying some conditions. Liu et al. (1998) used 
a set of neural network based affine nonlinear 
predictors to design nonlinear MPC, for which the use 
of nonlinear programming approach was avoided, but 
the weights of all neural network predictors had to be 
estimated on-line.  
 
However, the success of MPC is highly dependent on 
a reliable system model. It is very meaningful work to 
look for a model which can effectively describe the 
nonlinear behavior of a system, and may be also 
easily used to design MPC algorithm. In fact, a large 
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number of nonlinear processes may be regarded as 
this kind of systems whose working point changes 
with time and it can be locally linearized at fixed 
working point. Lakhdari et al. (1995) proposed a 
MPC scheme for the nonlinear system whose 
dynamics depends on working point. It used a 
quasi-linear autoregressive model as internal model of 
the MPC. The model coefficients were sets of integral 
rational function with respect to a state variable of 
describing the working point state, and all the 
functional coefficients were estimated on-line. At 
each sampling interval the model was similar to a 
linear autoregressive model, so the quadratic 
programming routines could be directly used. 
However, it still has the problem caused by model 
parameters on-line estimation.  
 
To avoid on-line estimating the time-varying 
parameters of internal model or predictor in nonlinear 
MPC, in this paper, a hybrid RBF-ARX model based 
on Gaussian radial basis function networks and ARX 
model is proposed to implement MPC for the 
non-stationary nonlinear process with working point 
dependent dynamics. All the model parameters are 
estimated off-line by using a quickly-convergent 
structured nonlinear parameter optimization algorithm 
(Peng et al. 2001). The instant form of the RBF-ARX 
model at any working point may be regarded as a 
linear ARX model; therefore the quadratic 
programming routines can be used to solve the 
optimal control at each sampling interval. The 
nonlinear MPC design proposed is illustrated with an 
application to a Nitrogen Oxide (NOx) decomposition 
(de-NOx) process in thermal power plants. 
 
 

2. RBF-ARX MODEL 
 
2.1 Structure of the RBF-ARX model 
 
Consider the non-stationary nonlinear SISO process 
with working point dependent dynamics, which may 
be described by a NARX model as follows 
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where ( )y t  is the output, ( )u t  is the input, ( )v t  
is the measurable disturbance, and ( )tξ  is the 
modeling error generally assumed as a white noise. 
The state ( 1)t −X  dependent AR model below is 
considered as a general description to model (1) 
(Priestly 1980): 
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The basic idea of model (3) is to implement the local 
linearization of the general nonlinear model (1) by 
introducing the locally linear AR model whose 

coefficients are expressed by some functions of the 
state ( 1)t −X . 
 
Let ( )w t  be the process variable making the 
system’s working point change with time, which have 
some direct or indirect relations with the input or 
output of the process; for instance, in nonlinear 
thermal power plants, ( )w t  is the load demand of 
the plants. Based on the basic structure of the 
state-dependent ARX model (3), considering the 
feature of the system to be controlled, and introducing 
the defined variable ( )w t  (which governs system’s 
working point) dependent Gaussian radial basis 
function (RBF) networks to construct the coefficients 
of a state-dependent ARX model, the RBF-ARX 
model can be derived as follows 
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where ,  ,  , ,y u vn n n m and wn  are the orders; 

( 1,2, , )j
k k m=Z  are the centers of RBF networks; 
( 1, 2, , )k k mλ = are the scaling parameters; 

, ( 1,2, ,  ;  , , ;  0,1,2, , )j
i k jc i n j y u v k m= = =  and 
0 ( 0,1, 2, , )kc k m=  are the scalar weighting 

coefficients; and 
2
i  denotes the vector 2-norm. 

 
The RBF-ARX model (4) is a rather general form of 
working-point dependent ARX style-model by adding 
a local mean (offset term) 0 ( ( 1))tφ −W , which is 
necessary to describe a non-stationary process by a 
global model to be identified off-line. It is clear that 
the local linearization of the model is a linear ARX 
model at any working point by fixing ( 1)t −W  in 
(4). It has a natural and appealing interpretation as a 
locally linear ARX model in which the evolution of 
the process at time ( 1)t −  is governed by a set of AR 

coefficients { }, , , ,  , y i u i v iφ φ φ , and a local mean 0φ , 
all of which depend on the ‘working point’ of the 
process at time ( 1)t − . Using the working point 
dependent functional-coefficients, especially due to 
the satisfactory properties of RBF networks in 
function approximation and in learning local 
variations, makes the RBF-ARX model may 
effectively represent the behavior of the system at 



 

 

each working point. The RBF-ARX model has the 
advantages of the state-dependent ARX model in 
nonlinear dynamics description and the RBF 
networks in function approximation. In general, it 
does not require too many RBF centers compared 
with a single RBF network model, because the 
complexity of the model is dispersed into the lags of 
the autoregressive parts of the model.  
 
In this paper, the RBF-ARX model is used as the 
internal model of the predictive controller proposed in 
Section 4. In order to avoid some potential problems 
caused by on-line parameters estimation, such as 
parameter divergence and too large computing burden 
etc., all the parameters of the RBF-ARX model are 
identified by off-line procedure. For the nonlinear 
process with working point dependent dynamics, the 
RBF-ARX model to be identified off-line may exhibit 
satisfactory fitting precision due to its capability of 
globally representing the nonlinear dynamics.  
 
2.2 Identification of the RBF-ARX model 
 
Identification of RBF-ARX model (4) includes the 
order selection and the estimation of all parameters. 
The orders ( ,  ,  , ,  and y u v xn n n m n ) can be selected by 
comparing the AIC (Akaike Information Criterion) 
(Akaike 1974) values under different orders and the 
model dynamics. First we must have a good 
parameter estimation method, and then we repeat the 
method for the models under different orders to select 
final model. Here main concern is focused on the 
parameter estimation, which is an off-line nonlinear 
parameter optimization problem. In general cases, the 
number of the linear weights is larger than that of the 
nonlinear centers and scaling parameters in a 
RBF-ARX model, so applying some classic methods 
to estimate all parameters simultaneously regardless 
of the feature of them, such as Gauss-Newton method 
(GNM) and Lenvenburg-Marquardt method (LMM) 
etc., may spend many computational time and may 
not obtain a satisfactory result.  
 
In this paper, the structured nonlinear parameter 
optimization method (SNPOM) (Peng et al. 2001) is 
used to estimate the RBF-ARX model. This is a 
hybrid method composed of the LMM for nonlinear 
parameter estimation and the Least Squares method 
(LSM) for linear parameter estimation, but it is not a 
Variable Rotation method (VRM) (i.e. rotationally fix 
partial variables to optimize other variables). 
Therefore the SNPOM could largely accelerate the 
computational convergence of parameter optimization 
search process, especially for the RBF-ARX model 
with more linear weights and less nonlinear 
parameters.  
 
 
3. PREDICTIVE CONTROL BASED ON RBF-ARX 

MODEL 
 
3.1 Multi-step-ahead predictor 

Rewrite the RBF-ARX model (4) as 
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where 1−q  is the unit delay operator. Assume that the 
noise sequence { }( )  tξ ∈ℜ  in (5) satisfy 
 

{ } { }T
1( ) | 0   ,    ( ) ( )    tE t F E t t− = = Ωξ ξ ξ  

 
here tF  denotes the σ -algebra generated by the 
data up to and including time t , and Ω  is a positive 
definite matrix.  
 
Theorem 1:  Consider the system described by the 
RBF-ARX model (5). Assume 
{ }( 1) | 1,2, ,u t j j N+ − =  to be tF -measurable, 
then based on the model (5) at time t , which is 
obtained by fixing the model parameters at instant t , 
the ( 1,2, , )j j N=  step ahead optimal predictive 
output is 
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where the polynomials ' 1 1 ' 1

, , ,( ),  ( ),  ( )t j t j t jE q F q G q− − − , 

and 1
, ( )t jH q−  are the solutions of two Diophantine 

equations below 
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Proof: After fixing all the coefficients of the 



 

 

polynomials 1( )tA q− , 1( )tB q− , 1( )tD q−  , and the 
local mean (offset term) 0,ta  at instant t , model (5) 
at time t  is a locally linearized ARX model with 
constant term. If taking instant t  as a starting-point, 
based on model (5) to compute the multi-step-ahead 
prediction of the output, yields 
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at t j+  step: 
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Introducing the unit function below 
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then the prediction function (10) can be rewritten as 
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It is an autoregressive representation. Multiply (8) by 

( | )y t j t+  and introduce (7), (9) and (12) into the 
resulting expression. Noting that 

' 1 '
, ,( )1( ) (1)t j t jE q j E− = , this yields 
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If one requires { }( 1) | 1,2, ,u t j j N+ − =  to be 

tF -measurable, then equation (13) implies equation 
(6).                                       □ 
 
Remark 1: The RBF-ARX model-based multi- 
step-ahead predictor (6) is different to general linear 
ARX model-based predictor (Clarke et al. 1987), 
because it considered the effect of local mean of the 
model. For a global model of describing a 
non-stationary nonlinear process, the offset term is 
necessary to the model, so the predictor (6) may be 
considered a more general version of 
multi-step-ahead predictor based on a locally 
linearized ARX model.  
 
Remark 2: The method of solving Diophantine 
equations (8-9) is similar to that presented by Clarke 
et al. (1987), and hence it is omitted here. In actual 

application one has to replace  ( 1) ( 2)v t j j+ − ≥  
by ( )v t  in formula (7), because the future values of 
disturbance can not be gotten. 
 
3.2 The RBF-ARX model based predictive control 

strategy 
 
Using vector and matrix version to represent the 
strategy, first define 
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where N  is the prediction horizon, whereas uN  is 
the control horizon after which control is assumed to 
have no change, i.e. ( ) ( 1) ( )u uu t j u t N j N+ = + − ≥ , 
and  ( )r tY  is the desired set-output sequence. From 
formula (6), yields 
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Consider the following optimization problem: 
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here 1{ , , }

uNdiag r r=R is the weighting matrix. 
Introduce (14) into (15), after removing the constant 
terms, the quadratic form of the above optimization 
problem could be obtained as 
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The on-line optimization problem (16) may be solved 
by the quadratic programming routines. In the solved 
optimal control, just first component ( )u t  is used as 
control input. Note that this RBF-ARX model based 
predictive controller does not require on-line 
parameter estimation, because its internal model is a 



 

 

global off-line estimated model.  
 
 

4. CASE STUDY 
 
Fig.1 shows the structure diagram of a Nitrogen 
Oxide (NOx) decomposition (de-NOx) process in 
thermal power plants, which is used as a system to be 
controlled for illustrating the modeling and control 
method proposed in this paper. This process is 
nonlinear non-stationary, which has the dynamics 
changing with load demand of power plants 
(Matsumura et al. 1997). In fact, the working point of 
the process is dependent of the load, so it is also a 
kind of nonlinear system with working-point 
dependent dynamics. In Fig.1, the gain-scheduling 
PI-feedback and feedforward controllers are a set of 
conventional controllers already existing in the 
system, and the predictive controller to be added is 
used to improve control performance. The purpose of 
the de-NOx process control is to reduce the NOx 
concentration in exhaust gas in order to protect 
environments, for which the most commonly used 
technology is the selective catalytic reduction method, 
which is to use ammonia (NH3) to decompose NOx. 
The demand is to control the NOx ( )y t  within the 
environment regulation value and reduce the 
expensive ammonia (NH3) gas consumption as much 
as possible. The conventional PI controller is hard to 
achieve a good trade-off between control performance 
and ammonia consumption. 
 
In this paper, we present a predictive control design 
for the process, in which the RBF-ARX model based 
predictive controller (RBF-ARX-MPC) works with 
the existing gain-scheduling PI controller in parallel 
as shown in Fig. 1. This may allow one to use the real 
input/output data of the process governed by only the 
PI controller to off-line identify the RBF-ARX model 
describing the behavior of the process. Therefore this 
could make the RBF-ARX-MPC easily implement in 
practice. The RBF-ARX model used in the MPC is 
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= + − + −
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in which the front 1τ −  terms of coefficients of tB  
are zeros in the time-delay τ , and the RBF-style 
polynomials in (17) are similar to that in (6). For 
off-line training the model, a set of real data partially 
showed in Fig. 2 under only the PI control are used to 
identify RBF-ARX model (17) by applying the 
SNPOM (Peng et al. 2001). In the training data the 
varying region of the load ( )x t  is wildest in all the 
measured data-set, thus the training data should 
include the richest process messages.  
 
The one-step predictions of the estimated model (17) 
in two cases are shown in Fig. 2-3, in which the 
model order and some parameters are 4yn = , 

11un = , 
1

6dn = , 1m = , 2xn = , and 
6τ = (sampling time is 20sec.). Fig. 2 and Fig. 3 

illustrate the estimated RBF-ARX model used as a 
global dynamic model of describing the 
non-stationary nonlinear process has satisfactory 
fitting accuracy. 
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Fig. 1. The de-NOx device and the control system. 
 

 
Fig. 2. The residuals and its histogram of the 
RBF-ARX model (17) estimated by using the training 
data; The unit: x /MW (Megawatt), y /ppm, 1d /ppm, 

2d /kg/h. 
 

 
Fig. 3. The prediction precision of the estimated 
RBF-ARX model (17) for the test data. 



 

 

 
Fig. 4. Control result for the test data; Solid line: the 
RBF-ARX-MPC; Dotted line: the gain-scheduling-PI 
control; set-value of ( )y t  is 6ppm. 
 
Fig. 4 shows the estimated RBF-ARX model (17) 
based predictive control (RBF-ARX-MPC) result for 
the test data. In this result, the internal model of the 
MPC is identified using the training data, and the 
simulation plant to be controlled is the identified 
RBF-ARX model (17) plus the model prediction 
residual (showed in Fig. 3) for the test data, so the 
output ( )y t  is same to the gain-scheduling PI 
control result if the predictive controller output ( )u t  
is zero all over the time. Using only the PI controller, 
very large regulation errors occurred in the output 

( )y t , and overmuch ammonia (NH3) are consumed 
especially during the lower load operation due to the 
process nonlinearity. The RBF-ARX-MPC obviously 
improved the control performance and largely 
reduced the ammonia consumption. In Fig. 4 the 
ammonia consumption under the RBF-ARX-MPC 
-plus-PI control is 55.1% of that under only the PI 
control. Notes that in Fig. 4, there are also the cases 
that sometimes the output ( )y t  is very low from the 
set-value under the RBF-ARX-MPC-plus-PI control 
during some lower load operation, because the PI 
controller gave overmuch output ( 2 ( )d t ) at the time, 
it led the ( )y t  to be too low from set-point, so the 
MPC makes the ammonia input ( 2( ) ( )u t d t+ ) almost 
be regulated to zero over the time. However the 
ammonia input is unable to be negative, so the larger 
negative overshoot happened.  
 
 

5. CONCLUSIONS 
 
For the non-stationary nonlinear systems with 
working-point dependent dynamics, an off-line 
estimated global RBF-ARX model based modeling 
and predictive control method was presented. The 
RBF-ARX model could efficiently represent the 
behavior of the system whose dynamics depend on 
the signal of deciding system working-point. The 
structured nonlinear parameter optimization method 
(SNPOM) could be used to off-line estimate the 
model parameters.  

This paper proposed a nonlinear MPC strategy based 
on the global RBF-ARX model with an offset term, in 
which the standard quadratic programming routines 
could be applied to solve the optimal control problem 
with constraints, because the local linearization of the 
RBF-ARX model could be easily obtained by fixing 
the ‘state’ variable in the model on the value at instant 
t . The proposed MPC based on the global internal 
model didn’t resort to on-line parameter estimation, 
but the GPC based on an ARX or CARIMA model for 
a non-stationary process has to require on-line 
parameter estimation, because general ARX or 
CARIMA model is only a local model. The 
simulation study on a nonlinear chemical reaction 
process illustrated the validity of the proposed 
modeling and MPC method. 
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