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Abstract: The problem of sensorless (local) speed regulation of a class of electrical
machines is addressed and solved using a simple linear-time varying controller.
The class, which contains permanent magnet synchronous motors, consists of
all Blondel-Parks transformable machines, and of all machines whose magneto
motive force can be approximated by a first harmonic Fourier expansion. The
controller—which contains an internal model of the steady-state control—/s
able to asymptotically reconstruct the control signal necessary to achieve speed
regulation, even in the presence of unknown but constant load torque. To prove
global stability and boundedness of the unforced system we exploit the by now
well-known passivity property of electro-mechanical systems. We work out in detail
the problem of speed regulation for a permanent magnet synchronous motor, for
which normalized simulations that illustrate the properties of the design are provided.
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1. INTRODUCTION

In this paper we consider the practically impor-
tant, and theoretically challenging, problem of
speed regulation of rotating electrical machines
without measurement of mechanical coordinates—
the so—called sensorless control. Since rotational
transducers and their associated digital or ana-
logue circuits give extra costs and are often com-
plex and rather fragile—reducing the robustness
of the total system—there has been an increasing
interest 1n industry in control schemes without
rotational sensors. This has triggered an inten-
sive research activity in this area in the last few
years, both, in the industrial electronics and in
the automatic control communities. While some
successful practical implementations have already
been reported, our theoretical understanding of
this difficult robust output feedback stabilization
problem is far from satisfactory, and many funda-

I This work has been partly supported by the CEC TMR-
Network NACO2.

mental questions are essentially open. We refer the
reader to (Feemster et al., 1999; Petrovic, 2001)
for an overview of the recent literature. Given that
high—performance controllers are readily available
when position 1s available for measurement, it
seems reasonable to try to estimate position and,
in the spirit of observer and adaptive control
theories, replace in the control scheme the ac-
tual position by its estimation. Broadly speaking,
there are two approaches to rotor position esti-
mation reported in the literature. The first one
concentrates on estimation of the motor back emf
and subsequent extraction of position information
from this signal. For, various observers—or even
open—loop integration—of the electrical and me-
chanical states have been proposed. There are two
fundamental drawbacks to these schemes, first,
that their performance critically depends on the
motor parameters, which are usually not precisely
known and /or change with operating conditions. 2

2 Obviously, the rather nawe approach of open—loop inte-
gration furthemore rgui  res the'knowl edge” of the initial



Adding on top a parameter identification algo-
rithm leads to a nonlinear estimation problem
(involving products of unknown parameters and
unknown states) for which little, if at all, theory
is available. Second, since the back emf term van-
ishes close to standstill, the performance of these
algorithms is degraded at low speeds—they are
actually (theoretically) ineffectual at zero speed,
where the state becomes unobservable. The sec-
ond approach extracts the information about ro-
tor position exploiting the fact that the magnetic
saliency affects the dependence of the motor in-
ductance on the rotor position. The methods pur-
suing this line of research usually involve injection
of an auxiliary balanced high frequency voltage
signal to probe the motor electrical subsystem.
Besides the obvious undesirable feature of exci-
tation of high frequency modes—induced by the
probing signal—the quality of the estimation will
depend on the effective existence of rotor saliency,
which is sometimes enforced modifying the rotor
slots, and the availability of good models to de-
scribe this complex electromagnetic phenomenon.
On the other hand, this approach does not suffer
from the aforementioned problem of singularity
at low speeds. Combinations of both techniques,
i.e., signal injection in start-up, and back emf
based algorithms at higher speeds, have also been
reported. The difficulties for position estimation
mentioned above are, of course, intrinsic, and
stymie the behavior of all schemes hinging upon
certainty—equivalence. In this paper we abandon
this perspective, and propose a radically different
controller structure whose motivation stems from
the following observations.

(1) As a corollary of Proposition 2.5 in Chap-
ter 2 of (Ortega et al., 1998), which estab-
lishes passivity of general Euler-Lagrange
systems, we have that electromechanical sys-
tems define passive operators with conju-
gated port variables voltage/current and load
torque/speed. Thus, passivity will be pre-
served for all positive real controllers relating
voltages and currents.

(2) For the class of machines considered here
(see below), the unique control signal that
keeps the speed and current errors identically
equal to zero is w.—periodic, where w, is
the constant desired speed. To ensure zero
tracking error it is therefore necessary that
the controller incorporates the internal model
of this signal.

(3) Tn (Tsidori, 1995, Proposition 8.8.1) it is
shown that the cascade composition of a
Poisson stable exosystem and a locally ex-
ponentially stable subsystem possesses a
(unique) steady-state. Under the practically

conditions of the state that we actually want to estimate!
This paradoxical situation casts serious doubts on the prac-
ticality of this "idea”. (Fortunately so, otherwise the whole
edifice of feedback control theory will fall to crumbles.)

reasonable assumption that the load torque
is periodic—or constant—we can treat this
signal, together with the w,—periodic current
reference, as the outputs of a Poisson sta-
ble exosystem. Attractivity will then follow
provided the motor/controller subsystem is
locally exponentially stable.

In the light of the discussion above we propose
an internal model-based linear controller, whose
transfer matrix is positive real, and is driven by
an wx—periodic reference current, whose ampli-
tude has to be tuned to ensure the existence of
a steady-state, see Figure 1. It should be un-
derscored that, even though incorporation of the
internal model of the reference current is necessary
for perfect output tracking, this condition is (in
general) not sufficient, as the closed loop system
with zero exogeneous input should be locally ex-
ponentially stable. The resulting scheme enjoys
the following features.

e Given that no position or velocity estimation
is required, the parameter sensitivity and
low—speed misbehavior problems mentioned
above are obviated.

e Passivity is preserved in closed—loop, inher-
iting the well-known robust stability proper-
ties of passive systems. Unfortunately, as a
transfer matrix with poles on the jw axis—
like our internal model controller—cannot
be strictly positive real we cannot conclude
Lo—stability from here. On the other hand,
under some reasonable prior knowledge as-
sumptions on the mechanical dynamics, we
can prove that the system is locally exponen-
tially stable, even for arbitrarily small speed
references.

e The stabilization mechanism is based on
the internal model principle that ”automati-
cally” generates the control signal required to
establish the desired periodic steady—state.
To fix the latter in a practical machine, it
18 necessary to assume that the first har-
monic in a Fourier approximation of the emf
gives a sufficiently close approximation of the
real emf. Hence the scheme is applicable to
the well-known class of Blondel-Parks trans-
formable machines (Liu et al., 1989; Ortega
et al., 1998), which contains the classical in-
duction and permanent magnet synchronous
motors.

e The controller has a very simple linear time—
varying structure with only three tuning
knobs: the gains of the proportional and
the internal model terms, and the amplitude
of the desired steady state current. From
our stability analysis we have that, while
the gains may take any positive value, the
current amplitude must satisfy an algebraic
constraint to guarantee the existence of the
steady—state, which requires the knowledge
of bounds on the load torque.



2. MODEL OF THE MACHINE
2.1 Generalized electric machine

We present now the generalized electrical machine
described in (Meisel, 1996), see also (Ortega et
al., 1998, Chapter 9). Tt consists of n, = ns + n,
windings on stator and rotor, with possible perma-
nent magnets or a salient rotor. Ideal symmetrical
phases and sinusoidally distributed phase wind-
ings are assumed. The permeability of the fully
laminated cores is assumed to be infinite, and sat-
uration, iron losses, end winding and slot effects
are neglected. Only linear magnetic materials are
considered, and it is further assumed that all pa-
rameters are constant. Under these assumptions,
application of Gauss’s law and Ampere’s law leads
to the following affine relationship between the
fluz linkage vector A € IR™ and the current vector
1€ R"

A= L(0)i + (o) (1)

with 8 € IR the mechanical angular position of
the rotor, and L(#) = LT(d) > 0 the n. x n.
multiport inductance matrix of the windings. The
vector u(f) represents the flux linkages due to
the possible existence of permanent magnets. Note
that both L(#) and p(6) are bounded and periodic

function of 4.

With the considerations above, the voltage bal-
ance equation yields

A+ Ri= Mu (2)

where u € IR"s is the vector of voltages applied
to the stator windings, R = RT > 0 is the matrix
of electrical resistance of the windings, and M
1s a constant matrix that defines the actuated
coordinates. If ny, = n. then, M = I,,_, and we
say that the motor is fully actuated. On the other
hand, if n; < ne, then M = I:ISS] € [RMeX"s

and we will call the motor underactuated.

The coupling between the electrical and the me-
chanical subsystems is established trough the
torque of electrical origin

_ 10l . 7Op
T= i 36(6)24—2 36(6)' (3)
The model is completed replacing the latter in the
mechanical dynamics

ml = —bl+1— 11 (4)

where m > 0 is the rotational inertia of the
rotor, b > 0 is the viscous friction coefficient,
and we have introduced a term of load torque 7,
which we will also assume constant. As shown in
(Ortega et al., 1998) the model (1)—(4) contains,

as particular cases, induction, permanent magnet

synchronous and stepping motors. The following
passivity property of the generalized machine is
instrumental for our analysis and can be easily
proven from direct substitution. (See also Propo-
sition 9.11 in Chapter 9 of (Ortega et al., 1998) for
a stronger passive feedback decomposition prop-

erty.)

Lemma 1. The system (1)—(4) define a passive
operator with conjugated port variables (u, MT3d)
and (—77,,0) and storage function the total stored
energy H(i,0,0) = %iTL(H)i + ”2102. More pre-
cisely, the power balance is given by the equation
H =i Mu— 0r;, —i" Ri — b6?.

2.2 Blondel-Park transformable machines

As discussed in the introduction we propose a
controller that generates in steady—state the con-
trol signal required to achieve (robust) speed
regulation. To be able to explicitly characterize
such control signal we must assume that, roughly
speaking, the steady—state dynamics has a single
harmonic behavior. To formulate this condition
precisely we need to restrict the machines under
consideration to the following class identified in
the fundamental paper (Liu et al., 1989), see also
(Ortega et al., 1998).

Assumption 1. There exists a constant matrix
U € R"<*™< such that

U L) — LO)U = %(9) 5)
RU=UR (6)

dp, . d’p
U—g(0) =5 (0) (7

In this case, we say that the machine (1)—(4) is
Blondel-Park (BP) transformable.

The main feature of BP transformable machines is
that there exists a coordinates transformation for
the current such that, in the new coordinates, the
electrical dynamics (1)-(2) are independent of
(but dependent on @). To prove this fact we notice
that (5) and (7) admit as unique solutions

d_:u (9) Ue

L(#) = eV e Uf 20 =e"“myg,

where we have defined Ly = L(0) and mg = Z—’;(O).
Using these identities it is easy to verify that in
the new coordinates

2 =e V% (8)

(1)-(2) is transformed into

Lo# + (ULl + R)z +mof = e~ Mu. (9)



The mechanical equations (3), (4), in turn, take
the simple form

ml = —bf+ 2 ULz + mgz — 7. (10)

In the sequel we will restrict our attention to
machines described by (9), (10). Obviously, this
so—called d¢ model cannot be used for sen-
sorless controller design, because the inverse
transformation—that depends on #—is unknown.
This description will be used only to analyze the
steady—state behavior of the machine.

Remark 1. Tn Lemma D.1 of (Ortega et al., 1998)
it is shown that if 2£(6) # 0 then U = —UT.
Hence, the coordinate transformation is a rota-
tion. This property will be instrumental for our
further developments.

Remark 2. The underlying fundamental assump-
tion for the machine to be BP transformable
is that the windings are sinusoidally distributed
(Youla and Bongiorno, 1980), giving a sinusoidal
air-gap emf and sinusoidally varying elements in
the inductance matrix. For a practical machine,
this means that the first harmonic in a Fourier
approximation of the emf must give a sufficiently
close approximation of the real emf. Examples of
machines in which higher order harmonics must
be taken into account, are the square wave brush-
less DC motors, and machines with significant
saliency in the air gap. The squirrel-cage induc-
tion machine is an example of a machine where
the squirrel-cage rotor with non-sinusoidally dis-
tributed emf is replaced by an equivalent fictitious
sinusoidally wound rotor for analytical purposes,
without introducing detrimental effects to con-
troller design. It must be noted, however, that
the proposed design method can be applied also
to the control of non-BP transformable machines.
For simplicity, this case is treated in a separate
report.

2.3 An example

The dynamics of a 3-phase permanent magnet
synchronous motor may be approximated by (1)-
(4), with n, = 2, ny = 2,n, = 0, R = R, Io, with
R > 0 the stator resistance, M = I, and

La + Ly cos(2npf)
Ly sin(2nph)

u(ﬂ)zq’[

L(0)= [ Ly sin(2np0) ]

Lo — Ly cos(2npf)

cotned)]

where @ is the DC component of the flux harmonic
expansion, and np denotes the number of pole
pairs. The machine is BP transformable with U =

npJ, where J = [0

1 _01 ], yielding the rotation

matrix

arrts = [roslnet) —sintonf)]

The rotated model (9) becomes then
Lg 0|, Rs —Lgnpb 0 | _noos
[0 Lq:|Z+ I:Lané RS :|Z+ I:q)nP:| 9_8 r u

where we defined Lg = L1 + Lo and L, = Ly —
L1. The torque equation becomes 7 = np[(Lq —
Lg)zoz1 4+ ®z5]. Now, if we denote [id,iq]T =
z, [va,vg]T = e Py w = npb we, of course,
recover the classical dg model of the synchronous
motor (Krause, 1986).

3. CONTROLLER STRUCTURE
3.1 Passivity

Motivated by the passivity properties discussed
in Lemma 1 we consider the sensorless controller
structure depicted in Figure 1, where the transfer
matrix W(s) € R(s)=Tx(+1) i5 of the form
_ W1 (8) 0
Wis) = [ 0 0

with Wi(s) € IR(s)"=*™ positive real, and
MTi, () is the current reference that we will de-
fine below. That is, we propose a controller

x=Ax +BMT (i, — i)
u=Cx+ DM (i, — 1) (12)
where x € IR" and Wi (s) = C(sI — A)"'B+ D.

From Lemma 1 and positive realness of W (s) we

Lk
BP Machine W(s)o [
® 0o o [—

Fig. 1. Block diagram of the sensorless control.

can easily establish passivity of the closed—loop.
Indeed, consider the storage function

1
V(z)=H(i,0,0) + §XTPX

where the state vector is =z = [iT,H,é,XT]T,

and P = PT > 0 is the solution of the
Kalman—Yakubovich—Popov algebraic equations
PA+ AP = —LTL, PB = CT — LTS and
STS = DT + D, for some matrices L, S. After
some standard calculations we obtain the dissipa-
tion inequality

/ i (" YMu(t') = rw(t)]dt’ >
0

/ [T ()Ri() + b ()]dt’ + VIz(D)] - VIz(0)],



that establishes the claim. From this inequality,
and the fact that V(z) is radially unbounded, we
also conclude that all trajectories of the unforced
system, 1.e., with 7. = 7, = 0, are bounded. Un-
fortunately, our passivity—based analysis cannot
proceed any further because, as we will explain
below, to achieve the control objective the transfer
matrix W(s) must have poles in the jw axis, hence
1t cannot be strictly positive real.

3.2 Zero dynamics

As discussed in the introduction, we adopt in
this paper an internal model based approach,
that ”automatically” generates the control signal
that drives the trajectories towards the desired
steady—state. In this case, we are interested in
steady-states corresponding to speed regulation
and stator current tracking. Instrumental for the
characterization of the control signal that achieves
this objective is the study of the zero dynamics of
the machine with respect to the outputs

v=[227] (13)

Z— Zy

where wy, z, are the speed and current references,
respectively. Tt is clear from (9), and the fact that
e~U% s full rank, that this study is relatively sim-
ple for fully actuated motors, as we only have to
consider the solutions, z, € IR"¢, of the quadratic
algebraic equation

z*TULoz*—Fm(—')—z*—TL—bw* =0 (14)

for a given speed reference w.. The result can be
easily summarized as follows.

Lemma 2. Consider the fully actuated BP trans-
formable machine (1)—(4). Assume that, for the
given wy, there exists a constant reference current
z« € IR™* solution of (14). Then, the zero dynam-
ics of the machine is simply # = w.. Furthermore,
the only control that makes the set {y = 0} invari-
ant 1s u, = eU(w*t+€(0))[(UL0w* + R)z. + mows].

In words, Lemma 2 states that, if the machine
(1)-(4) admits an equilibrium at the given de-
sired speed, then a necessary condition for perfect
regulation is that the control signal converges to
an w,—periodic signal. This observation, together
with the discussion on passivity of the previous
subsection, motivates the choice A = w,U in
the controller (12). As discussed in (Ortega et
al., 1998; Marino et al., 1993; Ortega et al., 2001)
the zero dynamics of underactuated machines is
far more complicated, hence sensorless control of
this class of machines—in particular, for induction
motors—will be discussed 1n a separate report.

4. MAIN RESULT

In this section we show that the controller (12)
solves (locally) the sensorless speed regulation
problem. For, note that the controller (12), with

i, = e~ U¥tiy for some constant vector ig, can be
written, in the new variable = e~Uy as

f=—0Un+e"V%(4eVn+ BMTeV? (2. — 2))
(15)

u=Ce"n+ DMTeV(z, — 2)

Ue

where z is as defined in (8), z. = e ¥?z; and zg

1s a constant vector.

Proposition 1. Consider the system (9)-(10) and
the controller (15). Suppose A, B, C' and D are
such that

o the transfer matrix Wy (s) = C(sI—A)~' B+
D is positive real;

e A, BMT, MC and MDMT commute with
e~ Ut

e the spectrum of A has eigenvalues at +jw.,
and w, # 0 and sufficiently small;

e the following matrix is Hurwitz:

Ly (R+MDMT) =Ly mg Ly MC
mg /m —b/m 0
—-BMT 0 A

Then the closed loop system (9)-(10)-(15) with
zx = 0 and 77, = 01s globally stable. Moreover, for
any sufficiently small constants z, and 77, the state
of the closed loop system (9)-(10)-(15) converge
to a well defined steady state (zss,éss,nss) with
Zss = Zx. Moreover, if z, and 77, are such that

z;rULoz* + m(—l)—z* — 71, —bw, =0, (16)

then éss = Wy.

Proof. Global stability has been proved in Sub-
section 3.1. By Hypothesis the closed loop sys-
tem (9)-(10)-(15) is locally exponentially sta-
ble. Hence, for any sufficiently small input sig-
nal there is a unique well defined steady state
(Tsidori, 1995). Moreover, by the structure of the
controller, it is obvious that z,; = z.. Finally, by
the results in Section 3, it i1s obvious that 6, = w.,
provided condition (16) holds. <

Remark 3. Note that conditions (16) implies that
the amplitude of the reference signal i., or equiv-
alently |[|z.|| should be sufficiently large. In fact, a
simple but tedious computation shows that equa-
tion (16) can always be satisfied (by some z,)
provided that ||U Loz.|| > 7.

Remark 4. The conditions imposed by Proposi-
tion 1 on the matrices A, B, C' and D of the
controller are not very strong. Note, in particular,
that if n, = n; = n. the selection A = w.U,
B=bl,C=clandd=dIl, withd>0¢>0
and d > 0 is such that the first three conditions
of Proposition 1 hold.



5. SIMULATIONS

In this section we discuss the application of the
general theory developed so far to the sensor-
less control problem for the permanent magnet
synchronous motor described in Section 2.3. As-

sume (for simplicity) np = 2 and consider the

control law (12) with A = diag(w.J,w.J), B =
1000]" . .

[0010] ,C = B" and D = 0, and 7, =

10[cos(wst) sin(wyt)]T. The amplitude of i. has
been selected assuming that the bound ||| < 10
is known. Simulations (shown in Figure 2) on a
normalized® machine have been run. In the in-
terval [0, 50) we have selected w. = 1 and 7, = 0.
In the interval [50,100) we have set w. = 1 and
71, = 10, whereas in the interval [100, 150) we have
set wy, = —1 and 77, = —10. Finally, in the interval
[150,200] we have set w. = 1/4 and 71, = 0. Note
that the speed achieves the desired value, the con-
stant torque disturbances are completely rejected,
and, even for low speeds, no loss of performance
is observed.
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Fig. 2. Simulations results. Time history of the
currents (top), of the speed (center) and of
the controller states (bottom).

6. CONCLUSIONS

The problem of sensorless speed regulation for a
class of electrical machines has been addressed.
It 1s shown that asymptotic speed regulation and
exact rejection of constant torque disturbances
can be (locally) obtained by means of a linear
control law, which exploits the passivity proper-
ties of the machine and the internal model prin-
ciple. The use of these properties implies that the
performance of the closed loop system does not
degrade at slow speed. In fact, no attempt is done
to reconstruct unmeasured states, which become
difficult to observe at slow speed, and the control
mechanism does not rely on the classical certainity
equivalence approach.

2 The parameters have been selected as Ly = 1, [ = 1/5,
R:=10,and ® = 1.

The general theory has been developed for the
class of machines having magneto motive force
that can be approximated by a first harmonic
Fourier expansion. However, this property is not
necessary for the derivation of the main results,
and more general machines, such as square wave
brushless DC motors, can be studied (and con-
trolled) using similar considerations.

Applications of the theory to the problem of
sensorless speed regulation, in the presence of
constant torque disturbances, for a permanent
magnet synchronous motor have been detailed,
and some preliminary simulations have been dis-
played. It is worth mentioning that the control
law possesses only a few tuning parameters, whose
influence on the behavior of the closed loop system
can be easily assessed, via experiments or simula-
tions.

Further studies on the problem of sensorless con-
trol of induction motors, and in general under-
actuated machines, are in progress, and will be
reported in a separate paper.
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