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1. INTRODUCTION

The problem of fault detection and isolation in dy-
namical systems is the problem of generating diag-
nostic signals sensitive to the occurrenceof faults.
Using the process signals assumed to be available
for measurements (con trol inputs and outputs), a
fault can be considered as an input acting on the
system. The diagnosis must be able to detect as
w ellas isolate this particular input from all other
inputs (control, other faults and perturbations) af-
fecting the system behavior. Massoumnia et al.

(Massoumnia et al., 1989) have sho wn that the
problem can be addressed and successfully solv ed
in a general setting for linear systems. Later, De
P ersis and Isidori ((De P ersis and Isidori, 1999)
and (De Persis and Isidori, 2000)) have realized the
extension of this solution for nonlinear systems. This
problem turns out to correspond to the solution of
the dual problem of noninteracting control b y means
of dynamic feedback. This problem has been dealt
with Isidori and al. in (Isidori, 1995) and (Isidori
et al., 1981). In addition, w econsider the case in
which the residual is the output signal generated

by a �lter which is designed as an observer. In
common practice ((De P ersis and Isidori, 2001),
(F rank et al., 2000), (Hammouri et al., 1999) and
(Sc hreieret al., 2000)), a bank of observers is used.
But it is not the only way of proceeding since only
one �lter can allo w the detection and isolation of
sev eral faults (Join et al., 2002). How ev er the pur-
pose of this con tribution is not the �lter design
but the explanation of the suÆcient conditions to
fault isolation. T oachiev ethe objective (to relax
the explanation suÆcient conditions), it is assumed
that faults do not occur simultaneously. Moreover,
if suÆcient conditions are respected, it is possible to
design a �lter or a banc of �lters to fault isolation.
The resulting residual is exactly decoupled from
the control and allo ws the distinction of the fault
occurring among other ev en tualfaults. The main
innovation in the present paper is the integration of
a structural analysis (based on work of Cassar et al.
((Cassar et al., 1994)) in the linear case and recently
by Staroswiecki and Comtet-V arga in (Staroswiecki
and Comtet-Varga, 2001)) for nonlinear systems
using a geometric approach. How ev er,there ex-
ists other development with an analytical approach
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(with Lie algebra in particular) as in (Frank and
Ding, 1997) (carried out by Frank et al.).
The paper is organized as follows. Section 2 in-
troduces the problem of residual generation. We
recall that this paper deals with nonlinear systems
and nonlinear �lter (realized according to output
injection). Section 3 concerns fault detectability and
fault isolabilit y conditions. These geometric condi-
tions are based on a structural analysis. The dif-
ferent steps are described, in section 4, to carry out
tw o examples, chosen to highlight the in terest of this
new method. Finally, some conclusions are drawn in
section 5.

2. PROBLEM STA TEMENT

In this paper, systems of the follo wing form are
considered:

�NL :

8><
>:
_x = f0(x) +

mX
i=1

fi(x)ui +

qX
j=1

pj(x)wj

y = h(x)

(1)
with x(t) 2 X = Rn , u(t) 2 U = Rm , y(t) 2 Y = Rp

and w(t) 2 W = Rq are respectively states, inputs,
outputs and faults. The functions f�(�), h(�), p�(�)
are matrix-valued di�erentiable (C1) and all of ap-
propriate dimensions.
We shall also �nd it more con venient to repre-
sent sensor failures by pseudoactuator failures (see
(Massoumnia et al., 1989) and (Park et al., 1994)).
The considered faults represent both actuator and
sensor faults.
About system (1), w ecan refer to (Isidori, 1995),
(Sontag, 1998) and (Whonam, 1985), for the def-
initions of the observabilit y subspace robs and
the unobservabilit y subspace rinobs (i.e. rinobs =
(robs)

?).
The main problem addressed in the paper is to give
suÆcient conditions to fault isolation using �lter
(which is throughout referred to as the residual
generator) modelled by equations of the form:

�FD :

8>>>>>><
>>>>>>:

_z =ff0(z)�	1(z; yz)g +

mX
i=1

ffi(z)�	2;i(z; yz)gui

+ f	1(z; y) +

mX
i=1

	2;i(z; y)uig

yz =h(z)

(2)

where 	�(�) = 	1(�) +

mX
i=1

	2;i(�)ui represents the

output injection.
Existence conditions of a solution of the F unda-
mental Problem of Residual Generation (F.P.R.G.)
are sho wn for linear systems in (Massoumnia et

al., 1989) and represent one solution of this prob-
lem. In (De P ersis and Isidori, 2000), existences
condition are given for nonlinear systems. But these

conditions are very restrictiv e and not necessary
to realize diagnosis (fault detection and isolation).
Therefore, the objective of this paper is to reduce
these conditions.

3. SUFFICIENT CONDITIONS TO FA ULT
DETECTION/ISOLATION

T odetermine the suÆcient conditions, a geomet-
ric approach is considered. F or this aim, tw o
non-decreasing sequences of distribution are used.
The sequences are declined for eac h single fault
(dim(Spanfpjg) = 1), and are the base of a geo-
metric interpretation (or structural analysis).

� The �rst sequence de�nes the maximal (in the
sense of distribution inclusion) state subspace
sensitiv e to the faultwj :

8><
>:

C
pj
0

= Spanfpjg

C
pj
i+1 = C

pj

i +

mX
k=1

[fk; C
pj

i ]
(3)

with C
pj
i denotes the involutive closur eof the dis-

tribution C
pj
i , i.e. if � , � 2 C

pj

i then [�; �] 2 C
pj

i

where [�; �] is the Lie bracket de�ned by:

[�; �](x) =
@�

@x
(x)�(x) �

@�

@x
(x)�(x) (4)

The stop conditions of the previous sequence are:

C
pj
i = C

pj
i+1

dim(SpanfC
pj
i g) = n

�
) C

pj
� = C

pj
i (5)

C
pj
� expresses the fault wj propagation within non-

linear states, i.e. the occurrence of fault wj a�ects
the state subset C

pj
� .

� The second non-decreasing sequence de�nes
the smallest (in the sense of distribution inclu-
sion) state subspace sensitive to the fault wj :

8><
>:

S
pj
0

= Spanfpjg

S
pj
i+1 = S

pj

i +

mX
k=1

[fk; S
pj

i \Kerfdhg]
(6)

with the same stop conditions as (5), the
distribution solution is denoted S

pj
� . Consequently,

the new distribution (S
pj
� )? represents the maximal

(in the sense of distribution inclusion) state
subspace insensitive to wj modulo an output
injection. These notions ha ve been recen tly
in troduced in (Isidori et al., 1981), (De P ersis and
Isidori, 1999) and (De P ersis and Isidori, 2000),
which the reader can refer to, for more information.
In (De P ersis and Isidori, 2000), the dual non-
decreasing sequence of codistribution is also de�ned.



The di�erence betw eenthe tw osequences (3) and
(6) is due to the output injection used here, that is
to sa y:

� C
pj
� is the "greatest" state subset sensitive to

the fault (output injection is not used),
� S

pj
� is the "smallest" state subset sensitive to

the fault (by using an output injection).

Remark : The output injection does not modify
the fault propagation, then S

pj
� � C

pj
� . We can

add that, w e are sure that S
pj
� is sensitiv e to

the considered fault for all output injection.
In the particular case of no detectability fault
(C

pj
� � rinobs), the t w o distributions are equal.

Before explaining if faults are isolable, a necessary
condition for fault isolation is detectability of all
faults. It is the interest of the next paragraph, be-
cause the considered systems (1) are not necessarily
observable (i.e. rinobs 6= f0g).

3.1 SuÆcient conditions to fault detection

The �rst stage is to know if fault wj is detectable.
F or this aim, a new distribution is used:

�pj = robs � Spanf(C
pj
� )?g (7)

A fault wj acts on at least one output if and only if
�pj 6= 0.Conclusion All faults are detectable if
and only if the inequality �pj 6= f0g is v eri�ed

8j.

Theorem 1. The previous condition �pj 6= f0g
(with 8j) is:

(1) a necessary and suÆcient condition, if wj 2 R
1

as is de�ned in system (1)
(2) a necessary condition, if wj 2 R

k (with k > 1)

to ac hiev e the detectability of all faults.

Pr oof of Theorem 1.

(1) the �rst point of the theorem is trivial because:
if wj 2 R1 then the fault wj is scalar and
(C

pj
� )? represents the state subspace insensi-

tive to this fault. It is a suÆcient and necessary
condition to know if this scalar input acts on
outputs. That is to say that the observable
state subspace is not included in the insensitive
part. That amounts to �pj 6= f0g.

(2) the second point is more diÆcult because:
if wj 2 Rk (with k > 1) and �pj 6= f0g, w e
don't know if all components (the k compo-
nen ts) of the vector wj are represented in �pj .
It is possible that the state subspace sensitive
to one (or sev eral) part(s) of vector wj is in-
cluded in rinobs. In this case this (or these)
part(s) occurring is (are) not detectable, then

the condition is not suÆcient in this case. But
it is necessary for the same reason as (1).

Remark : In the particular case of observable
systems (dim(Spanfrobsg) = n, rinobs = f0g),
all faults are detectable because �pj 6= f0g with
C
pj
� 6= f0g 8j.

3.2 SuÆcient conditions to fault isolation

The second stage is the determination of isolability
conditions. We assume that the �rst step is ver-
i�ed and with this assumption, w e are sure that
eac h fault a�ects at least one output. But fault
detectability is not equivalen t to fault isolabilit y.
Indeed, it is conceivable that several faults act on
the same outputs.
T o�nd the suÆcient conditions to fault isolation,
a structural analysis is necessary. This analysis is
based on (Cassar et al., 1994) and (Gertler, 1998)
w orks and concerns the structure matrix of the
residuals. We recall that a residual is a nonlinear
function of outputs. It is the object of this new
de�nition.

De�nition 1. A co-distribution (�) is said "recon-
structible" if, and only if, it exists �(y) such that:

@� Æ h(x)

@x
= �

The set of reconstructible co-distribution is denoted
by 
 and we can add that 
 � Spanfdhg.
Remark : In the linear case, the equality

 = Spanfdhg is always v eri�ed.

Then, the existence conditions of an isolation �lter
are bounded by the output injection and output
function (composing the residual vector) choices.
These choices are based on a structural study in
which eac h distribution sensitive to one fault (S

pj
� )

is examined. (S
pj
� ) is used instead of (C

pj
� ), because

(C
pj
� ) can to be reduce (in sense of dimension) by

output injection. That is to say that this previous
distribution must be insensitive to the greatest num-
ber of other faults. Indeed, the more signi�cant this
number is, the bigger the number of simultaneous
faults which can be isolate is. This criterion is trans-
formed in a mathematical problem ((8) and (10))
with the following binary matrix:

A
pj =

2
6664

(Apj )1
1

(Apj )2
1

� � � (Apj )q�1
1

(Apj )1
2

(Apj )2
2

� � � (Apj )q�1
2

...
...

...
...

(Apj )1
2q�1�1

(Apj )2
2q�1�1

� � � (Apj )q�1
2q�1�1

3
7775
(8)

In this paper, the following notation is used: (�)ji
denotes the element at the ith row and the jth



column of the matrix �. In the particular case of
a distribution (resp. co-distribution), the index j

(resp. i) is not necessary.
The value of (Apj )ki is given according to tw o
choices:

� (Apj )ki = 1, if and only if (Spk� )? � (S
pj
� )? and

if the inclusion is not tested,
� (Apj )ki = 0, if and only if (Spk� )? * (S

pj
� )?, it

exists at least one distribution in (Spk� )? not
included in (S

pj
� )? .

therefore (Apj )ki 2 f0; 1g and k 2 f1; � � � ; q � 1g.
We can add that i 2 f1; � � � ;2q�1 � 1g, because

all combinations of intersections between the

di�erent distributions are tested.

Example

A four faults case (q=4) is considered and the fault
p2 (j=2) is studied. In this particular case the matrix
(8) becomes:

A
p2 =

2
666664

0 1 1

1 0 1

1 1 1

1 1 1

.

.

.

1 1 1

3
777775

(= (S
p1
�

)? * (S
p2
�

)?

(= (S
p3
�

)? * (S
p2
�

)?

(= (S
p4
�

)? � (S
p2
�

)?

(= (S
p1
�

)? \ (S
p3
�

)? � (S
p2
�

)?

.

.

.

(= (S
p1
�

)? \ (S
p3
�

)? \ (S
p4
�

)? � (S
p2
�

)?

(9)
The matrix Ap2 is composed of 3 columns and
23 � 1 = 7 rows, moreover it is easy to deduce the
last three rows from the 3rd row.

Note that A
pj
�j is a solution of the follo wing

criterion:

�j = min
i

 
q�1X
k=1

(Apj )ki

!
(10)

then the set of solutions (A
pj
�j) can be written as a

set of row vectors according to the solution number:

A
pj
�j =

2
6664
(A

pj
�j)1

(A
pj
�j)2
...

(A
pj
�j)�pj

3
7775 (11)

where �pj is the number of solutions of the equation
criterion (10).
A solution (a subspace of co-distributions)

can be adopted only if it belongs to the subset


.

Matrix (12) syn thesizes the solution(s) for eac h
fault, and allows to state isolation condition.

A =

2
66666664

[1] (Ap1

�1
)1 � � � � � � (Ap1

�1
)q�1

(Ap2

�2
)1

. . . (Ap2

�2
)2 � � � (Ap2

�2
)q�1

.

.

.
. . . [1]

. . .
.
.
.

(A
pq�1

�q�1
)1 � � � (A

pq�1

�q�1
)q�2

. . . (A
pq�1

�q�1
)q�1

(A
pq

�q
)1 � � � � � � (A

pq

�q
)q�1 [1]

3
77777775

(12)

where [1] is a column vector of ones.

Conclusion

if dim(SpanfAg) = q then it is possible to

isolate all faults.

Remark : If �j = 0 8j then it is possible to build
an isolation �lter (as previously) with a diagonal
residual structure. It is equivalent with

sa ying that, in this case, the �lter is solution

of the F.P.R.G. (De Persis and Isidori, 1999).

It is also the most constraining structure but the
most interesting, because all faults can be detected
and isolated at the same time.

Thus a residual vector can be generated (according
to the 
 inclusion) by R = �(y)��(yz) = �Æh(x)�
�Æh(z) and to conclude matrixA can be interpreted
by the following signature table (Table 1.).

4. EXAMPLES

In this section, w epresent tw oexamples inspired
from (Fossard and Normand-Cyrot, 1995) to high-
ligh t the in terest of these new existence conditions.
In the �rst example, conditions developed in (De
P ersis and Isidori, 2000) are satis�ed, i.e. it is possi-
ble to syn thesize a �lter with a diagonal residual
structure and it is sho wn that these results are
similar to those of the method presented in this
article. In the second example, the method interest
is sho wn, because the diagonal residual structure
conditions are not respected but the diagnosis :
detection and isolation are possible.

4.1 Example 1

The studied system is modelled by the following
equations:

�NL1 :

8>>>>>><
>>>>>>:

_x =

0
BB@

x1x4

x3(1 � x4)

0

0

1
CCA+

0
BB@

0 0

0 0

0 x1

1 0

1
CCA
�
u1 + w1

u2 + w2

�

y =

�
x1

x3

�
(13)

with, x(t) 2 X = R4 , u(t) 2 U = R2 , y(t) 2 Y = R2

and w(t) 2 W = R2 are respectively states,
inputs, outputs and the unknown disturbances.
This system is not observable and the inobservable
subspace is rinobs =

�
0 1 0 0

�
6= f0g. Sev eral

distribution calculations are executed according to
non-decreasing sequences (3) and (6).

C
P1
�

= Span

8><
>:
2
64
0

0

0

1

3
75 ;
2
64
�x1
x3

0

0

3
75 ;
2
64

0

x1

x1

0

3
75 ;
2
64

0

x1 + x2

x1

0

3
75
9>=
>;



`
`
`
`
`
`
`
`
`
`

Residuals

Faults
w1 w2 � � � wq

insensitive to w2

if (A
p1

�1
)1
1
= 0 else sensitive

insensitive to wq

if (A
p1

�1
)
q

1
= 0 else sensitive

R1 sensitive to w1
.
.
.

� � � .
.
.

insensitive to w2

if (A
p1

�1
)1
�p1

= 0 else sensitive

insensitive to wq

if (A
p1

�1
)
q

�p1
= 0 else sensitive

insensitive to w1

if (A
p2

�2
)1
1
= 0 else sensitive

insensitive to wq

if (A
p2

�2
)
q

1
= 0 else sensitive

R2

.

.

.
sensitive to w2 � � �

.

.

.

insensitive to w1

if (A
p2

�2
)1
�p2

= 0 else sensitive

insensitive to wq

if (A
p2

�2
)
q

�p2
= 0 else sensitive

.

.

.
.
.
.

.

.

.
. . .

.

.

.

insensitive to w1

if (A
pq

�q
)1
1
= 0 else sensitive

insensitive to w2

if (A
pq

�q
)2
1
= 0 else sensitive

Rq

.

.

.
.
.
.

� � � sensitive to wq

insensitive to w1

if (A
pq

�q
)1
�pq

= 0 else sensitive

insensitive to w2

if (A
pq

�q
)2
�pq

= 0 else sensitive

T able 1.

C
P2
�

= Span

8><
>:
2
64

0

0

x1

0

3
75 ;
2
64

0

�x1(1� x4)

x1x4

0

3
75
9>=
>;

(S
P1
�

)? = Span

8><
>:
2
64
0

0

1

0

3
75 ;
2
64
x3

x1

0

0

3
75
9>=
>;

(S
P2
�

)? = Span

8><
>:
2
64
1

0

0

0

3
75 ;
2
64
0

1

0

0

3
75 ;
2
64
0

0

0

1

3
75
9>=
>;

Before the fault treatment, the detectability of all
faults must be established.
However robs � Spanf(Cp1

� )?g 6= 0 and
robs � Spanf(Cp2

� )?g 6= 0 because C
p1
� and

C
p2
� are di�erent from

�
0 1 0 0

�T
.

In this case the structural analysis requires tw o
intersection tests.
(Sp2� )? * (Sp1� )? and one co-distribution
(
�
1 0 0 0

�
� (Sp2� )?) is only included in 


thus the binary vector is
�
0
�
and �1 = 0.

(Sp1� )? * (Sp2� )? and the co-distribution
(
�
0 0 1 0

�
� (Sp1� )?) is in 
 thus the binary

vector is
�
0
�
and �2 = 0. With the previous study,

matrix A (equation (12)) can be de�ned as follows:

A =

�
1 0
0 1

�
(14)

dim(Span(A)) = 2 = dim(W), so the local-
ization is possible.
The residual signature table is:

`
`
`
`
`
`
`
`
`
`

Residuals

Faults
w1 w2

R1 sensitive insensitiv e

R2 insensitiv e sensitive

If the faults w1 and/or w2 occur, then the residual
has di�erent signatures. We add that this �lter is

solution of the F.P.R.G. since the signature table is
diagonal.
The second example has a similar state equation.
The output equation is di�erent. Thus the observ-
ability characteristics are changed. Then, the study
has to be done again.

4.2 Example 2

Consider the nonlinear system:

�NL2 :

8>>>>>><
>>>>>>:

_x =

0
BB@

x1x4

x3(1� x4)

0

0

1
CCA+

0
BB@

0 0

0 0

0 x1

1 0

1
CCA
�
u1 +w1

u2 +w2

�

y =

�
x1

x2

�
(15)

here, x(t) 2 X = R4 , u(t) 2 U = R2 , y(t) 2 Y = R2

and w(t) 2 W = R2 are respectively states, inputs,
outputs and the unknown disturbances. This
system is completely observable (rinobs = f0g).
Lik e previously, follo wing distributions can be
found (with distributions CP1

� and (SP1� )? as
previously).

C
P2
�

= Span

8><
>:
2
64

0

0

x1

0

3
75 ;
2
64

0

�x1(1� x4)

x1x4

0

3
75
9>=
>;

S
P2
�

= Span

8><
>:
2
64

0

0

x1

0

3
75 ;
2
64

0

�x1(1� x4)

x1x4

0

3
75
9>=
>;

(S
P2
�

)? = Span

8><
>:
2
64
1

0

0

0

3
75 ;
2
64
0

0

0

1

3
75
9>=
>;



Of course faults are detectable because rinobs = 0
and the conditions robs�(C

pj
� )? 6= f0g8j 2 1; 2 are

always v eri�ed. So, the structural study can be used.

(Sp2� )? * (Sp1� )? and one co-distribution
(
�
1 0 0 0

�
� (Sp2� )?) is included in 
 thus

the binary vector is
�
0
�
and �1 = 0.

(Sp1� )? * (Sp2� )? but any co-distribution is in 


thus the binary vector is
�
1
�
and �2 = 1.

With the previous study, matrix A (equation (12))
can be de�ned as follows:

A =

�
1 0
1 1

�
(16)

with dim(Span(A)) = 2, so fault isolation is
possible.
The signature table is:

`
`
`
`
`
`
`
`
`
`

Residuals

Faults
w1 w2

R1 sensitive insensitiv e

R2 sensitive sensitive

Unlike the �rst example, w e can isolate only one
fault at the same time, because if faults w1 and w2

appear simultaneously, fault signature is identical to
the case where only fault w1 appears.
This example highlights the in terest of the proposed
method since although the signature table is not
diagonal, w eshow that faults are isolable. In this
case, it is assumed that faults do not occur simulta-
neously, which in practice is relatively current.

5. CONCLUSION

SuÆcient conditions for solving the fault detection
and isolation problem for a class of nonlinear sys-
tems are given. This approach is an extension of the
w ork about the complete decoupling of the residual
from the faults. The less constraining conditions
proposed, compared to F undamental Problem of
Residual Generation, require a structural analysis.
Based on geometric results, this analysis assumes
that no simultaneous faults occur. Thus suÆcient
conditions to faults isolation are given.
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