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Abstract: On-line process monitoring with fault detection can provide stability and efficiency for a 
wide range of processes. A toolbox for on-line monitoring using Kohonen self-organizing maps 
(SOM), in conjunction with heuristic rules is described in this paper. Four different industrial 
applications using the toolbox are presented and discussed at the end of the paper. Copyright  
2002 IFAC 
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1. INTRODUCTION 
 
Advanced methods of fault detection and diagnosis 
have been developed. A number of approaches using 
mathematical models for fault detection have been 
developed during the last 20 years (Isermann, 1997; 
Himmelblau, 1978). The idea is to generate signals 
that reflect inconsistencies between nominal and 
faulty system operation. The conventional method 
has been to use static and dynamic models of the 
process, the faults appearing as parameter or state 
changes caused by malfunctions of the components. 
Parameter or state changes are determined using 
estimation techniques (Isermann, 1993). Rule-based 
expert systems for fault detection and diagnosis 
problems have been investigated very intensively. 
Fault diagnosis based on rule-based expert systems 
has an extensive database of rules (Kramer, 1987). 
Some researchers have successfully combined 
parameter estimation or observers with fuzzy logic 
(Frank and Kuipel, 1993; Isermann, 1994) in order to 
be able to combine symbolic knowledge with the 
quantitative information, thereby minimizing the 
false alarm rate (Patton et al., 2000). 
 
Process monitoring and analysis through statistical 
modelling techniques and neural networks have 
received considerable attention in recent years. The 
general objectives of process monitoring are to detect 
any abnormal event, reduce off-specification 
production and provide early warnings and identify 
important process disturbances, malfunctions or 
faults. Process analysis by statistical or neural 
network methods promotes understanding of the 
process without the task of physical modelling, and 
ultimately improves plant performance. A neural 
network algorithm, the Self-Organizing Map (SOM), 
developed by Teuvo Kohonen (Kohonen, 1990), has 

been successfully used in improving the geometric 
quality parameters of hot rolled strips as described in 
(Cser et al. 1998). Deventer et al. (1996) used SOM 
in visualising flotation process disturbances, and 
Ahola et al. (1999) in monitoring a continuous pulp 
digester. 
 
The software tool presented in this paper utilizes the 
SOMs and states of the measurements, in conjunction 
with heuristic rules of the inference engine, in order 
to monitor the process online. The purpose of the 
fault diagnosis system is to detect abnormal process 
states and to inform the plant operator accordingly. A 
process deviation from the normal operating range is 
often caused by equipment malfunctions or an 
incorrect control strategy. Early detection of 
undesirable process states enables the execution of 
correcting actions, thus minimizing the damage 
caused by process malfunctions. 
 
This paper first outlines the theory behind the 
techniques employed by the fault diagnosis system, 
the structure of the toolbox is then described, and 
finally applications and results from industrial 
implementations and testing periods are presented 
and discussed.   

 
 

2. THE KOHONEN SELF-ORGANIZING MAPS 
 
The Self-Organizing Map (SOM) is a neural network 
algorithm developed by Professor Teuvo Kohonen 
that forms a two-dimensional presentation from 
multi-dimensional data. The topology of the data is 
kept in the presentation such that data vectors that 
closely resemble one another are located next to each 
other on the map. Another important characteristic of 
the SOM is generalization of the information, thus 
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enabling classification of the data vectors not used in 
training the SOM. The SOMs are applied to classify 
large amounts of data. They can be used to form a 
neural network model of an unknown system based 
only on the data received from the system. In contrast 
to traditional methods, such as principal component 
analysis, the Kohonen model can also be created 
from highly deviating, non-linear data. 
 
Before the SOMs are trained, values of each variable 
in the data should be normalized to have a zero mean 
and a variance of one. This procedure ensures that 
every variable has equal importance in training the 
SOM. The following formula is used for 
normalization: 
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where 
xk(t) is the k:th component of the measurement vector 
x, and kx  is the mean of all the k:th components 
 
Training a map is an iterative process in which a best 
matching unit (BMU) must first be found for each 
data vector. Each data vector must therefore be 
compared with each neuron on the map in order to 
find the BMU. A neuron on the map that most closely 
resembles the current vector is selected as its BMU, 
and the weight factor of the neuron and its 
neighboring neurons are adjusted according to the 
following formula: 
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 where  
wik(t+1) is the new value of the k:th component of the 
weight factor vector of neuron i, 
wik(t) is the old value of the k:th component of the 
weight factor vector of neuron i, and 
hci is a scalar gaussian kernel function: 
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where 
α(t) is the training rate factor,  
σ(t) is a factor that implies the size of the effective 
neighborhood, and r:s are the coordinates of the 
neurons. 
 
The SOM can be interpreted by naming its neurons 
according to the classified measurement vectors. 
Neurons are named after the most probable process 
state, which can be calculated using the following 
formula: 
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where 
Probij is the probability of process state i in neuron j, 
(state)ij is the number of vectors describing state i in 

neuron j, 
and (total)j is the total number of vectors in neuron j. 
 
This gives the map a clear physical interpretation. 
However, the weakness of this method is that a 
neuron normally receives hits from measurement 
vectors representing both normal and undesired 
states. Therefore a neuron cannot be explicitly named 
to represent either a normal or undesired state.  
 
If the SOM is used to detect only one disturbance, 
neurons can be named as disturbance neurons even if 
the probability for disturbance is less than 50 %. The 
sensitivity of the SOM can be adjusted by using 
different probability levels when naming the neurons. 
If neurons are labelled as disturbance neurons even 
with a low probability of the disturbance, the SOM 
will detect disturbances occurring with a high 
probability, but the number of false alarms will also 
be high. The kind of probability level that should be 
used depends on the application. 
 
The state of the process can be monitored by drawing 
a pointer that displays the neuron corresponding to 
the latest measurement vector. It is often also 
advantageous to monitor how the state of the process 
has evolved during the last measurements, and 
therefore a suitable length trajectory of the latest 
neurons representing the latest operational states can 
be drawn on the map.  

 
 

3. THE FAULT DIAGNOSIS SYSTEM TOOLBOX 
 
The online toolbox presented in this paper monitors 
process states using Kohonen SOMs in conjunction 
with heuristic rules. The system also enables states of 
measurements and mathematical methods, based on 
limit value checking, to be used in heuristic rules.  
 
The system consists of the following modules: 
process interface, application, databases and user 
interfaces. The structure of the toolbox is shown in 
Fig. 1. 
 
Process interface. The data from process 
measurements and laboratory and maintenance 
databases are transferred through the process 
interface to the toolbox. The toolbox reads data 
directly through the network from an SQL-based 
relational database or from a text file. 
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Fig. 1. Structure of the fault diagnosis system. 
 
Application. After pre-processing, the data are 
transferred to controllers that distribute the data to 
measurement, formula and SOM objects. Based on 
the new measurement data, the objects determine 
their own state. If the state changes, the inference 
machine is informed accordingly. At the moment 
there are five state levels available: LOLO, LO, 
NORMAL, HI and HIHI. Based on the state changes 
of measurements and SOM objects, the inference 
machine updates all those rules where a state has 
been changed. If a rule's conditions are evaluated as 
true, the operator is informed accordingly. 
 
The toolbox uses equipment-based storing of rules. 
The software model of the equipment consists of 
input variables, output states and rules. 
Measurements, formulae, SOMs and other equipment 
can be defined as input variables. Possible output 
variables are the state of the equipment or state of the 
process defined for the equipment. The conditions of 
the rules added to equipment model are based solely 
on the states of input variables. States of output 
variables are set as output of the rules. Rules are 
added to the system in IF-THEN form for example: 
 
IF Gas_blower_SOM_vibration = HI AND 
Waste_heat_boiler_SOM_sooting = NOT HI THEN 
Gas_blower_dust_aggregation = HI 
 
This makes it easier to control the rules, and also 
possible to chain the rules. This means that a 
disturbance detected in the last process equipment 
can be back traced to the real cause of the problem, 
which might be the first piece of equipment in the 
process. 
 
Databases and analysis. All the measurement data 
and the rules that have evaluated as true are stored, 

together with their symptoms and timestamps, in 
SQL databases for future analysis. 
 
The toolbox has several different analysis methods. 
The system can calculate the most typical rules that 
have been evaluated as true within a given time 
interval. For more sophisticated methods the data can 
be easily imported, e.g. to MS Excel through an 
ODBC interface. The data stored in the database can 
also be run through the system offline in a simulation 
mode. This is useful when new rules or self-
organizing maps are tested. 
 
Graphical user interfaces. The toolbox consists of 
two different user interfaces. One is developed for the 
administrator and the other for the operator.The 
operational user interface offers all the information 
required for on-line monitoring of processes. 
Through this window it possible to monitor the 
current state of a process and even to predict the 
future trend. The process monitoring user interface 
consists of four main blocks: maps, trends, active 
faults and history. 
 
Self-organizing maps. The Kohonen self-organizing 
maps are presented to the user as a collection of red 
and blue neurons, each neuron being connected to its 
six neighbors. A totally red neuron represents a 100% 
probability fault, a totally blue neuron a totally 
normal condition of the process, and shades in 
between different probabilities of faults. A trajectory 
is also presented at the points where the last locations 
of the selected neuron can be seen as a darkening 
line. One can also take an individual look at the 
variables used in training the maps and see how the 
values of each variable are distributed on different 
neurons of the map. It is also possible to see the 
distribution of the hits of the training in order to 
determine whether or not the data were distributed 
evenly on the map. These are helpful features when 
analyzing the quality of the training. As SOMs may 
contain several different types of fault, only the 
component space of the most probable fault is 
presented to the operator. This keeps the operator 
view simple and clear. It is of course possible to 
examine all the other component spaces of different 
faults individually or all at once. 
 
Trends. The interface can show two different types of 
trend: measurement trends and fault probability 
trends. The measurement trends show the 
development of individual measurements on a 
selected time-scale. The fault monitoring trends 
show, on the other hand, the development of the 
probability of each selected fault of different maps. 
By examining the trends it is possible to see which 
faults have occurred in the near past, and which faults 
are very probably going to occur in the near future. 
 
Active faults. The faults currently occurring in the 
system are presented to the operator as a list. It 
contains information about the time instant when 



each fault was detected, the equipment that the fault 
is associated with, the actual fault, and the symptoms 
related to the fault. The faults appear in the active 
faults window when they are detected, and are 
removed automatically when they disappear from the 
system being monitored. A more detailed description 
and recovery information are also shown for the 
selected fault. By clicking on the list with a mouse 
the selected fault can be changed. 
 
History. The history window can analyze past faults 
by calculating some statistical averages like mean 
duration of a fault and the mean time lag between 
faults. It collects the information from the database in 
which all the faults are logged immediately after they 
are detected. Later on the information in the database 
is updated to mark down the ending times when the 
faults disappear. Exact time intervals, with an 
accuracy of one second, can be defined for the 
history view. An equipment-based view of faults can 
also be used to analyze the most usual problems of a 
specified piece of equipment. For the user; the name, 
beginning and ending times and symptoms are 
shown. As the rules are chained, it is also useful to 
inspect only those symptoms for which the same 
statistical information as for the faults is available. 
 
The operational window is presented in Figure 2. 
Numbers 1 to 4 represent maps in an on-line state, 
and 5 to 8 are the corresponding trend displays. 
Number 9 is the history window with the four, pull-
down menus for selecting the desired view. Number 
10 is the active faults window, and number 11 shows 
the different pull-down menus and buttons for 
selecting maps, trends and the other windows 
described earlier. 
 

 
 
Fig 2. Fault diagnosis system in on-line use. 
 
Administrator user interface. The administrator side, 
which has all the components required for training 
the maps, making the rules and other general 
configuration tools, can be made transparent for the 
operators. As long as it is configured properly, the 
operator only has to monitor the process without 
being concerned about data transfer or other 
modifications. The administrator side has five 

important blocks: measurements, formulae, map 
training, equipment and trends. 
 
Measurements and formulae. All the measurements 
that are used have to be defined, and they can be 
given four alarm limits to be utilized in the rules. 
Each measurement has two low and two high limits. 
Different formulae can be formed from the 
measurements using all the basic calculations. The 
block also supports selection of the maximum or 
minimum of two or more measurements that can later 
on be used as training variables for the maps. 
 
SOM training. The most important tool for the 
engineer is the map training block. Maps can be 
trained in different sizes and with different 
parameters. The required training parameters and 
faults are selected via a database connection, and the 
map is trained with the selected amount of data. The 
map size, alpha parameter, number of epochs and the 
sizes of the neighborhood in the beginning and the 
end of the run can be defined. This block also 
contains two very important features that can be used 
to visualize the distribution of the data on the map in 
training and in simulation. These hit-counter files can 
be used together to evaluate the efficiency of the 
prediction of the map. The first hit-counter file is 
formed from the training data, but the data for the 
latter hit-counter-file can be freely selected  in order 
to test the map. 
 
Equipment and trends. Equipment block defines the 
connections between equipment and the 
measurements and maps related to each piece of 
equipment. It also has the interface for creating rules. 
Rules can only be formed from measurements and 
states defined for the equipment. In the trends block 
it is possible to define which trends on the maps are 
followed on the operator side. Different fault 
probabilities can be selected from different maps on 
one trend display. 
 
In addition, the engineering side also contains a 
useful database organizer that can be used to prepare 
data for training the maps. The system has an open 
architecture, which enables easy integration with 
other applications. It has been developed using the 
platform-independent, object-oriented programming 
language Java. As all process information such as 
measurements, SOMs and rules are independent of 
the system, the toolbox application does not need re-
coding if applied to a different process. 
 
 

4. APPLICATIONS 
 

 
4.1 Feed type identification using SOM 
 
The heterogeneous characteristics of ore deposits 
pose a problem in achieving profitable production, 
because different ores require diverse optimal 
treatments at the concentrator. The expert system 



developed by Jämsä-Jounela (1998) uses SOM for 
the on-line identification of the feed ore type, and a 
knowledge database that contains information about 
how to handle a specific ore type. The system was 
first tested at the Hitura Concentrator. changes in the 
mineralogy of the concentrator feed at the Hitura 
mine caused problems in process control. After each 
change in the feed type a new process control method 
had to be found. This was done through 
experimentation because the new type was often not 
known. These experiments took time and the 
resulting treatment method was not always the 
optimal one. The on-line SOM was trained using the 
five variables describing the feed type. A bubble 
algorithm was used to train a hexagonal SOM with 8 
rows and 12 columns. The locations of the ore types 
were studied in the on-line SOM. 
 
The system has been in use at the Hitura concentrator 
since December 1996. During this period, the Hitura 
personnel have maintained the system. According to 
the users, the system is capable of approximately 
indicating the feed type. The economical benefits of 
the expert system have primarily been due to faster 
and more accurate adaptation to ore type changes.  
 
 
4.2 Estimating the Physical Quality of Cathode 
Copper using SOM 
 
In the refining process, impure (appr. 99.0 w-%) 
copper anodes are electrically purified to high purity 
copper cathodes (over 99.99 w-%). As the electrolyte 
is continuously circulated through the electrolysis 
cells, its temperature and additive agent composition 
must be controlled. The pure electrolyte is an 
aqueous solution of copper sulfate and sulfuric acid. 
Removal of the soluble impurities (arsenic, nickel, 
etc.) is conducted in a separate process. Insoluble 
impurities, such as gold, silver and other noble 
metals, are handled in another process.  
 
The production rate is controlled by the electric 
current applied to the cells. The current density 
typically varies between 200 – 330 A/m2. The most 
important  variables include electrolyte composition, 
temperature, current density, additive agent 
concentrations and anode quality. The efficiency of 
the process is expressed as the overall quality 
(physical and chemical) of the cathodes produced and 
the current efficiency of the refinery. The object of 
this study was to investigate the impact of anode 
impurities on the quality of the cathode copper 
produced. Electro-refining is a good example of a 
process in which variables are strongly correlated and 
the time constants exceptionally large, both of which 
make the process very problematic to monitor and 
control. The chemical and physical quality of the 
anodes are recognized as the major disturbance 
source for the process, and affect the essential 
variables of the refinery. The physical influence 
mechanisms are very complex and mostly not 

completely understood. Investigating the problem 
through a physical model is thus laborious and 
uncertain. The chemical quality history of the anodes 
supplied to Pori refinery consisted of 1052 chemical 
analyses during the past 1.5 years of operation. There 
were nine variables representing the contents of the 
impurities occurring in the anode: antimony, arsenic, 
bismuth, lead, nickel, oxygen, selenium, silver and 
tellurium. The PCA modeling was carried out. The 
modeling resulted in three principal components with 
an explained variance of 72%. The most interesting 
result was that the observations clearly clustered in 
separate areas in the principal component space when 
there was a fall in the cathode quality. This implies 
that the anode impurities have an effect on the 
physical quality of the cathodes. 
 
An 8 x 8 Self-Organizing Map was trained to the 
original anode analysis. The SOM was not as 
successful in classification as the PCA models since 
all the drops in cathode quality could not be traced to 
specific neurons. As PCA was successful in anode 
quality classification but not as visually efficient as 
SOM, it was decided to use these methods together. 
The procedure consisted of training a SOM with the 
principal component vectors of the PCA model. An 8 
x 8 Map was used. This hybrid method further 
improved the classification and the results could be 
investigated from a one two-dimensional map. The 
quantization error of the SOM training was reduced 
to one third of the value achieved in direct SOM 
analysis. The drops in the physical quality of the 
cathode could be traced to specific neurons in the 
constructed map. The PCA-SOM model can be used 
to indicate whenever the anodes that have proved to 
be problematic arrive at the refinery. 
 
 
4.3 Harjavalta Copper flash smelter 
 
Outokumpu flash smelting is a pyro-metallurgical 
process for smelting metal sulfide concentrates. The 
Outokumpu flash smelting process consists of a flash 
furnace, waste heat boiler and electrostatic 
precipitator. A flash smelter usually also includes the 
following auxiliary units: feed mixture preparation 
and drying, converters, slag treatment system, SO2 
fixation system, anode furnace and anode casting. 
The implemented fault diagnosis system has been in 
test use at Outokumpu's Harjavalta copper smelter 
during summer 2001. The data used in training the 
SOMs were collected between November 2000 and 
August 2001. In August the SOMs were updated to 
include the latest available data. In contrast to our 
previous study, we concentrated on detecting only 
two process disturbances: formation of concentrate 
aggregations in the concentrate burner and formation 
of dust aggregations in the waste heat boiler. Both of 
these phenomena are difficult to detect merely by 
looking at plain process measurements. They are also 
major causes of process downtime and production 
losses.  



Two SOMs were trained. In the training of the 
concentrate burner SOM, four temperature 
differences across the reaction shaft and amount of 
zinc in the concentrate were used as training 
variables. The waste heat boiler SOM was trained 
with the following variables: mean temperature of the 
boiler divided by the total gas flow through the 
boiler, pressure difference between the furnace and 
the boiler, pressure difference over the boiler, 
pressure of the boiler divided by the rotation speed of 
the gas blower, amount of flue dust in the feed, and 
amounts of zinc and lead in the concentrate. The 
SOMs are depicted in Figure 3. 
 

 
 
Fig. 3. The concentrate burner SOM and the waste 
heat boiler SOM. 
 
Offline analysis of the concentrate burner SOM 
showed that it is able to detect 88,0 % of cases where 
the operation state is normal and 48,9 % of cases 
where concentrate aggregations are formed. The 
overall accuracy of the SOM is 81,3 %. Similarly the 
waste heat boiler SOM detects 92,6 % of the normal 
operation cases and 58,3 % of the cases where dust 
aggregations are formed. The overall accuracy of the 
SOM is 91,0 %. 
 
 
4.4 Monitoring an industrial dearomatization process 
 
The dearomatization process is a continuous 
chemical process the purpose of which is to remove 
aromatic compounds in the feedstock by 
hydrogenation. The feed to the unit is a form of 
petroleum oil cut. The process consists of two 
continuous reactors filled with a packed bed of 
catalyst, a distillation column, and several other unit 
operations. In the case study, the ability of the SOMs 
to detect faults was compared to statistical 
multivariate methods, such as partial least squares. 
 
A dynamic process simulator model was first 
adjusted to match a dearomatization process in 
Fortum’s petroleum oil refinery, and then used in 
generating data related to both normal operating and 
several fault conditions. The results indicated that 
both SOM and PLS are capable of detecting faults, 
while identification of the faults is considerably 
easier with the SOMs. Another result was that 
principal component pre-processing clearly improved 
the SOMs’ performance. The results are presented in 
more detail by Bergman et al. (2002). 
 

5. CONCLUSIONS 
 

The structure of the process monitoring and fault 
diagnosis system and some of its applications have 
been described in this paper. Our recent studies show 
that emphasis on the utilization of trends in process 
variables can yield very promising results, especially 
in fast dynamic processes. Future effort will also be 
put on further development of the system in general, 
and some measurement malfunction detection 
algorithms will be implemented. The overall view of 
the operator window will be enhanced in accordance 
with operator interviews. The implemented system 
will be further developed. 
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