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Abstract: In many applications that require physical interaction with humans or other
physical environments, passivity is a useful property to have in order to improve safety and
ease of use. Many hydraulic applications (e.g. a human operated excavator) fall into this
category. In a previous work, the passivity property of a directional hydraulic flow control
valve, and methods for making the valve in a passive two-port system were proposed.
In this paper, the problem of developing passifying control laws for directional control
valves is re-visited from a bond graph perspective. Two new bond graph elements with
power scaling properties are first introduced and the passivity property of bondgraphs
containing these elements are investigated. Then by representing the control valve in a
suitable augmented bond graph, and by replacing the signal bonds with power scaling
elements, it is shown that passifying control laws can easily be recovered and generalized.
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1. INTRODUCTION

In the operation of systems requiring contacts with the
environment or direct control by humans, passivity is
an important property as it is related to both the safety
and the ease to control the overall system. A passive
system can be briefly described as a system that does
not generate energy but only stores, dissipates, and
releases it. The amount of energy that a passive sys-
tem can impart to the environment is limited by the
external input and so some safety is ensured com-
pared to non-passive systems (Colgate 1994). It also
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appears that because of the ability to use the concept
of “power" to plan and execute manipulation tasks,
passive systems are also potentially easier to use.

From the above observations, it would be helpful to
use passive systems in tasks that require contacting
the physical environment and/or direct control by hu-
mans. The passivity property of electro-mechanical
systems is well known and have been exploited to
develop overall control systems that are closed loop
passive (see for example (Li and Horowitz 1997). Al-
though many hydraulic systems (e.g. in construction
equipment) involve direct human operation, and direct
contact, the passivity concept has not been applied
to electro-hydraulic control systems until recently
(Li 2000). In (Li 2000), the passivity property of the
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directional control valve was investigated from the
controls perspective, and the valve was shown to be
non-passive. Two alternative methods were proposed
to make this device passive: by making structural or
hardware redesign or by implementing active feed-
back compensation. Subsequently, the actively feed-
back compensated passified valve was used to develop
a passive bilateral teleoperation scheme for electrohy-
draulic actuators (Li and Krishnaswamy 2001).

Bond graph is a physical approach to the modeling
of physical systems that have increasingly been used
in the analysis of systems for design and control
((Ngwompo and Gawthrop 1999, Huang and Youcef-
Toumi 1999). The inherent concept of power and en-
ergy embedded in bond graph representations suggests
that this tool can be used to investigate the passivity
property of systems and possibly provide alternative
or generalized methods to make a system passive. The
objective of this paper is then to revisit the passivity
and passification of the hydraulic valve using bond
graph techniques. From the full understanding of this
example, a general procedure can be proposed to make
a non-passive system passive. This paper is organized
as follows. In section 2, the definition of passivity, its
relationship to regular bond graphs, and a brief prob-
lem statement are given. In section 3, two new bond
graph elements are introduced. Bond graph models of
a directional control valve are presented in Section 4.
The passification algorithm for the valve, developed
using the bond graph perspective is given in Section
5. Some remarks regarding the generalization of the
proposed bond graph is given in Section 6. Section 7
contains some concluding remarks.

2. PASSIVITY AND BOND GRAPH

Given a dynamic system with input u and output y, a
supply rate for the system can be defined to be any
function s

�
u � y �	� ℜ which, considered a function of

time, is L1 integrable for any finite time ( � L1e). A
system is said to be passive with respect to this supply
rate s

�
u � y � if, for any given initial condition, there

exists a constant so that for all time and for all inputs,
 t

0
s
�
u
�
τ ��� y � τ ��� dτ �� c2 � (1)

Assume that the input u and output y are colocated
effort and flow variables for a physical system, then
a physically meaningful supply rate can be defined to
be the inner product between the input and the output.
This supply rate (with proper sign conventions) rep-
resents the power input into the system. In this case,
the passivity condition (1) expresses the fact that for
all input u

��� � and the corresponding output y
��� � , no

matter how the input is manipulated and how much
time one waits, the maximum amount of energy that
can be extracted from the system is limited by the
constant c2 (depends on initial conditions but not on
time interval or inputs), which can be interpreted as
the initial energy stored in the system.

A standard regular bond graph consists of intercon-
nections of dissipative (R-), capacitive (C-) and in-
ertance (I-) elements, transformers and gyrators, and
their multi-port generalizations. These components
are either energy conserving or dissipative. Intercon-
nections are made through “power bonds"or the “0-"
(common effort) or “1-" (common flow) junctions via
the colocated effort variables, ensuring power conti-
nuity. These standard components and connections are
suitable for physical systems. In more modern devel-
opment, signal bonds in which power continuity is not
guaranteed are also introduced in order to represent a
wider class of mechatronic / control systems. Later in
this paper, we shall introduce new elements that have
power scaling properties between its ports.

Lemma 1. Consider a regular bond graph with no
active bonds or power scaling components. With re-
spect to input bonds i1 � i2 � ����� � ik (assuming all the sign
conventions of all input bonds correspond to power
input into the system when the variables are positive)
with effort and flow variables ei j

, fi j
, j � 1 � ����� � k, the

system is passive respect to the supply rate:

s
�
fi1
� ����� � fik

� ei1
� ����� � eik

� : � k

∑
j � 1

fi j
ei j

� (2)

In order words, given a set of initial conditions, there
exists c � ℜ s.t. for any inputs, and for any time t � 0,
 t

0
s
�
fi1

�
τ ��� ����� � fik

�
τ ��� ei1

�
τ ��� ����� � eik

�
τ ��� dτ �� c2 �

PROOF. Let the storage function W be the sum of
the energies in the storage elements. Using the consti-
tutive relationship of each element and the continuity
of power in the junction structure, it is easy to show
that

Ẇ � k

∑
j � 1

fi j
ei j

�
Integrating, and using the fact that W

�
t ��� 0, we obtain W

�
0 ��� W

�
t �� W

�
t � 0 ��� 
 t

0

�
k

∑
j � 1

fi j
ei j � dτ ��

Therefore, a system that can be modeled by a regular
bond graph (such as a physical system) is passive if
all its ideal effort and flow sources (Se or S f ) are
considered outside the system, and the supply rate
defined to be the total power input from these sources.
In many control systems, however, the power source
is unmodulated and is part of the system. The con-
troller performs the conversion of this power from
the sources. Therefore, a more meaningful way of
looking at passivity would be in terms of the interac-
tions of the system (including the power sources) with
the controller (the algorithm), and with the external
environment. The questions we are addressing in the
subsequent sections are:
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Fig. 1. Causal relations of power scaling transformers
/ gyrators.

a) how to appropriately represent this power modula-
tion using bond graphs so that the passivity property
of the control system can be investigated.
b) how to determine a controller that makes the control
system passive and how to represent the "equivalent"
passive control system with bond graphs.

3. POWER SCALING TRANSFORMERS /
GYRATORS

Before proceeding, we introduce two new bond graph
elements: power scaling transformers and power scal-
ing gyrators. The causal properties of these elements
follow the regular two-port transformers and gyra-
tors. The difference is that there is a possibly non-
unity scaling factor that relates the power inputs at the
two ports. Specifically, PTF

�
m � ρ � denotes a power

scaling transformer with transformer modulus m and
power scaling ρ in Fig. 1. Its effort and flow variables
at the two ports are causally related by:

e1 : � me2; f2 : � �
ρm � f1 (3)

or
e2 : � e1 � m; f1 : � f2 � � ρm � � (4)

As such, ρm is the kinematic scaling between the two
flow variables.

Similarly, for PGY
�
r� ρ � , a power scaling gyrator with

gyrator modulus r and power scaling ρ in Fig.1, the
relationships between the effort and flow variables are:

e1 : � r f2;e2 : � �
ρr � f1 (5)

or
f1 : � 1 � � ρr � e2; f2 : � �

1 � r � e1
� (6)

For unity power scaling (i.e. ρ � 1) PT F
�
m � ρ � and

PGY
�
r� ρ � reduce to regular transformers and gyrators.

A bond graph with power scaling transformers / gy-
rators is said to be singly connected at a PTF

�
m � ρ �

or PGY
�
r� ρ � if the graph is separated into two dis-

joint subgraphs when the element is removed. In other
words, there should not be any loops containing the
element.

The following theorem states that a bond graph with
power scaling elements has similar passivity property
as a regular bond graph as long as it is singly con-
nected at each non-unity power scaling element.

Theorem 1. A power scaling transformer PTF
�
m � ρ �

or a power scaling gyrator PGY
�
r� ρ � are conserving

with respect to the ρ-scaled power input in the sense
that:

s
�
f1 � f2 � e1 � e2 � : � ρ f1e1 � �  f2e2 ��� 0 � (7)

Here, the power directions are as shown in Fig. 1.
Therefore, a power scaling transformer / gyrator is
passive with s

��� � � � � � � � as the supply rate.

Moreover, if a bond graph with power scaling trans-
formers / gyrators but no active bonds is singly con-
nected at every non-unity power scaling transformer
/ gyrator, then with respect to input bonds i1 � i2 � ����� � ik
(assuming all the sign convention of all input bonds
correspond to power input into the system when the
variables are positive), there exist power scalings
ρ1 � ρ2 � ����� � ρk such that the system is passive respect
to the supply rate:

s
�
fi1
� ����� � fik

� ei1
� ����� � eik

� : � k

∑
j � 1

ρ j fi j
ei j

� (8)

In order words, given a set of initial conditions, there
exists c s.t. for any inputs, and for any time t � 0,
 t

0
s
�
fi1

�
τ ��� ����� � fik

�
τ ��� ei1

�
τ ��� ����� � eik

�
τ ��� dτ �� c2 �

PROOF. Remove the power scaling transformers and
gyrators to form km disjoint bond graphs. For bond
graph i � km, associate an energy storage Wi to be the
sum of the storages of all the I  and C  elements
in the bondgraph. Let si be the supply rate for each
disjoint bond graph with which it is passive. Now, re-
cursively re-insert the power scaling transformers and
gyrators one-by-one, by combining two bond graphs
at each step. At each step, two passive systems repre-
sented by two bondgraphs are connected. If the storage
functions of the two bond graphs connected to port 1
and port 2 of the transformer / gygrator are Tl1, and Tl2
respectively, their supply rates are sl1 and sl2, and the
power scaling of the transformer / gyrator is ρl , then
1) define the storage function of the combined bond
graph to be Tl � ρlTl1 � Tl2; and 2) define the supply
rate to be sl � ρlsl1 � sl2. It is easy to show that using
Tl as the storage function, the combined bond graph
is passive with sl as its the supply rate. Continue this
process until the original bond graph is reconstituted.
It is clear that the final supply rate is of the form (8)
and the complete reconstituted bondgraph is passive
with respect to it.

�
Remark: Notice that the condition for singly connect-
edness at the PTF/PGY is needed to disallow loops
that can cause positive feedback. For example, the
bond graph in Fig. 2 is not singly connected at the PTF.
It dynamics are given by

I
d
dt

f1 � �
1  1 � ρ � f1 � u �

where u is the input effort. Therefore, the system is
neither passive nor stable, when ρ � 1.
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Fig. 4. Bond graph of the hydraulic portion of the
valve

4. BOND GRAPH MODELS OF A FOUR-WAY
DIRECTIONAL CONTROL VALVE

Figure 3 shows a typical critically centered, matched,
four way directional control valve. By actuating the
spool, the orifices in the valve are modulated to meter
the out-going flow to the hydraulic actuator, and the
return flow from it. Assuming the hydraulic actuator is
flow conserving (e.g. in a double ended cylinder), and
neglecting flow forces and valve chamber dynamics, a
mathematical model of the valve is given by (Merritt
1967)

mẍv � F (9)

QL

�
xv � PL ��� Cdw

ρ
xv � Ps  sgn

�
xv � PL (10)

where F is the total longitudinal force experienced
by the spool, which can be controlled using an elec-
tromechanical / solenoid actuator; xv is the spool dis-
placement; m is the spool inertia; Cd and w are the
discharge and area gradient coefficients of the valve;
Ps is the supply pressure; and PL is load pressure (dif-
ferential pressure between the actuator ports); sgn

��� �
denotes the sign function. Eq.(10) is applicable when
sgn

�
xv � PL  Ps which is the usual scenario. A similar

expression can be written for the common situation
when sgn

�
xv � PL � Ps.

xvxv
..
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Fig. 5. Simplified bond graph of the valve.
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Fig. 6. Active bondgraph representation of 4-way di-
rectional control valve

The bond graph model for the valve can be decom-
posed into the spool dynamics part, and the hydraulics
part. The spool dynamics is simply the dynamics of an
inertia. A bond graph of the hydraulics portion, with
the assumptions of incompressible flow and that of
the load being flow conserving (i.e. QA � QB � QL),
corresponding to Eqs. (9)-(10), is shown in Figure 5
where PL � PA  PB is the load pressure. From this
model, it is clear that whenever xv !� 0, it is possible
to manipulate the load pressure PL so that the pressure
source Se : Ps delivers power to the external environ-
ment. In other words, as far as the external environ-
ment is concerned, the valve is not passive. Of course,
the valve would be passive if pressure source Se : Ps

were also considered part of the external environment.

Despite its direct physical correspondence, the bond
graph models in Figs. 4 and 5 are not convenient for
the interpretation of passivity from the perspective of
control, because as far as the external environment
and the control system are concerned, Se : Ps is part
of the system, and cannot be directly affected by the
modulating variable (F or xv). Thus, the presence of
this source element would suggest that the system is
always non-passive no matter what control is applied
to the system.

Following (Li 2000), an alternative representation that
is more suitable for bond graph passivity analysis is
obtained by first reformulating the flow equation (10)
to be

QL

�
xv � PL �"� Kqxv  Kt

�
xv � PL � PL (11)

where Kq � Cdw � Ps � ρ � 0, and Kt
�
xv � PL � can be

shown to be non-negative. Thus, we can think of
the valve as being a flow source modulated by xv,
in parallel with a conductance that shunts flow. The
corresponding bond graph model is shown in Figure
6. Here, the spool displacement is determined by the
spool inertia dynamics. In this perspective, the goal
of passification is to modulate the effort source Se : F
(in Fig. 6) with a feedback control so as to make the
system appear passive to the external environment.
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Fig. 7. Dualized active bondgraph representation of 4-
way directional control valve

5. BOND GRAPH APPROACH FOR
PASSIFICATION

Notice that the bond graph in Fig. 6 contains two sig-
nal bonds: one associated with the modulating effect
of the spool displacement xv on the flow rate; the other
associated with the integration of the spool velocity ẋv

to obtain the spool displacement xv. The main idea in
our approach of passification of the valve is to replace
these active signal bonds by passive power bonds or
power scaling transformers / gyrators. We proceed in
three steps:

Step 0: Duality transformation Transforming the
spool dynamics portion of the bond graph in Fig. 6 us-
ing the duality relationship, we obtain the bond graph
in Fig. 7.

Step 1: Create a desired bond graph by first replac-
ing active signal bonds and modulated effort / flow
sources by power scaling transformers.
The power scalings γ1, γ2 of the two PTF’s and the
modulation factor r2 of the PTF that replaces the “in-
tegrator" signal bond are to be determined later. The
modulation factor of r1 of the PTF in the xv induced
signal bond must be chosen to be Kq � γ1 to preserve
the meaning of the flow variable at the “1" junction to
remain to be xv.

Notice that dualization step in Step 0 can be avoided if
we choose to replace the active bonds by PGY instead
of PTF . We prefer to use PT F because they reduce to
simple power bonds when both the modulation factor
and the power scaling are unity. In this sense, they are
more natural.

Step 2: Add other regular or power scaling bond
graph elements.
One possibility is to add an effort source F #x at the
“1" node as an auxiliary control input, and add a R-
element "B" at the left hand most "0" junction. The re-
sulting bond graph is shown in Fig. 8. Notice that Fig.
8 is a bond graph with power scaling components but
is singly connected at these components. Therefore by
Theorem 1, the system represented by this bond graph
is passive with respect to a supply rate:

s
�
F #x � PL � xv � QL �"� γ1F #xxv  PLQL

�
Step 3: Determine the appropriate spool dynamics
that realize the desired bond graph.
Label the effort variable in the 0 junction by z. Then,
according to the bond graph in Fig. 8, the dynamics of
xv and of z are given by:

γ
1

γ
2 1

I:1

xv PTF(r1,   ) 0 Se : PL

R: Kt

PTF(r2,    )0

C:m

z

Se: Fx’

R:1/B

Fig. 8. Desired power scaling bond graph representa-
tion of 4-way directional control valve with ac-
tive bonds replaced by PTF / PGY.

ẋv � 1
r2

z � �
F #x  r1PL � (12)

mż �$ 1
γ2r2

xv  Bz (13)

Notice that (12) gives the transformation z given by:

z
r2
� ẋv  � F #x  r1PL � �

Differentiating (12) and utilizing (13), we obtain the
spool dynamics necessary to realize the dynamics of
the bond graph to be

mẍv � m
d
dt

�
F #x  r1PL �% B

z
r2
 1

γ2r2
2

xv
�

Substituting the expression for z, we have:

mẍv �& Bẋv  1
γ2r2

2

xv  B
�
F #x  r1PL � � m

d
dt

�
F #x  r1PL � �

(14)

Comparison between (14) and (9) suggests that the
ideal passification control law should be of the form:

F �' Bẋv  Kxv  B
�
F #x  r1PL � � m

d
dt

�
F #x  r1PL ���

(15)

where K � 1 �)( γ2r2
2 * . Consider now the closed loop

system with
�
Fx � xv � and

�
PL � QL � as the input port

variables. Following the proof of Theorem 1, we can
choose

W � γ1γ2
m
2

z2 � γ1

2
x2

v (16)

to be the storage function of the system, so that the
system can be shown to be passive with respect to the
supply rate:

svalve

�
F #x � PL � xv � QL � : � γ1F #xxv  PLQL

�
Step 4: Adding robustness
The control law requires estimating the derivative
of F #x  r1PL. Generally, there will be an estimation
error which can be considered flow source at the
“0" junction. To combat its effect on passivity, we
can add a dissipative term to ensure that the system
dissipates more energy than it might possibly gain
from the estimation error (Fig. 9). Assuming that we
can estimate the bound for the estimation error:+++++ ddt

�
F #x  r1PL �%-, ddt

�
F #x  r1PL � +++++ � berr � (17)
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Fig. 9. Bond graph of passified valve with robustness
modification and estimation error.

where .d � dt
��� � is the estimate of the derivative of

the argument, the passification control law can be
modified to include the term:

Frob �$ msgn
�
z � berr

�
This ensures that Frobz � Error

�
z � 0 for any esti-

mation error Error
��� � (the signal inside / � / in (17))

satisfying its assumed bound.

Let γ � 0 and A � 0 be two constants. If we choose,

r1 � A
B
� γ1 � Kq � r1 � KqB � A;

r2 � 1 � γ2 � 1 � � γB ���
and define Fx : � B

�
F #x , then the active passification

control law in (Li 2000) is recovered exactly.

The closed loop transfer function of the valve passified
using this set of parameters is of the form,

xv
�
s �0� s � B � m

B 1 s � s � B � m � � γB � m 2 1Fx
�
s �� APL

�
s �32 �

(18)

The bond graph in Fig.8 seems to depend on five
parameters, r1 � γ1 � r2 � γ2 and B. However, there are 2
constraints, namely, r1γ1 must equal Kq, and γ2 and
r2 appears only K � 1 �4( γ2r2

2 * . Therefore, only 3 pa-
rameters can be used independently to adjust the pas-
sification control law. The bond graph in Fig. 8 is ex-
actly equivalent to the original passification algorithm,
parameterized by A, B and γ or K � 1 � � γB � . Notice
that A, B and K have physical interpretations of area
for load pressure feedback, spool damping coefficient,
and spool centering spring rate respectively.

6. GENERALIZATION

The bond graph approach offers potentially new ways
to passify the valve. For example, an alternate bond
graph structure can be used. So, if instead of the bond
graph in Fig. 8, the bond graph in Fig. 10 in which
a general admittance Y

�
s � as well as an additional

input F1 are attached to the “0" node can be imposed,
and a general impedance Z

�
s � and an input Fx are

attached to the “1" node. The generalized structure
may alleviate the tradeoff between dissipativeness and
bandwidth that the original passified valve structure
has. From (18), we see that to achieve large band-
width, one should use a large B. However, this also
contributes to small gains from Fx  APL to xv, leading
to excessive apparent energy loss. In an haptics envi-
ronment, energy dissipation appear as a damping term
(see (Li and Krishnaswamy 2001)) which adversely
affects the way the human perceives and distinguishes

γ
1

γ
2 1 PTF(r1,   ) 0 Se : PL

R: Kt

PTF(r2,    )0Y(s)
z

Fx

xv

Z(s)

I:1C:m

Sf: F1

Fig. 10. Alternate bond graph structures for passifica-
tion

the external environment. The flexibilities afforded by
the different structures and the possibility of using
dynamic elements may be helpful in alleviating such
limitations by shaping the frequency response of the
passified valve. These issues will be investigated in the
future.

7. CONCLUSION

In this paper, we investigated the passivity property
and the passification of a directional hydraulic control
valve from a bond graph perspective. In addition, two
bond elements - power scaling transformers / gyra-
tors are introduced. It is shown that following several
bondgraph transformations and after the replacements
of signal bonds by power scaling transformers and gy-
rators, the previously discovered passification control
law for the valve can be recovered and generalized.
This methodology may be useful for the passivity
analysis and passification of other control systems.
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