
AN ARCHITECTURE DESCRIPTION LANGUAGE
FOR IN-VEHICLE EMBEDDED SYSTEM DEVELOPMENT

Jean-Pierre Elloy(1), Françoise Simonot-Lion(2)

(1) IRCCyN (UMR CNRS 6597) - ECN
B.P 92101 44321 Nantes CEDEX 03- France

 (2) LORIA (UMR CNRS 7503) – INPL
2 avenue de la Forêt de Haye - 54516 Vandoeuvre-les-Nancy-CEDEX- France

Jean-Pierre.Elloy@irccyn.ec-nantes.fr, simonot@loria.fr

Abstract. This paper presents the AEE project (Embedded Electronic Architecture), a
French cooperative research and development program whose purpose is to specify new
solutions for in-vehicle embedded system development. The Architecture
Implementation Language (AIL_Transport) has been defined to specify and describe
precisely any vehicle electronic architecture. This language supports the AEE design
process, and is used by all designers as the backbone of the architecture development.
Finally it is used to define reusable architecture objects. Copyright © 2002 IFAC

Keywords: Distributed computer control system, Embedded systems, Architectures,
Modelling, Concurrent engineering, Software project management, Automotive control

1. INTRODUCTION

1.1. Context

Currently, the part of embedded electronics in
domestic cars is rapidly increasing (annual growth
rate of 10%) due to the electronic injection systems,
automatic cruise control, advances in comfort and
safety. Moreover, using electronic functions in
braking, active suspension, steering functionalities
implies the respect of hard timing and fault-tolerant
constraints. So the design of electronic systems starts
defining eligible systems, i.e. satisfying these
constraints, then producing the best one according to
cost criteria. Consequently, design and development
of such embedded systems induce new
ì multipartnerî cooperation between carmaker(s) and
OEM supplier(s).
In this context, AEE Project1 is a French cooperative
research and development program whose purpose is
to specify new solutions for in-vehicle embedded
system development (AEE, 1999). The french
acronym AEE means ì Embedded Electronic
Architectureî.

1 This work is granted by the French Under-Ministry
for Industry. It involves French carmakers (PSA,
RENAULT), OEM suppliers (SAGEM, SIEMENS,
VALEO), EADS LV company and research centers
(INRIA, IRCCyN, LORIA)

1.2. Main problems

From dedicated component to system architecture:
Nowadays, most embedded sub-systems (hardware
and software) are separately defined and developed.
Each one is dedicated to a single functionality and is
designed and tested as closed systems by an OEM
supplier according to the carmakers specification
requirements. Consequently, any design is specific to
the developed application, and components are not
easily reusable for subsequent projects. Moreover, as
hardware and software resources are specifically
defined for each functionality, embedded computers
are costly over-sizing. Problems addressed by this
state are the characterization of the basic embedded
architecture components and the perimeter definition
of the re-usable elements.
To reduce costs and optimize the use of hardware
elements, AEE project defines a specific develop-
ment method of embedded system. In the first step of
this method, functionalities are defined and validated
independently of their implementation. Then an
allocation mechanism maps the specified functions
onto the computers of the embedded architecture.
Finally, local task execution and frame transmission
are optimized. With this approach, capitalization is
therefore no longer focalized on computers, but on
the implemented functions through validated
hardware and software modules.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

figure 1 Development process activities

A cooperative development process: Strong
cooperation between OEM suppliers and carmakers
in the design process implies the development of a
specific concurrent engineering approach. In order to
specify this process, synchronization rendezvous
across the cooperative development model has to be
identified and information exchanged at these points
must be characterized. Furthermore, a unique syntax
of the exchanged information has to be defined. For
this, the AEE project has specified a business model
designed to the architecture development together by
carmaker(s) and OEM supplier(s).

Quality improvement: Performance of a vehicle
embedded system may be evaluated from different
points of view, according to the analyses of whole or
parts of the system necessary at each development
step. Usually carmakers attempt to optimize the
number of ECUs used to implement the vehicle
functionalities. Futhermore, system designers attempt
to optimize performances of communication
networks. Finally, OEM suppliers have to
demonstrate their COTS are compliant with the
carmaker requirements, etc. The AEE approach
improves these different analyses and optimizations
enabling the connection of various industrial and
academic software tools to the architecture
description. These tools are dedicated to analyze,
test, simulate, validate, comment, and generate code
of the described electronic architecture. For this,
every tool extract a specific and coherent model from
the architecture description by means a repository
integrating all the pertinent data of the architecture
modelling. This repository is the skeleton of the AEE
development process, as shown in figure 1.

In order to build this repository, a language to specify
any vehicle electronic architecture has been defined.
It is called Architecture Implementation Language
(AIL_Transport). The AIL_Transport language
integrates the AEE design process, and thus is used
by all designers as the backbone of the architecture
development. Moreover, AIL is the ìsourceî
language to define the reusable architecture objects.
Section 2 presents a brief state of the art of the
architecture description languages. The AIL language
is described in section 3 while section 4 shows how
the underlying concepts are prototyped. Finally,
section 5 concludes this presentation.

2. ARCHITECTURE DESCRIPTION
LANGUAGES

In computer science, architecture description is a
well-known technique that was largely explored by
studies on development of the Architecture Descrip-
tion Language (ADL) (Taylor and Medvidovic,
1997) and on modularity principles that led to the
object approach. But these techniques cannot be
entirely adequate to the specification of vehicle
electronic architectures because they do not include
the specification of all devices integrated in such
architectures (organs, sensors, actuators, computers,
networks). Moreover these ADL generally donít
merge temporal characteristics into the hardware and
software component descriptions, and then do not
allow real-time analysis of the architectures. Note:
these possibilities are partially integrated in METAH,
but only for applications without network communi-
cations (Vestal, 1993; Vestal, 1995). Moreover, in
the current solutions, some limitations appear in the
analysis of ADL architecture models. For example,

Validation toolValidation tool

Test generator toolTest generator tool

Specification toolSpecification tool

((StatemateStatemate, ...), ...)

development

System
 specification

System
 design

 System
validation

 System
integrationValidation toolValidation tool

Mapping toolMapping tool

Performance Performance

evaluation toolevaluation tool

TesterTester

calibration toolcalibration tool

CodeCode
Code analyserCode analyser

Code generatorCode generator

Architecture
description

simulation techniques were proposed in RAPID
using the POSET formalism (Luckham, 1996),
whereas model checking is used in SAM (He, et al.;
1999) or in WRIGHT (Allen and Garlan, 1997), but
all these methods are based on simplified models of
hardware component, insufficiently accurate to
evaluate real-time performances of the architectures.
Furthermore these techniques do not elaborate a
specific description of architecture at each step of its
development and thus are inadequate to support a
continuous development process of architecture from
the requirement specification to the code validation.

The object-oriented modelling is another technique to
specify re-use constraints. This technique often is
used in order to specify the software components,
possibly to generate their code (Gamma, et al.,
1997). UML (Unified Modelling Language) has been
defined by OMG as a general object-oriented
modelling language, and a lot of industrial software
tools supporting UML syntax are currently available.
At this moment, extensions of UML are submitted to
OMG in order to introduce the specification of
temporal characteristics (Terrier and GÈrard, 2000)
and to improve the model analysis (Mellor, 2000;
Miguel, et al., 2000)).
Therefore, in order to take advantages of both ADL
and object-oriented approach, AIL has been defined
as a modelling language dedicated to the
specification of architectures described as an
assembly of standard components. Every component
is an instance of class belonging to a generic model,
and include all pertinent characteristics necessary to
the subsequent analysis of the whole architecture:
interaction consistency, logical behavior, real-time
performances and fault tolerant properties. AIL is
formalized using UML syntax.

3. ARCHITECTURE IMPLEMENTATION
LANGUAGE (AIL)

3.1. Abstraction level concept

Using AIL_Transport, any designer describes the
representation of an embedded architecture according
to five different levels of abstraction. Each level
models a particular point of view of the architecture.
Entities specified at high levels (ìvehicle projectî
level and ìfunctionalî level) are abstract components.
Entities specified at low levels are, on the one hand,
ECUs and communication networks in the
ìhardwareî level, on the other hand, the software and
the organs (sensors and actuators) in the ìsoftwareî
level and the ìoperationalî level. At each level the
designer describes the architecture as an assembly of
objects instanced from predefined classes; then he
specifies interactions between these objects using
predefined connection types. The Fig .2 illustrates
these levels and their relationships. The development
process associated to this representation links
components introduced at different levels.

figure 2 Architectures and main classes

3.2. Vehicle level and functional level

Vehicle Project Level. The upper level describes an
embedded application from a vehicle point of view.
At this level, objects shall represent services required
by a vehicle (ABS, cruise control, air conditioning,
etc), the different variant of these services (manual or
automatic climate control system, for example) and
the set of vehicle versions ìon the shelfî. Five classes
are used to describe this architecture level: Vehicle
project, Vehicle type, Vehicle,
Service, Variant. Mainly, these classes
document the architecture and support the project
validation in terms of model coherence.

Functional Level. After building a validated vehicle
model, the functional level describes one (or several)
graph of elementary functional components realizing
the services specified at the vehicle project level.
Every graph of these components is specified
disregarding the distribution and implementation
aspects. This level is described using usual
specification notations (data flow diagram, state
machine diagram, object diagram), methods and
tools. The model supports a hierarchical specification
of functions and flows. Function, Functional
Flow and Functional Architecture are the
main classes used to build graphs of elementary
functions. Documentation, formal validation and test
generation are the main process activities fulfilled at
this step.

3.3. Software level and hardware level

Hardware Level. This level models the electronic
components of architecture as a set of processors,
micro-controllers, electronic devices connected by
networks. The main classes are
- Operating Hardware Objects whose

main subclasses are ECU (Electronic Control Unit
for the computation nodes) and Network,

- Dependent Software Component. These
components are closely linked to hardware devices:
Network Protocol, COM BSC, OS BSC
and Driver BSC which are software components
implementing communication services, operating
system services and driver services,

Project Objects

Operational
Components

Vehicle
Project

Hardware
Architecture

Software
Architecture

Functional
Architecture

Operational
Architecture

Free
Software

Components

Dependent
Software

Components

Instrumentation
Hardware
Objects

Operating
Hardware
Objects

Functional Objects

- Hardware Architecture that specifies how
each node is connected on one or several networks.

Software Level. This level models the software subset
of the architecture. Two sets of classes are used. The
first one is derived by class refinement of the
functional architecture: the Free Software
Components (running on ìanyî node), the
Software Flow, the Instrumentation
Hardware Objects (Sensor and Actuators) and
the Software Architecture. The second set
of classes models the distribution of all software
entities. For this, Software Component are
decomposed in Logical Task communicating
using Software Input and Software
Output which are linked to Software Flow of
the functional level. Moreover, the activation policies
of Logical Tasks are specified (timed or event
triggered).

4. BUILDING AN AIL ARCHITECTURE

4.1. Major role of the software architecture

Objects modelled in the last architecture, i.e. the
operational architecture, are data (local data or data
encapsulated in network frames) and OS tasks. OS
tasks model the code of the implemented functio-
nalities. In the software architecture, this code is
specified in some attributes of the Software
Component. These attributes may describe:
� the logical behavior of the component during its

execution, production of Software Output
and consumption of Software Input,

� a temporal characterization of the Software
Component and the timing constraints to be
satisfied (periodicity, deadline, time interval),

� a dependability characterization describing
information signaling a non tolerated error and
policies to tolerate some internal errors.

These characterizations lead to the verification of
properties of the whole vehicle architectures:
� the global behavior of a software architecture

can be deduced formally from the elementary
behaviors of Software Component,

� using the temporal characterizations, an
allocation tool affects the Free Software
Component to the ECU with the satisfaction of
the timing constraints, so that processors and
networks are never saturated,

� using the dependability characterization, specific
tools evaluate the safety of whole architecture.
To improve this safety; the designer may add
new software components in the software
architecture to build fault tolerance mechanisms.
Using the same process, a designer also may
introduce working modes of architecture adding
components and data dedicated to particular
coordinated management of the functionalities.

These characterizations qualify the services provided
by a vehicle electronic architecture. That is why the

software architecture has a major role in building
architectures.
Before presenting the gathering process used to build
an architecture, the ex-nihilo building process is
described in the following subsection. The steps of
this process, ordering differently, are used in the
actual gathering process. In any case, a final
architecture is considered as achieved only when all
objects of operational architecture are defined and
when all object attributes are evaluated.

4.2. Ex-nihilo vehicle architecture building

Ex-nihilo building process doe not reuse components
issued from a previously defined architecture. From
top to bottom, this process browses the steps
presented in Fig. 3.

figure 2 Fig. 3. Ex-nihilo building process

Without validation steps and recursive iterations, the
main steps of this process are:
� the building of functional architecture,
� the decomposition of elementary functions, the

definition of devices and the specification of
data. This step leads to the software architecture,

� the parallel design of the hardware architecture
defining ECU, Networks, serial links, and the
Dependent Software Components,

� the mapping of the software architecture on the
hardware architecture to produce the operational
architecture. This mapping allocates the OS
tasks on ECU in order to satisfy the timing
constraints and to generate the configuration
tables and the frames of the networks.

4.3. Principles for building an architecture using a
“gathering” approach

The ex-nihilo building approach above does not take
into account the industrial process of gathering
preexisting architectural elements. One of the main
objective of AIL language is to permit the collection
and re-exploitation of architectural elements. Thus a
more industrial architecture building would be a
gathering of architectural elements realized by other
industrial partners or already at-hand, and possibly
their modification or the addition of new elements to
them. Therefore, the general construction phases are:
� definition of the services to be expected from the

architecture,
� consultation with the industrial leading to

acquisition of some functionalities or complete

aggregation

�������� ��
���

��

��

by hand
allocation

configuration

��

refinement
in logical

tasks

automatic
allocation

��

decomposition

design

���
������ ��
���

�������� ��
���

����������� ��
���

devices for the realization of a part or all of some
of the services,

� collection in a data base of already produced
architectural elements, the ìreused architectural
elementsî, and the ìsub-contracted architectural
elementsî,

� specification of new elements which must be
added to its architecture in order to complete the
entire set of expected services,

� choice of the hardware components and of the
communication systems able to support the sub-
contracted, reused and new architectural
elements. This step may be performed simulta-
neously with the previous steps. Some of these
hardware components may be fixed by some
industrial partners or some previous realizations,

� construction of the architecture by assembly, as
presented in the section 4.4.

At the second step of this process, the sub-contracted
architectural elements can be delivered:
� as a ìblack boxî: specifications delivered by the

supplier are limited to the service description
and the characterization of the inputs and outputs
of its element. This characterization defines the
communication format and the rate of production
(or consumption) of data at the API layer,

� as a ìgray boxî: the internal functionalities of
the elements are detailed, their internal data
exchanges and external data exchanges are
specified and their parameters can be modified.
In this case, the only hidden information is the
internally implemented code,

� as any form between the previous mentioned
ones.

In order to integrate all these cases, the industrial
building process begins with a first step specific to
each type of architectural element to include in the
architecture (sub-contracted, reused or new). The
designer can apply any order to integrate these
elements: this integration is a commutative operation.
After the preliminary steps, software architecture and
hardware architecture are defined, and the final steps
of the vehicle architecture building are those of the
ex-nihilo process.

4.4. Preliminary steps for the gathering process

To illustrate the process described above, the
following subsections present the principle of two
preliminary steps: how to add a new architectural
element to an existing architecture, and how to add a
sub-contracted ìblack-boxî architectural element to
an existing architecture.

Adding a new architectural element
The steps of the ex-nihilo process are applied to the
building of a new architectural element:
� design of the functional architecture objects:

elementary functions and vehicle data;
� design of software architecture by decom-

position of these elements.

These steps are presented on Fig. 4 in the case the
element to integrate in the architecture is a new
functional element without any associated hardware
component:

figure 3 Fig. 4. Construction of a ì new architectural
elementî

Adding a sub-contracted “ black box” architectural
element
To integrate a ìsub-contracted black box architec-
tural elementî in its architecture, the designer must
ìabstractî this element, i.e. models the element as a
set of AIL objects. This modelling is an ìexternalî
representation of the element (in terms of
functionalities, logical behavior, temporal response
time). Then, the integration becomes a concatenation
of the element representation with the set of
architectural elements which are soon created at the
software level and at the hardware level:
� adjunction of ECU, Networks and modelled

Dependent Software Components of
the sub-contracted element to the hardware
architecture,

� adjunction of the modelled Free Software
Components of the sub-contracted element to
the software architecture,

� adjunction to operational architecture of the
distribution of software entities of the sub-
contracted element onto hardware entities of the
sub-contracted element,

� if needed, abstraction of a modelled functional
architecture of the sub-contracted element from
its modelled software architecture.

This is illustrated on Fig. 5 in case of the sub-

contracted element is an ECU:

Fig. 5. How to add a ì sub-contracted elementî

4.5. Final step

After applying the preliminary steps, the final steps
of vehicle architecture building are the same as in the
ex-nihilo process:

aggregation ��

��

���������	 ������

�������� ������

decomposition

design

add

add

aggregation

��

��
adjunction

��������	

	�����
����

��������	

	���
	�����

�����	�

	�����
����

�����	
�

	���
	�����

synthesis

adjunction

synthesis synthesis

synthesis

��
�	����	

	�����
����

adjunction

�	���	�

	�����
����

� refinement of the Free Software
Components and of the Dependent
Software Components into OS tasks;

� allocation of the OS tasks onto ECUs. This
phase allocates the entities issued from the sub-
contracted and from the reused architectural
elements on their native hardware components,

� automatic allocation of the other OS tasks,
� configuration of the communication tables and

of the frames for the inter-ECU communications.
For sub-contracted or reused elements, the
decomposition into OS tasks is already done and this
operation is replaced by the direct initialization of
attributes of the sub-contracted or reused elements.
This initialization is accomplished at the time of their
integration (preliminary steps).

5. CONCLUSIONS

This paper presents an architecture description
language for specifying and describing precisely the
in-vehicle electronic embedded systems to carry out
automotive functionalities. The proposal provides a
tool to build flexible architectures facilitating the
introduction of new electronic systems in the cars of
the future. Immediate benefit of this proposal is a
significant cost reduction and increased pace in the
development of architectures. AIL_Transport has
been originally specified to develop the software
architectures embedded in vehicles; however the
proposed building and gathering process may be
generalized to other application domains such as
automatic control or electronic device structure. To
customize the proposed approach for another domain,
specific frameworks have to be defined to build
dedicated entities (function blocks, for example) as
special assemblies of AIL_Transport objects.
Associated to AIL_Transport, a development process
has been defined for defining and harmonizing the
exchanges of partial architectures between carmakers
and OEM suppliers.
Finally, these results lead to software architectures
that enable both ìsoftware / softwareî and
ìhardware / softwareî independence.

The authors would like to thank Jˆrn Migge (Loria),
Franck Gasnier and Yvon Trinquet (IRCCyN),
Xavier Hanin (PSA) and Evelyne Silva (PSA),
Bernard Bavoux, Philippe Germanicus and Ziad El
Khoury (Valeo) for their essential contributions to
the definition of the AIL language.

REFERENCES

AEE (1999), Architecture Electronique EmbarquÈe,
http://aee.inria.fr

Taylor R. N. and N. Medvidovic, (1997). A
Framework for Classifying and Comparing
Architecture Description Languages, Technical
Report, Department of Information and

Computer Science, University of California,
Irvine.

Vestal S., (1993). Scheduling and Communicating in
MetaH, in Proceedings of Real -Time System
Symposium, Rleigh-Durham (NC), p.194-200.

Vestal S., (1995). MetaH Reference Manual,
Technical Report, Honeywell Technology
Center.

Luckham D. C., (1996). Rapide: A Language and
Toolset for Simulation of Distributed Systems
by Partial Orderings of Events, in Proceedings
DIMACS Partial Order Methods Workshop IV,
Princeton University.

He X., F. Zeng and Y. Deng, (1999). Specifying
Software Connectors in SAMî, in Proceedings
of SEKE 1999

Allen R. and D. Garlan, (1997). A Formal Approach
for Architectural Connection, PhD thesis,
school of Computer Science, Carnegie-Mellon
University, Pittsburgh.

Gamma E., R. Helm, R. Johnson and J. Vlissides,
(1995). Design Patterns, Elements of Reusable
Object-Oriented Software, Addison-Wesley.

Terrier F. and S. GÈrard, (2000). Real Time System
modelling with UML: currently status and
some properties, in Proceedings of 2nd

Workshop on SDL and MSC, Col del Porte
Grenoble.

Mellor S.J., (2000). Advanced Methods and Tools for
precise UML: Visions for the future, in
Proceedings of OOPSLA, workshop UML,
Denver.

De Miguel M., T. Lambolais, S. Piekarec, S. BetgÈ-
Brezetz and J. PÈquery, (2000). Automatic
Generation of Simulation Models for the
Evaluation of Performance and Reliability of
Architectures Specified in UML, in
Proceedings of 2nd Int. Workshop on
Engineering Distributed Objects, University of
California, Davis.

Castelpietra, P., Simonot-Lion F., Song Y.-Q. and
Attia M., (2000). Performance Evaluation of a
Multiple Networked in-Vehicle Embedded
Architecture, in Proceedings WFCS’2000,
Porto.

Castelpietra, P., Simonot-Lion F., Song Y.-Q. and
Attia M., (2001). CAROSSE-Perf : a modular
approach fo simulation of in-vehicle embedded
architecture, in Proceedings ESM2001, Prague.

Migge J. and Elloy J.P., (2000). Embedded electronic
architecture, in 3rd Int. Workshop on Open
Systems in Automotive Networks, Bad
Homburg, Germany, Feb. 02-03, 2000.

