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Abstract: This paper presents a model for the selection of optimal assembly sequences for a 
product in multirobot systems. The objective of the plan is the minimization of the total as-
sembly time (makespan). To meet this objective, the model takes into account, in addition 
to the assembly times and resources for each task, the times needed to change tools in the 
robots, and the delays due to the transportation of intermediate subassemblies between 
different machines. An A* algorithm that solves the problem is also presented, which 
starts from the And/Or graph for the product (compressed representation of all feasible 
assembly plans).  Copyright © 2002 IFAC 
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1. INTRODUCTION 

Assembly planning is a very important problem in 
the manufacturing of products. It involves the identi-
fication, selection and sequencing of assembly opera-
tions, stated as their effects on the parts. The identifi-
cation of assembly operations usually leads to the set 
of all feasible assembly plans. The number of them 
grows exponentially with the number of parts, and 
depends on other factors, such as how the single 
parts are interconnected in the whole assembly, i.e. 
the structure of the graph of connections. In fact, this 
problem has been proved to be NP-complete in both 
the two-dimensional (Kavraki and Kolountzakis, 
1995) and three-dimensional (Kavraki, et al., 1995; 
Wilson, et al., 1995) cases. 

Two different approaches have been used in obtain-
ing assembly plans. At first, interactive planners 
queried the user for geometric-reasoning information 
(Bourjault, 1984; De Fazio and Whitney, 1987). 
More recently, planners work automatically from a 
geometric and relational model of the assembly 
(Homem de Mello and Sanderson, 1991b) and from a 
CAD model and other non-geometric information 
(Ames, et al., 1995; Romney, et al., 1995). 

Within this scope, the representation of assembly 
plans is an important issue. The use of And/Or 
graphs for this purpose (Homem de Mello and San-
derson, 1991a, b) is becoming one of the most stan-

dard ways of representing all possible assembly 
plans. It can be obtained by studying the opposite 
problem, that of disassembly, but maintaining the 
constraints of assembly. Most of automatic planners 
work with this strategy. The result is a representation 
which is adequate for a goal-directed approach. 
Moreover, Homem de Mello and Sanderson (1990) 
and Wolter (1992) showed that this structure is more 
efficient in most cases than other enumerative ones. 

An optimum assembly plan is now sought, selected 
from the set of all feasible assembly plans. Two 
kinds of approaches have been used for choosing an 
optimal one. One, the more qualitative, uses rules in 
order to eliminate assembly plans that includes diffi-
cult tasks or awkward intermediate subassemblies. 
Another approach, the more quantitative, uses an 
evaluation function that computes the merit of as-
sembly plans. There are various of these proposals in 
the book edited by Homem de Mello and Lee (1991), 
a monograph of the subject. 

The criterion followed in this work is the minimiza-
tion of the total assembly time (makespan) in the 
execution of the plan in a multirobot system. To meet 
this objective, we present a model which completes 
the one that was defined in a previous work (Del 
Valle and Camacho, 1996). The new model takes 
into account all factors which affect the makespan: 
an estimation of the duration of tasks; the resources 
used for them (robots and tools); the times needed for 
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changing tools in the robots; and the delays due to 
the transportation of intermediate subassemblies 
from one machine to another one.  

An A* algorithm (Pearl, 1984) for obtaining the 
"best" assembly plan is also presented. The algorithm 
starts from the And/Or graph (compressed represen-
tation of all feasible assembly plans) and the infor-
mation about each assembly task (robot and tool 
needed and assembly time), taking into account the 
delays referred in the last paragraph.  

The rest of the paper is organized as follows: Section 
2 describes the problem of assembly sequence plan-
ning, and Section 3 the model proposed. The A* 
algorithm is described in Section 4 and some of the 
results obtained are presented in Section 5. Some 
final remarks are made in the concluding section. 

2. PROBLEM STATEMENT 

The process of joining parts together to form a unit is 
known as assembly. The joining process results in 
the connection of one part with parts already assem-
bled. A sub-assembly is a group of parts having the 
property of being able to be assembled independently 
of other parts of the product. An assembly plan is a 
set of assembly tasks with ordering amongst its ele-
ments. Each task consists of joining a set of sub-
assemblies to give rise to an ever larger sub-assem-
bly. An assembly sequence is an ordered sequence of 
the assembly tasks satisfying all the ordering con-
straints. Each assembly plan corresponds to one or 
more assembly sequences. 

An And/Or graph is a representation of the set of all 
assembly plans possible for a product. The Or nodes 
correspond to sub-assemblies, the top node corre-
sponds to the whole assembly, and the leaf nodes 
correspond to the individual parts. Each And node 
corresponds to the assembly task joining the sub-
assemblies of its two final nodes producing the sub-
assembly of its initial node. In the And/Or graph 
representation of assembly plans, an And/Or path 
whose top node is the And/Or graph top node and 
whose leaf nodes are the And/Or graph leaf nodes is 
associated to an assembly plan, and is referred to as 
an assembly tree. An important advantage of this 
representation, used in this work, is that the And/Or 
graph shows the independence of assembly tasks that 

can be executed in parallel. Figure 1 shows an exam-
ple of this representation. And nodes are omitted. 

This work is centered on the problem of choosing the 
best assembly plan, that is, one of the And/Or trees of 
the And/Or graph. The majority of approaches used 
up to now make this selection in a planning phase in 
which neither the assembly system, nor how the as-
sembly tasks within it will be materialized, is taken 
into account. 

3. THE PLANNING MODEL 

This work takes into account the physical realization 
of the assembly. It is assumed that the assembly tasks 
corresponding to the And/Or graph have been evalu-
ated separately, in the sense of estimating the re-
sources necessary for their realization (robots, tools, 
fixtures...) as well as their approximate duration 
times. For an And/Or graph with a large number of 
nodes this is not an easy task, and the help of an 
computer-aided system is necessary. The nodes cor-
responding to tasks which are not realizable as the 
adequate tools are not available are eliminated from 
the And/Or graph. 

Another factor taken into account here, is the time 
necessary for changing the tools in the robots, which 
is of the same order as the execution time of the as-
sembly tasks and therefore cannot be disregarded as 
in Parts manufacturing. ( ), ,cht R T T ′∆  will denote 
the time needed for installing the tool T in the robot 
R if the tool T' was previously installed. Notice that 
any change of configuration in the robots can be 
modelled in this way.  

Another question is the transportation of parts and 
subassemblies, that could affect the total assembly 
time. The proposed model supposes a well-
dimensioned system, with a perfect planning when 
executing the assembly plan, so that, when a part 
would be required in a robot for executing an assem-
bly operation, it will be present there. The same thing 
cannot be assured for an intermediate subassembly, 
because it could be built in a robot and required im-
mediately in another one to form another subassem-
bly. ( ), ,mov SA R R′∆  will denote the time needed for 
transporting the subassembly SA from robot R to 
robot R'.  

The model considers only one combination dura-
tion-robot-tool for an assembly task. However, it can 
be extended easily when there are various ways for 
assembling a subassembly from the same compo-
nents. It is enough to suppose that they corresponds 
to different assembly tasks, that is, we would add 
some alternative And nodes into the And/Or graph for 
the product.  

With this model, the choice is not limited to the as-
sembly plan, but also it can be specify when each 
task is to be carried out in order to minimize the 
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   Fig. 1. The And/Or graph for the product ABCDE.



     

makespan (some tasks which could potentially be 
carried out in parallel have to be delayed because 
they need common resources). 

The results derived from this model can be used in 
different stages of the whole planning process, from 
the design of the product and of the manufacturing 
system, to the final execution of the assembly plan.  

4. ALGORITHM DESCRIPTION 

As has been stated previously, the algorithm is cen-
tered on the choice of an assembly plan for a com-
plete product in a multiple-robot system, where the 
resources necessary for carrying out each task repre-
sented in the And/Or graph (robots, tools...) appear as 
data, as well as the times necessary for their exe-
cution. As well as the choice of assembly plan, the 
execution orders for the tasks in each robot are speci-
fied by an analysis of their execution in parallel in 
the assembly system given. 

Because of the set-up of the And/Or graph, the as-
sembly problem can be studied, starting from the 
final situation and going towards the initial one. 

The algorithm has two well-differentiated parts: one of 
them studies the sequential execution of assembly 
tasks, and the other solves the parallel execution of 
assembly tasks (the representation through the And/Or 
graph allows a natural study of this stage). This is 
actually the most complex section, because the execu-
tion of tasks on one side of the global assembly is not 
independent of the rest, and can influence the execu-
tion of tasks in the other part of assembly. 

Heuristic functions based on the execution of tasks 
taking only from the part of the tree below the node, 
and the time remaining for the use of tools and robots 
(supposing the minimum number of tool changes, in 
order to maintain the algorithm as A*) has been used 
in order to expand the minimum number of nodes 
and avoid redundant nodes. 

Because there is an upper limit to the makespan, the 
parallel algorithm does not need to finish when the 
best expected cost is higher than that limit. 

The algorithm is used off-line to obtain an optimum 
first assembly plan. However, as the assembly pro-
cess evolves, it can be used on-line to correct the 
changes which could have occurred during the as-
sembly process, by pruning the And/Or graph of the 
subassemblies already performed.  

4.1. Sequential Execution of Tasks 

An A* algorithm to search for the global assembly 
plan can be implemented in the following way. Be-
ginning with an initial node whose state represents 
the complete assembly realization, and therefore 
corresponds to the root node of the And/Or graph 
(complete assembly), all its possible successors are 
generated, whose states will represent the execution 

at the end of the assembly process of the tasks corre-
sponding to the And nodes coming from the root 
node of the And/Or graph. 

Two types of nodes may be generated, depending on 
the destination Or nodes of each chosen And node. If 
at least one of these Or nodes corresponds to an indi-
vidual part, the assembly process will continue to be 
sequential, and the node resulting from the expansion 
may be treated as the initial node, where the node 
corresponding to the non-trivial sub-assembly will 
take the place of the root node. 

If, on the other hand, the application of the task starts 
from two sub-assemblies each with various parts, in 
the resulting plan (or plans in general) the task ar-
rangement is not totally specified (various possible 
sequences exist for each assembly plan), or tasks 
may be carried out in parallel. There is also an inter-
dependence amongst the sub-assemblies, because 
they potentially use the same set of resources. The 
treatment of this type of nodes has therefore to be 
undertaken in a different way from those correspond-
ing to sequential task execution, and this will connect 
with the second part of this algorithm. 

The evaluation function used for the nodes generated 
in this part is 

 ( ) ( ) ( )f n g n h n= +  (1) 

g(n) being the time accumulated in the execution of 
tasks corresponding to the state of node n, including 
the delays in the necessary tool changes and in the 
transportation of intermediate subassemblies, and 
h(n) being an optimistic estimation of the remaining 
time in which to complete the global process. (h(n) 
should be a lower bound of the remaining time for 
the algorithm to be A*.) Due to the fact that various 
different plans (and therefore different task sets 
which would complete the assembly process) may be 
reached from node n, a detailed study would be com-
putationally costly, and therefore 

 ( )2( ) log ( ) 1h n durMin a n= ⋅ +    (2) 

has been chosen, a(n) being the number of tasks nec-
essary to complete the assembly plan, and durMin 
the minimum duration of tasks. As can be seen, it is 
also impossible to determine the minimum number of 
tool changes without a detailed study, and therefore 
when estimating h(n) it is assumed to be zero. 

All the assembly trees (task precedence trees) are 
obtained for the "parallel" nodes, and are studied 
separately. The function h(n) corresponding to each 
tree is defined in the following subsection. 

4.2. Parallel Execution of Tasks 

The objective of this part of the algorithm is to deter-
mine the total minimum time for the execution of the 
precedence trees obtained in the previous section. In 



     

order to do this, an A* algorithm is again used. The 
nodes of the expansion tree now present partial infor-
mation about the execution of the assembly process. 
Concretely, at each expansion step only one assem-
bly task is introduced, and its processing time will 
affect only one of the workstations, the same state 
being retained by the other workstations. 

The state corresponding to a node of the expansion 
tree is represented by using the tasks available for 
introduction in the state of the next step, termed 
"candidates", and their earliest starting times, denot-
ed est(Ji). At the same time, the last tool used is in-
cluded for each robot, denoted lastTool(Rj), as well 
as the final time of use, denoted lastTime(Rj). 

Figure 2 shows a task precedence tree, different ex-
pansion nodes and information about their corre-
sponding states. It is also accompanied by the Gantt 
charts.  

The evaluation function for the nodes obtained by 
this algorithm is similar to (1), being now g(n) the 
largest of the earliest starting times of cand(n), the 
set of candidates, and the final times of the already 
finished in n without successors. The function h(n) 
must be an optimistic estimation of the time remain-
ing, taking into account the slacks between g(n) and 
the different times describing the state of n. Two 
different heuristic functions have been defined in this 
work, taken from relaxed models of the problem in 
which some constraints have been disregarded. 

The heuristic function h1: precedence of tasks. It 
corresponds to an estimation of the time remaining if 
the interdependencies between different branches in 
the tree are not taken into account. It is looked at 
only in depth. It can be defined as follows: 

 ( )( )1 1
( )

( ) max 0, max ( ) ( , )
i

i i
cand nJ

h n h J e n J
∈

= −  (3) 

where ( , ) ( ) ( , )i ie n J g n est n J= −  (4) 

 ( )( )1 1
( )

( ) ( ) max ( ) ,
i

i mov i
J suc J

h J dur J h J J J
∈

= + + τ  (5) 

 
( ) ( )(
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, max , ( ), ( ) ,

( ), ( ), ( )
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J J J R J H J

sa J R J R J

τ = τ

∆
 (6) 

 
( ((

( ) ))
( )

1

1( , , ) max 0, max ( )

, ( ), ( ) ( )

i

i
T suc T

i

J R T h J

J R J T J h J

∈
τ = +

τ −
 (7) 

In the above expressions, n is an expansion node, J is 
an assembly task, and e(n, J) is the existing time slack. 
R(J) and T(J) are the robot and tool necessary for the 
execution of task J, and dur(J) is its duration. τ(J, R, T) 
is the added delay, due to the fact that the tool T is 
being used by robot R in task J and successors, be-
cause of the necessary tool changes. The equation (7) 
defines τ(J, R, T) when R≠R(J). In the case R=R(J), 
τ(J, R, T) is defined as ∆cht(R, T(J), T) (that could be 
zero if T=T(J)). Finally, τmov(J, J') is the delay con-
sidering the possible transportation of the intermedi-
ate subassembly generated between the execution of 
J and J', and that of the possible change of tools. 

Notice that h1(J) does not depend on the expansion 
nodes, and thus allows one to calculate a lower 
bound prior to using the A* algorithm. 

The heuristic function h2: use of resources. It corre-
sponds to an estimation of the time needed if only the 
remaining usage times of the tools in each robot are 

 

 
 

Fig. 2. A task precedence tree, some expansion nodes, and their corresponding Gantt charts. 



     

taken into account, further supposing the number of 
tool changes to be at a minimum. It can be defined as 
follows: 

 ( )2 2( ) max ( , ) ( , )i i
robots

h n h n R e n R= −  (8) 

where ( , ) ( ) ( , )e n R g n lastTime n R= −  (9) 

and h2(n, Ri ) is the minimum time of use of robot Ri 
without considering the task precedence constraints. 
If each tool is associated with only one robot, the 
calculation of h2(n, R ) is equivalent to the traveling 
salesman problem, when considering the tools not 
yet used and an initial node corresponding to the last-
used tool in the robot R: 

( )2 2
( )

( , ) ( , ) , ( )
j i

i j cht
H R J cand n

h n R h J T n R
∈ ∈

= + � ∆
� �
� �
� �
� �  (10) 

with h2(J, T ) the remaining time of usage of tool T 
by task J and its successors. The term ( ), ( )chtn R∑ ∆  
refers to the time needed for the tool changes. In the 
usual case that tool-changing times do not depend on 
the type of tool, it can be calculated easily. Without 
any precedence information, an in order to maintain 
the admissibility of the heuristic, it must be supposed 
that the remaining tools will be installed only once.  

Combination of heuristics. The heuristic functions h1 
and h2 present two different effects in calculating 
h(n). The estimation made from the first one is due to 
the most unfavorable candidate task. In the other 
hand, h2 shows an additive effect, because of the uses 
of robots by all candidate tasks. Therefore, a new 
heuristic function can be defined from the combina-
tion of both, taking the most realistic estimation: 

 ( )1 2max ( ), ( )h n h n  (11) 

Algorithm improvements. The use of A* algorithms 
presents some problems. The most important is the 
storage space that could be occupied. The algorithm 
has been adapted so that it uses a depth-first search 
periodically for finding a new solution whose value 
could be used for pruning the search tree. 

Another improvement has been done by detecting 
symmetries, so that redundant nodes are avoided. 
The next definition shows it. 

Definition: A task Ji is compatible with [including] 
task Jj if, on including this task at the following 
level, the start of Ji and that of its successors in the 
task precedence tree are not delayed. 

This definition allows the number of expanded nodes 
to be minimized. The candidate tasks compatible 
with another task included in the next level will be 
included in successive levels.  

The algorithm can be used in an off-line manner for 
obtaining an optimum initial solution for the assem-

bly process.  However, due on one hand to the flexi-
bility for modifying the convergence criteria of the 
algorithm towards a not strictly optimum solution, 
and on the other to the fact that as the assembly proc-
ess advances the resulting problem becomes smaller, 
the algorithm could be applicable on-line to modify 
either the plan or the initial sequence, in order to cor-
rect the variations with respect to the initial solution. 

5. RESULTS 

The algorithm has been tested in a variety of situa-
tions, considering different product structures (num-
ber of parts, number of connections between parts), 
different types of And/Or graphs (number of sub-
assemblies, number of assembly tasks for each sub-
assembly), and different assembly resources (number 
of robots, number of tools). The results in Tables 1-4 
correspond to a hypothetical product of 30 parts, with 
396 Or nodes and 764 And nodes in the And/Or 
graph. The number of linear sequences is about 1021. 
The tables show the effect of having more or less 
resources for assembling the product in the perform-
ance of the algorithm. The results refer to 10 differ-
ent combinations of durations and resources for as-
sembly tasks. Apart from number of nodes visited and 
execution times, they show how many times the opti-
mal solution was found by a depth-first movement (N-
Pr), how many times the algorithm did not find the 
optimal solution in 30 seconds, when the available 
memory was exhausted (N-F), and the error rate. 

6. CONCLUSIONS 

A model for the selection of optimal assembly se-
quences for a product in a generic multirobot system 
has been presented. The objective of the plan is the 
minimization of the total assembly time. To meet this 
objective, the model takes into account, in addition to 
the assembly times and resources for each task, the 
times needed to change tools in the robots, and the 
delays due to the transportation of intermediate sub-
assemblies between different workstations.  

An A* algorithm is also presented, with some heuris-
tic functions defined from relaxed models for the 
problem. The algorithm has been adapted in order to 
improve its computational efficiency. Some results 
have been presented, showing the influence of having 
different number of resources when executing the 
assembly plan. 
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Table 1 Results for 2 machines and 2 tools/machine 

 
Nodes visited Time (ms) Heuristic 

Ave Max Min Ave Max Min 
N-Pr N-F % 

Error 
h1 41492 89189 2520 19429 30590 180 4 6 0,990
h2 9316 42775 32 1422 6420 0 5 0 0,000

max(h1, h2) 16385 71585 32 4291 30050 0 4 1 0,248
 

Table 2 Results for 2 machines and 4 tools/machine 
 

Nodes visited Time (ms) Heuristic 
Ave Max Min Ave Max Min 

N-Pr N-F % 
Error 

h1 40093 56108 3020 25025 30930 710 2 8 2,648
h2 5311 19398 267 790 4230 50 1 0 0,000

max(h1, h2) 5078 19009 387 1143 4450 60 1 0 0,000
 

Table 3 Results for 4 machines and 2 tools/machine 
 

Nodes visited Time (ms) Heuristic 
Ave Max Min Ave Max Min 

N-Pr N-F % 
Error 

h1 16905 85540 32 2357 11700 0 1 0 0,000
h2 2751 7195 32 263 710 0 2 0 0,000

max(h1, h2) 804 2098 32 99 220 0 2 0 0,000
 

Table 4 Results for 4 machines and 4 tools/machine 
 

Nodes visited Time (ms) Heuristic 
Ave Max Min Ave Max Min 

N-Pr N-F % 
Error 

h1 22697 93376 32 6084 30530 0 4 1 0,302
h2 1808 5907 128 197 660 0 1 0 0,000

max(h1, h2) 1765 5907 32 278 980 0 2 0 0,000
 


