

A MODEL FOR ASSEMBLY SEQUENCE PLANNING
IN A MULTIROBOT ENVIRONMENT

C. Del Valle*, E. F. Camacho** and M. Toro*

*Univ. Sevilla, Dept. Lenguajes y Sistemas Informáticos
**Univ. Sevilla, Dept. Ingeniería de Sistemas y Automática

Abstract: This paper presents a model for the selection of optimal assembly sequences for a
product in multirobot systems. The objective of the plan is the minimization of the total as-
sembly time (makespan). To meet this objective, the model takes into account, in addition
to the assembly times and resources for each task, the times needed to change tools in the
robots, and the delays due to the transportation of intermediate subassemblies between
different machines. An A* algorithm that solves the problem is also presented, which
starts from the And/Or graph for the product (compressed representation of all feasible
assembly plans). Copyright © 2002 IFAC

Keywords: Assembly robots; flexible manufacturing systems; industrial robots; artificial
intelligence; optimization problems; scheduling algorithms

1. INTRODUCTION

Assembly planning is a very important problem in
the manufacturing of products. It involves the identi-
fication, selection and sequencing of assembly opera-
tions, stated as their effects on the parts. The identifi-
cation of assembly operations usually leads to the set
of all feasible assembly plans. The number of them
grows exponentially with the number of parts, and
depends on other factors, such as how the single
parts are interconnected in the whole assembly, i.e.
the structure of the graph of connections. In fact, this
problem has been proved to be NP-complete in both
the two-dimensional (Kavraki and Kolountzakis,
1995) and three-dimensional (Kavraki, et al., 1995;
Wilson, et al., 1995) cases.

Two different approaches have been used in obtain-
ing assembly plans. At first, interactive planners
queried the user for geometric-reasoning information
(Bourjault, 1984; De Fazio and Whitney, 1987).
More recently, planners work automatically from a
geometric and relational model of the assembly
(Homem de Mello and Sanderson, 1991b) and from a
CAD model and other non-geometric information
(Ames, et al., 1995; Romney, et al., 1995).

Within this scope, the representation of assembly
plans is an important issue. The use of And/Or
graphs for this purpose (Homem de Mello and San-
derson, 1991a, b) is becoming one of the most stan-

dard ways of representing all possible assembly
plans. It can be obtained by studying the opposite
problem, that of disassembly, but maintaining the
constraints of assembly. Most of automatic planners
work with this strategy. The result is a representation
which is adequate for a goal-directed approach.
Moreover, Homem de Mello and Sanderson (1990)
and Wolter (1992) showed that this structure is more
efficient in most cases than other enumerative ones.

An optimum assembly plan is now sought, selected
from the set of all feasible assembly plans. Two
kinds of approaches have been used for choosing an
optimal one. One, the more qualitative, uses rules in
order to eliminate assembly plans that includes diffi-
cult tasks or awkward intermediate subassemblies.
Another approach, the more quantitative, uses an
evaluation function that computes the merit of as-
sembly plans. There are various of these proposals in
the book edited by Homem de Mello and Lee (1991),
a monograph of the subject.

The criterion followed in this work is the minimiza-
tion of the total assembly time (makespan) in the
execution of the plan in a multirobot system. To meet
this objective, we present a model which completes
the one that was defined in a previous work (Del
Valle and Camacho, 1996). The new model takes
into account all factors which affect the makespan:
an estimation of the duration of tasks; the resources
used for them (robots and tools); the times needed for

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

changing tools in the robots; and the delays due to
the transportation of intermediate subassemblies
from one machine to another one.

An A* algorithm (Pearl, 1984) for obtaining the
"best" assembly plan is also presented. The algorithm
starts from the And/Or graph (compressed represen-
tation of all feasible assembly plans) and the infor-
mation about each assembly task (robot and tool
needed and assembly time), taking into account the
delays referred in the last paragraph.

The rest of the paper is organized as follows: Section
2 describes the problem of assembly sequence plan-
ning, and Section 3 the model proposed. The A*
algorithm is described in Section 4 and some of the
results obtained are presented in Section 5. Some
final remarks are made in the concluding section.

2. PROBLEM STATEMENT

The process of joining parts together to form a unit is
known as assembly. The joining process results in
the connection of one part with parts already assem-
bled. A sub-assembly is a group of parts having the
property of being able to be assembled independently
of other parts of the product. An assembly plan is a
set of assembly tasks with ordering amongst its ele-
ments. Each task consists of joining a set of sub-
assemblies to give rise to an ever larger sub-assem-
bly. An assembly sequence is an ordered sequence of
the assembly tasks satisfying all the ordering con-
straints. Each assembly plan corresponds to one or
more assembly sequences.

An And/Or graph is a representation of the set of all
assembly plans possible for a product. The Or nodes
correspond to sub-assemblies, the top node corre-
sponds to the whole assembly, and the leaf nodes
correspond to the individual parts. Each And node
corresponds to the assembly task joining the sub-
assemblies of its two final nodes producing the sub-
assembly of its initial node. In the And/Or graph
representation of assembly plans, an And/Or path
whose top node is the And/Or graph top node and
whose leaf nodes are the And/Or graph leaf nodes is
associated to an assembly plan, and is referred to as
an assembly tree. An important advantage of this
representation, used in this work, is that the And/Or
graph shows the independence of assembly tasks that

can be executed in parallel. Figure 1 shows an exam-
ple of this representation. And nodes are omitted.

This work is centered on the problem of choosing the
best assembly plan, that is, one of the And/Or trees of
the And/Or graph. The majority of approaches used
up to now make this selection in a planning phase in
which neither the assembly system, nor how the as-
sembly tasks within it will be materialized, is taken
into account.

3. THE PLANNING MODEL

This work takes into account the physical realization
of the assembly. It is assumed that the assembly tasks
corresponding to the And/Or graph have been evalu-
ated separately, in the sense of estimating the re-
sources necessary for their realization (robots, tools,
fixtures...) as well as their approximate duration
times. For an And/Or graph with a large number of
nodes this is not an easy task, and the help of an
computer-aided system is necessary. The nodes cor-
responding to tasks which are not realizable as the
adequate tools are not available are eliminated from
the And/Or graph.

Another factor taken into account here, is the time
necessary for changing the tools in the robots, which
is of the same order as the execution time of the as-
sembly tasks and therefore cannot be disregarded as
in Parts manufacturing. (), ,cht R T T ′∆ will denote
the time needed for installing the tool T in the robot
R if the tool T' was previously installed. Notice that
any change of configuration in the robots can be
modelled in this way.

Another question is the transportation of parts and
subassemblies, that could affect the total assembly
time. The proposed model supposes a well-
dimensioned system, with a perfect planning when
executing the assembly plan, so that, when a part
would be required in a robot for executing an assem-
bly operation, it will be present there. The same thing
cannot be assured for an intermediate subassembly,
because it could be built in a robot and required im-
mediately in another one to form another subassem-
bly. (), ,mov SA R R′∆ will denote the time needed for
transporting the subassembly SA from robot R to
robot R'.

The model considers only one combination dura-
tion-robot-tool for an assembly task. However, it can
be extended easily when there are various ways for
assembling a subassembly from the same compo-
nents. It is enough to suppose that they corresponds
to different assembly tasks, that is, we would add
some alternative And nodes into the And/Or graph for
the product.

With this model, the choice is not limited to the as-
sembly plan, but also it can be specify when each
task is to be carried out in order to minimize the

A B C D E

A B C D

A C D

A B A C A D C D B E

A B C D E

 Fig. 1. The And/Or graph for the product ABCDE.

makespan (some tasks which could potentially be
carried out in parallel have to be delayed because
they need common resources).

The results derived from this model can be used in
different stages of the whole planning process, from
the design of the product and of the manufacturing
system, to the final execution of the assembly plan.

4. ALGORITHM DESCRIPTION

As has been stated previously, the algorithm is cen-
tered on the choice of an assembly plan for a com-
plete product in a multiple-robot system, where the
resources necessary for carrying out each task repre-
sented in the And/Or graph (robots, tools...) appear as
data, as well as the times necessary for their exe-
cution. As well as the choice of assembly plan, the
execution orders for the tasks in each robot are speci-
fied by an analysis of their execution in parallel in
the assembly system given.

Because of the set-up of the And/Or graph, the as-
sembly problem can be studied, starting from the
final situation and going towards the initial one.

The algorithm has two well-differentiated parts: one of
them studies the sequential execution of assembly
tasks, and the other solves the parallel execution of
assembly tasks (the representation through the And/Or
graph allows a natural study of this stage). This is
actually the most complex section, because the execu-
tion of tasks on one side of the global assembly is not
independent of the rest, and can influence the execu-
tion of tasks in the other part of assembly.

Heuristic functions based on the execution of tasks
taking only from the part of the tree below the node,
and the time remaining for the use of tools and robots
(supposing the minimum number of tool changes, in
order to maintain the algorithm as A*) has been used
in order to expand the minimum number of nodes
and avoid redundant nodes.

Because there is an upper limit to the makespan, the
parallel algorithm does not need to finish when the
best expected cost is higher than that limit.

The algorithm is used off-line to obtain an optimum
first assembly plan. However, as the assembly pro-
cess evolves, it can be used on-line to correct the
changes which could have occurred during the as-
sembly process, by pruning the And/Or graph of the
subassemblies already performed.

4.1. Sequential Execution of Tasks

An A* algorithm to search for the global assembly
plan can be implemented in the following way. Be-
ginning with an initial node whose state represents
the complete assembly realization, and therefore
corresponds to the root node of the And/Or graph
(complete assembly), all its possible successors are
generated, whose states will represent the execution

at the end of the assembly process of the tasks corre-
sponding to the And nodes coming from the root
node of the And/Or graph.

Two types of nodes may be generated, depending on
the destination Or nodes of each chosen And node. If
at least one of these Or nodes corresponds to an indi-
vidual part, the assembly process will continue to be
sequential, and the node resulting from the expansion
may be treated as the initial node, where the node
corresponding to the non-trivial sub-assembly will
take the place of the root node.

If, on the other hand, the application of the task starts
from two sub-assemblies each with various parts, in
the resulting plan (or plans in general) the task ar-
rangement is not totally specified (various possible
sequences exist for each assembly plan), or tasks
may be carried out in parallel. There is also an inter-
dependence amongst the sub-assemblies, because
they potentially use the same set of resources. The
treatment of this type of nodes has therefore to be
undertaken in a different way from those correspond-
ing to sequential task execution, and this will connect
with the second part of this algorithm.

The evaluation function used for the nodes generated
in this part is

 () () ()f n g n h n= + (1)

g(n) being the time accumulated in the execution of
tasks corresponding to the state of node n, including
the delays in the necessary tool changes and in the
transportation of intermediate subassemblies, and
h(n) being an optimistic estimation of the remaining
time in which to complete the global process. (h(n)
should be a lower bound of the remaining time for
the algorithm to be A*.) Due to the fact that various
different plans (and therefore different task sets
which would complete the assembly process) may be
reached from node n, a detailed study would be com-
putationally costly, and therefore

 ()2() log () 1h n durMin a n= ⋅ + (2)

has been chosen, a(n) being the number of tasks nec-
essary to complete the assembly plan, and durMin
the minimum duration of tasks. As can be seen, it is
also impossible to determine the minimum number of
tool changes without a detailed study, and therefore
when estimating h(n) it is assumed to be zero.

All the assembly trees (task precedence trees) are
obtained for the "parallel" nodes, and are studied
separately. The function h(n) corresponding to each
tree is defined in the following subsection.

4.2. Parallel Execution of Tasks

The objective of this part of the algorithm is to deter-
mine the total minimum time for the execution of the
precedence trees obtained in the previous section. In

order to do this, an A* algorithm is again used. The
nodes of the expansion tree now present partial infor-
mation about the execution of the assembly process.
Concretely, at each expansion step only one assem-
bly task is introduced, and its processing time will
affect only one of the workstations, the same state
being retained by the other workstations.

The state corresponding to a node of the expansion
tree is represented by using the tasks available for
introduction in the state of the next step, termed
"candidates", and their earliest starting times, denot-
ed est(Ji). At the same time, the last tool used is in-
cluded for each robot, denoted lastTool(Rj), as well
as the final time of use, denoted lastTime(Rj).

Figure 2 shows a task precedence tree, different ex-
pansion nodes and information about their corre-
sponding states. It is also accompanied by the Gantt
charts.

The evaluation function for the nodes obtained by
this algorithm is similar to (1), being now g(n) the
largest of the earliest starting times of cand(n), the
set of candidates, and the final times of the already
finished in n without successors. The function h(n)
must be an optimistic estimation of the time remain-
ing, taking into account the slacks between g(n) and
the different times describing the state of n. Two
different heuristic functions have been defined in this
work, taken from relaxed models of the problem in
which some constraints have been disregarded.

The heuristic function h1: precedence of tasks. It
corresponds to an estimation of the time remaining if
the interdependencies between different branches in
the tree are not taken into account. It is looked at
only in depth. It can be defined as follows:

 ()()1 1
()

() max 0, max () (,)
i

i i
cand nJ

h n h J e n J
∈

= − (3)

where (,) () (,)i ie n J g n est n J= − (4)

 ()()1 1
()

() () max () ,
i

i mov i
J suc J

h J dur J h J J J
∈

= + + τ (5)

() ()(

())
, max , (), () ,

(), (), ()
mov i i

mov i i

J J J R J H J

sa J R J R J

τ = τ

∆
 (6)

(((

()))
()

1

1(, ,) max 0, max ()

, (), () ()

i

i
T suc T

i

J R T h J

J R J T J h J

∈
τ = +

τ −
 (7)

In the above expressions, n is an expansion node, J is
an assembly task, and e(n, J) is the existing time slack.
R(J) and T(J) are the robot and tool necessary for the
execution of task J, and dur(J) is its duration. τ(J, R, T)
is the added delay, due to the fact that the tool T is
being used by robot R in task J and successors, be-
cause of the necessary tool changes. The equation (7)
defines τ(J, R, T) when R≠R(J). In the case R=R(J),
τ(J, R, T) is defined as ∆cht(R, T(J), T) (that could be
zero if T=T(J)). Finally, τmov(J, J') is the delay con-
sidering the possible transportation of the intermedi-
ate subassembly generated between the execution of
J and J', and that of the possible change of tools.

Notice that h1(J) does not depend on the expansion
nodes, and thus allows one to calculate a lower
bound prior to using the A* algorithm.

The heuristic function h2: use of resources. It corre-
sponds to an estimation of the time needed if only the
remaining usage times of the tools in each robot are

Fig. 2. A task precedence tree, some expansion nodes, and their corresponding Gantt charts.

taken into account, further supposing the number of
tool changes to be at a minimum. It can be defined as
follows:

 ()2 2() max (,) (,)i i
robots

h n h n R e n R= − (8)

where (,) () (,)e n R g n lastTime n R= − (9)

and h2(n, Ri) is the minimum time of use of robot Ri
without considering the task precedence constraints.
If each tool is associated with only one robot, the
calculation of h2(n, R) is equivalent to the traveling
salesman problem, when considering the tools not
yet used and an initial node corresponding to the last-
used tool in the robot R:

()2 2
()

(,) (,) , ()
j i

i j cht
H R J cand n

h n R h J T n R
∈ ∈

= + � ∆
� �
� �
� �
� � (10)

with h2(J, T) the remaining time of usage of tool T
by task J and its successors. The term (), ()chtn R∑ ∆
refers to the time needed for the tool changes. In the
usual case that tool-changing times do not depend on
the type of tool, it can be calculated easily. Without
any precedence information, an in order to maintain
the admissibility of the heuristic, it must be supposed
that the remaining tools will be installed only once.

Combination of heuristics. The heuristic functions h1
and h2 present two different effects in calculating
h(n). The estimation made from the first one is due to
the most unfavorable candidate task. In the other
hand, h2 shows an additive effect, because of the uses
of robots by all candidate tasks. Therefore, a new
heuristic function can be defined from the combina-
tion of both, taking the most realistic estimation:

 ()1 2max (), ()h n h n (11)

Algorithm improvements. The use of A* algorithms
presents some problems. The most important is the
storage space that could be occupied. The algorithm
has been adapted so that it uses a depth-first search
periodically for finding a new solution whose value
could be used for pruning the search tree.

Another improvement has been done by detecting
symmetries, so that redundant nodes are avoided.
The next definition shows it.

Definition: A task Ji is compatible with [including]
task Jj if, on including this task at the following
level, the start of Ji and that of its successors in the
task precedence tree are not delayed.

This definition allows the number of expanded nodes
to be minimized. The candidate tasks compatible
with another task included in the next level will be
included in successive levels.

The algorithm can be used in an off-line manner for
obtaining an optimum initial solution for the assem-

bly process. However, due on one hand to the flexi-
bility for modifying the convergence criteria of the
algorithm towards a not strictly optimum solution,
and on the other to the fact that as the assembly proc-
ess advances the resulting problem becomes smaller,
the algorithm could be applicable on-line to modify
either the plan or the initial sequence, in order to cor-
rect the variations with respect to the initial solution.

5. RESULTS

The algorithm has been tested in a variety of situa-
tions, considering different product structures (num-
ber of parts, number of connections between parts),
different types of And/Or graphs (number of sub-
assemblies, number of assembly tasks for each sub-
assembly), and different assembly resources (number
of robots, number of tools). The results in Tables 1-4
correspond to a hypothetical product of 30 parts, with
396 Or nodes and 764 And nodes in the And/Or
graph. The number of linear sequences is about 1021.
The tables show the effect of having more or less
resources for assembling the product in the perform-
ance of the algorithm. The results refer to 10 differ-
ent combinations of durations and resources for as-
sembly tasks. Apart from number of nodes visited and
execution times, they show how many times the opti-
mal solution was found by a depth-first movement (N-
Pr), how many times the algorithm did not find the
optimal solution in 30 seconds, when the available
memory was exhausted (N-F), and the error rate.

6. CONCLUSIONS

A model for the selection of optimal assembly se-
quences for a product in a generic multirobot system
has been presented. The objective of the plan is the
minimization of the total assembly time. To meet this
objective, the model takes into account, in addition to
the assembly times and resources for each task, the
times needed to change tools in the robots, and the
delays due to the transportation of intermediate sub-
assemblies between different workstations.

An A* algorithm is also presented, with some heuris-
tic functions defined from relaxed models for the
problem. The algorithm has been adapted in order to
improve its computational efficiency. Some results
have been presented, showing the influence of having
different number of resources when executing the
assembly plan.

REFERENCES

Ames, A.L., T.L. Calton, R.E. Jones, S.G. Kaufman,
C.A. Laguna and R.H. Wilson (1995). Lessons
Learned from a Second Generation Assembly
Planning System. Proc. 1995 IEEE Intl. Symp.
on Assembly and Task Planning, pp. 41-47.

Bourjault, A. (1984). Contribution à une Approche
Méthodologique de Assemblage Automatisé:
Elaboration Automatique des Séquences Opéra-
toires. Thèse d'état, Université de Franche-
Comté, Besançon, France.

De Fazio, T.L. and D.E. Whitney (1987). Simplified
Generation of All Mechanical Assembly Se-
quences. IEEE J. Robotics and Automat., Vol. 3,
No. 6, pp. 640-658. Also, Corrections, Vol. 4,
No. 6, pp. 705-708.

Del Valle, C. and E.F. Camacho (1996). Automatic
Assembly Task Assignment for a Multirobot
Environment. Control Engineering Practice,
Vol. 4, pp. 915-921.

Homem de Mello, L.S. and A.C. Sanderson (1991a).
Representations of Mechanical Assembly Se-
quences. IEEE Trans. Robotics Automat. Vol. 7,
No. 2, pp. 211-227.

Homem de Mello, L.S. and A.C. Sanderson (1991b).
A Correct and Complete Algorithm for the Gen-
eration of Mechanical Assembly Sequences.
IEEE Trans. Robotics Automat. Vol. 7, No. 2,
pp. 228-240.

Homem de Mello, L.S. and A.C. Sanderson (1991c).
Two Criteria for the Selection of Assembly
Plans: Maximizing the Flexibility of Sequencing
the Assembly Tasks and Minimizing the Assem-
bly Time Through Parallel Execution of Assem-

bly Tasks. IEEE Trans. Robotics Automat. Vol.
7, No. 5, pp. 626-633.

Homem de Mello, L.S. and S. Lee (eds.) Computer-
Aided Mechanical Assembly Planning. Kluwer
Academic Publishers.

Kavraki, L., J.C. Latombe and R.H. Wilson (1993).
On the Complexity of Assembly Partitioning. In-
formation Processing Letters. Vol. 48, pp. 229-
235.

Kavraki, L. and M. Kolountzakis (1995). Partitioning
a planar assembly into two connected parts is
NP-complete. Information Processing Letters.
Vol. 55, pp. 156-165.

Pearl, J. (1984). Heuristics: Intelligent Search Strate-
gies for Computer Problem Solving. Reading,
MA, Addison-Wesley.

Romney, B., C. Godard, M. Goldwasser, G. Ramku-
mar (1995). An Efficient System for Geometric
Assembly Sequence Generation and Evaluation.
Proc. 1995 ASME International Computers in
Engineering Conference, pp. 699-712.

Wilson, R.H., L. Kavraki, T. Lozano-Pérez and J.C.
Latombe (1995). Two-Handed Assembly Se-
quencing. International Journal of Robotic Re-
search. Vol. 14, pp. 335-350.

Wolter, J. (1992). A Combinatorial Analysis of
Enumerative Data Structures for Assembly
Planning. Journal of Design and Manufacturing.
Vol. 2, No. 2, pp. 93-104.

Table 1 Results for 2 machines and 2 tools/machine

Nodes visited Time (ms) Heuristic

Ave Max Min Ave Max Min
N-Pr N-F %

Error
h1 41492 89189 2520 19429 30590 180 4 6 0,990
h2 9316 42775 32 1422 6420 0 5 0 0,000

max(h1, h2) 16385 71585 32 4291 30050 0 4 1 0,248

Table 2 Results for 2 machines and 4 tools/machine

Nodes visited Time (ms) Heuristic
Ave Max Min Ave Max Min

N-Pr N-F %
Error

h1 40093 56108 3020 25025 30930 710 2 8 2,648
h2 5311 19398 267 790 4230 50 1 0 0,000

max(h1, h2) 5078 19009 387 1143 4450 60 1 0 0,000

Table 3 Results for 4 machines and 2 tools/machine

Nodes visited Time (ms) Heuristic
Ave Max Min Ave Max Min

N-Pr N-F %
Error

h1 16905 85540 32 2357 11700 0 1 0 0,000
h2 2751 7195 32 263 710 0 2 0 0,000

max(h1, h2) 804 2098 32 99 220 0 2 0 0,000

Table 4 Results for 4 machines and 4 tools/machine

Nodes visited Time (ms) Heuristic
Ave Max Min Ave Max Min

N-Pr N-F %
Error

h1 22697 93376 32 6084 30530 0 4 1 0,302
h2 1808 5907 128 197 660 0 1 0 0,000

max(h1, h2) 1765 5907 32 278 980 0 2 0 0,000

