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Abstract : The aim of this paper is to give a general and unifying presentation of the
dynamic modelling and identification issues of a car. The modelling is based on the
modified Denavit-Hartenberg geometric description, which is commonly used in
robotics. The kinematics and dynamic models are automatically calculated using the
software package SYMORO+. The dynamic model is used to simulate the behaviour of
the car and to identify the dynamic parameters. Primarily experimental results on the
dynamic identification of a real car are given.
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1. INTRODUCTION

The aim of this paper is to present a general and
unifying way of modelling a car, in order to simulate
its behaviour and to identify the dynamic parameters.
For this purpose we make use of the modified
Denavit Hartenberg notations which are widely used
in robotics fields.
Several techniques of derivation of kinematics and
dynamic models for mobile robots are available in
the literature (Tilburyet al., 1994, Zodiac, 1996), but
the usual approach considers systems made up of a
rigid cart and rigid wheels, moving in a horizontal
plane, with the constraint of rolling without slipping.
Meanwhile real working conditions of motion do not
satisfy such hypothesis. Consequently, it is necessary
that the dynamic model takes into account the 3D
motion and the forces between the wheels and the
soil.

With such a complexity, a systematic method of
geometrical description, based on the modified
Denavit Hartenberg parameterisation (Khalil and
Kleinfinger, 1986) facilitates the derivation of the
dynamic and identification models. The car is
considered as a tree structure multi body system,
where the four wheels are the terminal links. This
description allows to automatically calculate the
symbolic expression of the geometric, kinematics and
dynamic models by using robotics techniques or even
by a symbolic software package like SYMORO+
(Symbolic Modelling of Robots)(Khalil and Creusot,
1997). The car suspensions are modelled with a
lumped elasticity. Such a model allows us to
calculate the inverse dynamic model which is linear
with respect to the dynamic parameters, (Khosla,
1986, Khalil and Dombre, 2002, Guillo and Gautier,
2001).
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2. GEOMETRICAL DESCRIPTION OF A CAR
WITH ROBOTICS FORMALISM

2.1. Robotic formulation of the description of a multi-
bodies system

The car is considered as a system Σ, composed of
n+1 bodies (links) connected together byL joints,
that can be prismatic or revolute, rigid or elastic.

j
n
j C0=∪=Σ

The Modified Denavit Hartenberg (MDH) notations
can be applied to obtain the geometric parameters.

A frame Rj is defined attached to each bodyCj. The
axis zj is defined along the joint axisj and xj is
defined as the common perpendicular withzj and one
of the followingzaxis.
Let us callCi the body which is antecedent toCj (i =
a(j)). Denotingxi’ as the common perpendicular ofzi

and zj. The homogeneous transformationiTj of the
frameRj with respect toRi is expressed as a function
of the following six parameters (Khalil & Dombre
2002):

- γj : angle betweenxi andxi’ around the axiszi,
- bj : distance betweenxi andxi’ alongzi.
- αj : angle betweenzi andzj around the axisxi’ ,
- dj : distance fromzi to zj alongxi’ ,
- θj : angle betweenxi’ andxj around the axiszj,
- rj : distance fromxi’ to xj alongzj,

Each joint is described with two parametersσj andµj:
- σj describes the type of joint:

σj = 0: revolute joint, the joint variableqj is θj

σj = 1: prismatic joint, the joint variableqj is rj

σj = 2: locked joint
- µj describes the type of actuation:

µj = 1: actuated joint
µj = 0: passive joint.

2.2. Application for a car

Let R0 be a fixed reference frame attached to the
ground andCr the reference body of the studied
structure be the chassis. It corresponds to the body
whose locationζ (i.e. position & orientation) gives
the system posture in the frameR0:
ξ = [q1 q2 q3 q4 q5 q6]

T for a movement in the three
dimension space. The six degrees of freedom (d.o.f.)
are described with 5 virtual bodies and one real body,
with one d.o.f. for each body (Guillo and Gautier,
2000).
In that case the model of a car system can be
composed of 20 bodiesCj such that (Fig.1):
- C0 is the base attached to the ground,
- C1, C2,..., C5 are virtual bodies used to define

the car posture. Their variables arex y zθ φ.
- C6 is the chassis, its variable is q6 =ψ

- C7, C10, C13 and C17 are the dampers,
represented by linear springs. They are taken as
virtual bodies, with no mass and no inertia, to
simplify the system.
- C9 andC12 are the rear wheels, such that q9 =ω1

and q12 =ω2

- C16 andC20 are the front wheels, such that q16 =
ω3 and q20 = ω4

- C8, C11, C15, C19 are virtual bodies used to
define a second frame attached to the wheel axes.
They represent the frames of the measured contact
forces. (see section 3.2)

Table 1: geometric parameters of the model of a car

J a(j) σj bj αj dj θj rj

1 0 1 0 π/2 0 π/2 -y
2 1 1 0 π/2 0 π/2 x
3 2 1 0 π/2 0 π/2 z
4 3 0 0 0 0 ψ 0
5 4 0 0 π/2 0 −φ + π/2 0
6 5 0 0 π/2 0 θ + π/2 0
7 6 1 0 π/2 -D3 π/2 q7

8 7 2 0 - π/2 0 0 0
9 8 0 0 0 0 q9 0
10 6 1 0 π/2 D4 π/2 q10

11 10 2 0 - π/2 0 0 0
12 11 0 0 0 0 q12 0
13 6 1 B13 π/2 -D1 π/2 q13

14 13 0 0 0 0 β 0
15 14 2 0 - π/2 0 0 0
16 15 0 0 0 0 q16 0
17 6 1 B17 π/2 D2 π/2 q17

18 17 0 0 0 0 β 0
19 18 2 0 - π/2 0 0 0
20 19 0 0 0 0 q20 0

According to this description, the vehicle motion is
completely described by the vectorq of the 16
generalised co-ordinates:

q = [ξT q7 q9 q10 q12 q13 β q16 q17 β q20]
T

- q7, q10, q13 andq17 are the dampers clearance,
- q9, q12, q16 and q20 are the angular positions of

the four wheels with respect to their axis,
- q14=q18=β, is the steering angle.

This description allows to calculate the geometric,
kinematic and dynamic models automatically with
the help of SYMORO+, a software of symbolic
calculations developed by the robotics team of the
IRCCyN. (Khalil and Creusot, 1997)

3. DYNAMIC MODEL

The inverse dynamic model gives the joint torques
as a function of the joint co-ordinates, speeds and
accelerations.



Fig. 1: geometric description of a car

Let the Inverse Dynamic Model (IDM) be written as:

( ) ( ) cQL +=+ qqHqqM ��� , (1)

- M(q) is the mass matrix of the systemΣ
- ( )qqH �, is the vector of centrifugal, Coriolis and

gravity terms.
- L is the vector of the internal forces between the

vehicle bodies : motor torque, friction, lumped
elasticity...

- Qc is the vector of the contact forces between the
ground and the wheels.

3.1. Internal forces

The internal forces vector is composed of:
- the elastic forces
The j-component ofLe

j, the elastic forces vector can
be written, withkj the stiffness of thej-joint, such as:

jj qk−=e
jL if j is an elastic joint,

whereqj is the joint displacement with respect to the
initial position.
- the actuation vector component.
It depends on the value of the Boolean parameterµj

and on the motor torque of thej-joint.

ju=a
jL if µj = 1

0=a
jL if µj = 0

- the friction vector component, is simplified as:

)( jsjjvj qsignFqF �� −−=f
jL

Where:

- Fvj is the viscous friction coefficient.
- Fsj is the Coulomb friction force.

3.2. Contact forces between the wheels and the
ground

In our experiments, the contact forces are measured
by four dynamometric wheels. They give the 6
directional forces and torques expressed in the frames
R8, R11, R15, R19, attached to the wheel axes.

4. IDENTIFICATION

4.1. Standard inertial parameters

For each link there are 13 standard dynamic
parameters (Gautier and Khalil, 1990), composed of
10 standard inertial parameters:
- [XXj XYj XZj YYj YZj ZZj]: the 6 elements of the

inertia matrix of linkj with respect to framej,
- [MXj MYj MZj]: the 3 first moments of linkj

around the origin of framej,
- Mj, the mass of linkj.
And 3 drive chain parameters:
- Iaj, the inertia of the motor for an actuated joint
- Fvj and Fsj, the viscous and Coulomb friction

parameters.
The standard inertial parameters of the real bodies
are shown in Table 2, where we did not include the
parameters of a virtual body whose all parameters are
zero. We take into account the symmetry of the
wheels that leads to have:
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XXi = YYi for i = 9, 12, 15, 19.

4.2. Base inertial parameters

The base inertial parameters are defined as the
minimum inertial parameters that can be used to
obtain the dynamic model. They represent the set of
inertial parameters which can be identified using the
dynamic model, thus its determination is essential for
the identification of the inertial parameters of the
system.
They are obtained from the standard inertial
parameters by eliminating those which have no effect
on the dynamic model and by grouping some others.
There are two techniques to obtain those parameters:
a symbolic one (Gautier and Khalil, 2002), or a
numerical one (Gautier, 1991). The symbolic method
gives the 23 base inertial parameters given in Table
3, where we did not include the parameters of a body
whose all parameters are zero. The grouping relations
are:

XX5R = XX12 + YY6 + XX9

ZZ5R = XX12+XX9 + YY6

XX6R = XX12+XX6- XX9 - YY6

ZZ6R = XX12+XX9 + ZZ6

ZZ14R = YY16 + ZZ14

ZZ18R = YY20 + ZZ18

Table 2: standard inertial parameters

j XX XY XZ YY YZ ZZ MX MY MZ M
6 XX6 XY6 XZ6 YY6 YZ6 ZZ6 MX6 MY6 MZ6 M6

9 XX9 0 0 XX9 0 ZZ9 0 0 0 M9

12 XX12 0 0 XX12 0 ZZ12 0 0 0 M12

16 XX16 0 0 XX16 0 ZZ16 0 0 0 M16

20 XX20 0 0 XX20 0 ZZ20 0 0 0 M20

The base inertial parameters are computed with the
symbolic method. They are given in Table 3.

Table 3: base inertial parameters

j XX XY XZ YY YZ ZZ MX MY MZ M

5 XX5R 0 0 0 0 ZZ 5R 0 0 0 0
6 XX6R XY6 XZ6 0 YZ6 ZZ6 MX6 MY6 MZ6 M6

7 0 0 0 0 0 0 0 0 0 M 9

9 0 0 0 0 0 ZZ9 0 0 0 0
10 0 0 0 0 0 0 0 0 0 M 12

12 0 0 0 0 0 ZZ 12 0 0 0 0
13 0 0 0 0 0 0 0 0 0 M 16

14 XX16 0 0 0 0 ZZ 14R 0 0 0 0
16 0 0 0 0 0 ZZ 16 0 0 0 0
17 0 0 0 0 0 0 0 0 0 M 20

18 XX20 0 0 0 0 ZZ 18R 0 0 0 0
20 0 0 0 0 0 ZZ 20 0 0 0 0

4.3. Base dynamic parameters

The base dynamic parameters, defining the
vector X to be identified, consists of the base inertial
parameters, the friction parameters, the stiffness
parameters of the dampersks7, ks10 ks13 ks17, and their
offsets off7, off10, off13, and off17.

4.4. Identification model

The dynamic model (1) can be expressed as a linear
relation with respect to the identifiable parameters. It
can be written as:

XqqqDy ).,,( ���= (2)

4.5. Identification method

The dynamic parameters are estimated by solving an
over-determined linear system with the weighted
least squares techniques (W.L.S.). The system is
obtained by sampling the identification dynamic
model (3) along a trajectory.
The whole system is written as follow:

ρ+= XWY . (3)

- W is the observation matrix (nexpx nb)
- Y the (nexp x 1) vector of joint and reaction forces
- ρ the (nexp x 1) vector of model errors
- X the vector of the dynamic parameters to

identify (nb x 1)
Some practical features about the weighting
procedure and data filtering are given in (Gautier,
1997), in order to obtain the .L.S. estimation of
parameters with minimum distortion and bias.

5. EXPERIMENTAL SET UP

Primarily experimental results are given. For the data
acquisition, a real car is equipped with many sensors
which allow to estimate the variables needed for the
identification model.
Those sensors are: four dynamometric wheels, an
inertial unit, a laser sensor for vertical position, video
camera “Zimmer”, and a speed sensor “Correvit”.

5.1. Measurement and filtering

The joints are provided with the following sensors:
- Joints 1 and 2: the velocity sensor used is a

“Correvit”.
- Joint 3: the sensors used are the four lasers

which measure the altitude of the four corner of
the car. The vertical position is then deduced
geometrically, and the speed and acceleration are
obtained by derivation.

- Joints 4 and 5: the sensor used is a “Zimmer”
camera, it gives the joint speed. The joint
accelerations and positions are obtained by a
derivation and an integration respectively.

- Joint 6: the sensor used are the inertial unit.
- Joints 7, 10, 13 and 17: the sensor used is a

specific sensor for clearance.
- Joints 9, 12, 16 and 20: the sensors used are the

dynamometric wheels.



- Joints 14 and 18: the sensor used is a “Zimmer”
autocollimator.

The sensor measurements (position, velocity or
acceleration), are filtered in order to estimate the
position, the velocity and the acceleration for each
joint. The filter chosen is a pass band filtering. This
operation is carried out using the functionfiltfilt of
Matlab with an order between 5 to 8 and a cut-off
frequency chosen according to the dynamic of the
system and the sensor (Gautier, 1997).
The derivatives are estimated without phase shift
using a central difference algorithm. And the
integration is estimated with a trapeze method.

5.2. Computation of the vector of joint and reaction
forces: Y

In robotics applications it is possible to directly
measureY, the right terms of equation (3). But in the
case of the car this measure is not possible and we
have to take into account the external contact forces.
Thus the dynamic model can be written as:

extj
T

i DXFJDX Γ+=+=Γ � (4)

Though , the general expression used for the
identification is the following:

XDext .=Γ−Γ (5)

Where Γext is computed using SYMORO+ and the
determination ofΓ depends on the type of joint
considered:
- For a virtual jointΓ = 0,
- For an actuated jointΓ = Γm,
- For an elastic joint of known stiffness ki: Γ= - ksi.qi,
- For an elastic joint of unknown stiffness: Γ = 0, and

the stiffness has to be identified.

6. RESULTS AND INTERPRETATION

The following results are obtained with two different
tests: a ramp steer at 90km/h on the left, and a ramp
steer at 110km/h on the right. Trajectories can be
seen on Figure 4. The sample time is 0.016 second,
and the number of samples is about 3000. Parameters
are given in SI units. For this special trajectory, not
all the parameters are identified because of a lack of
excitation.

6.1. Results

The estimated values and the relative standard
deviation are shown in table 4.
The estimation concerning the dampers even with
simple trajectories are good, also good results

concerning the mass and the first moments have been
obtained.
6.2. Interpretation and validation

The identification of the dynamic parameters gives us
an estimation of the mass of the vehicle (without
wheels) and of the position of the centre of gravity
with respect to the frameR6 attached to the vehicle.
The estimated error for the mass is very low which
allow to say that the identification gives a good
estimation. For the position of the centre of gravity,
the tests give a good estimation of its firs moments
(MX 6, MY 6,MZ6).
The results of the estimation of the mass M6 can be
checked by calculating the mass from the
measurement of contact forces at time t = 0 (the car is
stopped).

Table 4: results by concatenating both ramps steer

Parameters Value Relative standard deviation
mx6 -7.70 14.11
my6 -726.52 1.55
mz6 2611.82 0.42
m6 1566.20 0.78
off7 814.11 2.53
ks7 70699.05 1.01
h7 4986.81 14.40
off10 223.04 5.39
ks10 65954.44 0.70
h10 5483.00 9.87
off13 719.89 1.63
ks13 60327.89 0.69
h13 5201.78 9.12
off17 1548.17 1.02
ks17 66724.52 0.89
h17 4251.09 15.14

We can consider at t = 0 that the following relation is
true:

Fz1+Fz2+Fz3+Fz4 = Mtot.g
Mtot = (3100 + 3190 + 4720 + 4710)/9.8 = 1604 kg

Where Mtot is the total mass of the vehicle, plus all
the sensors and the driver. Thus we have to subtract
the unsprung mass, that is composed of the four
wheels and the two rear axles and the two front axles.
Which gives us:
M6cal = 1604 – (4*18.8 + 16*2 + 12.8*2) = 1471 kg

Which is, compared to the identified mass:
(1566.20 – 1471)/1471 = 6.47 %

Another validation method consists of comparingY
to the reconstructed vectorW.X. (Figure 2,3,4)
Figures 2 and 3 give the results of a simple
validation: W.X is compared toY on one of the
trajectory that has served to estimateX.
Figure 7 gives the results of a cross validation: the
trajectory is not the one that has been used for the
estimation: the test used for the validation is a
braking in straight line.
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Figure 2: validation by comparingY to W.X
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Figure 4: cross validation on a braking straight line

7. CONCLUSION

Despite the encouraging results for the estimation of
some parameters, it is important to notice that the
used trajectories do not excite all the parameters.
Besides, the model used is a simplified one, which
does not take into account all the behaviour of a car
such as the camber angle. These points have to be
considered in order to improve the estimation quality,
and to be able to estimate all the parameters.
Although, the contact between the ground and the
wheels has an important effect on the behaviour of a
car, an identification of the specific parameters of the

tire: Pacejka parameters, then will be added as to
have a better idea of this behaviour.
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