
LOGICAL APPROACH TO CONTROL:
MATHEMATICAL BASIS AND

APPLICATIONS

S.Vassilyev

Institute of System Dynamics and Control Theory of
Russian Academy of Sciences, Irkutsk

Abstract: This paper presents a survey of some results which have been obtained
in ISDCT in the field of development of some new methods for logical control
of dynamical systems. Some fundamental difficulties of deduction problem were a
barrier to the wide development and application of automated deduction in the
loop of control. The main point of this paper is to show that automatic theorem
proving technique can and should be used in intelligent control of complex systems.
There are two basic reasons for that. The 1st reason is that the modern intelligent
control systems lack the required intelligence yet. The 2nd one is determined
by the merits of new logical tools which allow to overcome the obstacles of
extensive application of the 1st and higher order logics in specific classes of on-line
problems like control. Such logical instrument is described and discussed here with
applications to moving objects.
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1. INTRODUCTION

The common fundamental goals of intelligent con-
trol are: to fully utilize available knowledge of
a controlled object, to control in an ”intelligent
manner”, to improve the capability of controlling
the object over time through accumulation of ex-
periential knowledge, etc. (Vassilyev, 1997).

Among the tools of intelligent control which have
gained rather high recognition in control commu-
nity are a) knowledge-based control in the form of
fuzzy logic regulators (and other rule-based con-
trol systems), b) neural networks, and c) genetic
algorithms.

These and some other tools of artificial intelli-
gence suitable for intelligent control were consid-
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ered during last 40 years . However a fundamental
problem associated with this technological devel-
opment is that these intelligent control systems
lack the required intelligence at present yet. We
consider the required intelligence organization as
a hierarchical control system which couples 1) a
reflex behavior (”thoughtless” reaction), 2) rule-
drived behavior and 3) general reasoning.

The 1st level is based on artificial neural networks
with fast computations. The 2nd level realizes the
”if-then” reasoning (”if-then” control synthesis).
The 3rd level as the highest one has to use some
powerful logics (deduction, induction, abduction,
etc.).

The modern systems of intelligent control lack the
required intelligence because they do not have the
powerful 3rd level. E.g., today the most powerful
tools of automated deduction are automatic the-
orem proving (ATP) techniques in mathematical
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domains (Vassilyev et al., 2000; Walther, 1984),
and in contrast to that, real-world problems of
control have not experienced a similar success of
using such well developed automatic reasoning
capabilities. The existing knowledge based sys-
tems of intelligent control, especially very popular
rule-based systems, are created mostly for rather
restricted classes of real-world problems. We can-
not say that ATP holds much favour in real–time
applications. Consider some of the reasons of such
situation.

There is a contradiction between expressiveness
of traditional formal languages and decidability
of deduction problem. On the one hand the ex-
pressive power of propositional or some logically
equivalent languages, rather regular for automatic
control community, is not sufficient to create intel-
ligent control systems which can qualify this name
to great advantage. The classical propositional
(nonpredicate) logical language has low expres-
siveness. On the other hand we need not only to
express problems in higher level languages, but
also effectively reason within them. The propo-
sitional logical theory is theoretically decidable.
However, the theorem proving in predicate logics
is more complex. The 1st and higher order logics
have essentially more expressive languages, but
are only semidecidable: there exists an algorithm
which proves all theorems, but for any such algo-
rithm there exist some formulas which are not the-
orems and cannot be recognized by the algorithm
as unprovable ones. Besides it is not possible to
estimate uniformly by finite number of steps the
length of derivation (refutation) of theorems (their
negations). Moreover, even theoretically decidable
fragments of theories can be practically undecid-
able due to complexity of computations.

That is why, it is important to provide a prac-
tical decidability (Glushkov, 1979) when we try
to build a logical machine which is not general
problem solver (Newell and Simon, 1961), but has
a ”creative” power comparable with the power of
human intelligence in special fields of activity.

In particular, the logical instrument has to pre-
serve the global heuristic structure of first–order
knowledge and to be of higher compatibility with
heuristics. It seems that any progress along this
line is very important. Many attempts can be
found in literature. Moreover, the above men-
tioned observation about increasing of complex-
ity of deduction problem with the extension of
language is not absolute. To illustrate this point
consider the situation with rule-based systems.

From the logical point of view the formal-
ism of rule-based systems, e.g. production sys-
tems, PROLOG-based systems (Colmerauer et
al., 1973), can be often considered (when a
premise and a conclusion of any rule have descrip-

tive semantics) either as propositional formulas
n

&
i=1

pi → q or more generally as the Horn formulas

∀x1 . . .∀xm (
n

&
i=1

Pi → Q), where Pi, Q are atoms

of 1st order language. From the practical point of
view the expressiveness of such formulas is rather
restricted. E.g., if it is necessary to express the
disjointness of a set of consequences succeeded
from a premise, then even in the Horn formalism
this structure of knowledge has to be destroyed,
and if the original structure a priori given has not
only pure logical sense, but also heuristic meaning
useful in some framework of logical derivation,
then after that transforming the structure its orig-
inal heuristic force will not remain valid.

When the right side of production rule has an
imperative semantics (e.g., contains an instruction
to change the set of rules itself), it is very hard
to guarantee the soundness of the whole set of
rules in complex control problems. It should be
noted also that the restrictions of expressiveness
of the Horn language lead to a high responsibility
of designers and knowledge engineers: they have
to provide a sufficient completeness of a final set
of rules formalized and a sufficient efficiency of
application (firing) of the rules to bring a state
of a controlled object (a plant) nearer to a control
goal. This work of man of experience resembles the
hard work in computer programming (especially,
when there are some rules with conclusions which
in reflecsive manner require to change some other
rules). To decrease the intense work, the exten-
sion of language is useful to remain a heuristic
structure of original knowledge and to represent
different knowledge in intelligent and free manner.
Simultaneously this leads to extension of classes
of representable and solvable control problems
including not only regular automatic control prob-
lems, but also problems of automated fault identi-
fication, diagnosis, structural reconfiguration, ac-
tion planning, etc. including abnormal modes of
operating.

We will consider here the using automated de-
duction (the 3rd level) only. The problem under
study is how to provide the compatibility of a
logic with heuristics. The subject of this paper is
to describe the possibilities to resolve the usually
conflicting requirements of increasing the expes-
siveness of traditional logical languages and effi-
ciency of processing the knowledge represented.
We describe nontraditional logical tools and pos-
sibilities of pure logical control of dynamical sys-
tems (of course, with incorporated procedure of
dealing with “nonlogical” predicates, if it is nec-
essary). Transition to the more expressive lan-
guages and more powerful automated deduction
technique allows us to expand the class of solvable
control problems and to improve, in particular,



the performance criteria of control system. The
approach we offer allows us, at least for important
wide classes of tasks, to overcome the scourge of
nonmonotonicity of practical reasoning and recur-
siveness, and at the same time to remain in some
“neoclassical” framework.

2. KNOWLEDGE REPRESENTATION

The syntax of our basic language is defined by the
following way (Vassilyev and Zherlov, 1995). We
use: variables: x, x1, x2, . . . , y, y1, y2, . . . ; predicate
symbols: P,Q, . . . ; atoms: P (xi1 , . . . , xin), . . . ; the
set Con of conjuncts which are finite sets of atoms
or T (true) or F (false), where by definition a) T
is the empty set of atoms, and b) any conjunct A
is the subset of F (A ⊆ F, i.e. F is infinite set of
atoms).

We introduce the expressions which are said to
be positive quantifiers: ∀X : A

df
= ∀X(A → t),

∃X : A
df
= ∃X(A&t), where A ∈ Con, and X is

a set of variables (may be, empty). The positive
quantifiers >| : T, >| : F, >| ∈ {∀,∃}, are lumped
together as auxiliary quantifiers.

Positively constructed formulas (PCFs) are de-
fined as follows:

i) if A ∈ Con, X is a set of variables, then
(∀X : A) is ∀-formula, and (∃X : A) is ∃-formula;

ii) let B ∈ Con, Y be a set of variables; if
F1, . . . ,Fn are ∃-formulas, then (∀Y : B){F1, . . . ,
Fn} is ∀-formula, and if F1, . . . ,Fn are ∀-formulas,
then (∃Y : B){F1, . . . ,Fn} is ∃-formula;

iii) there are no other ∀- and ∃-formulas; any PCF
is either ∀- or ∃-formula.

A semantics of PCF F is defined by a common
semantics of a corresponding formula (F∗) in
the 1st order predicate calculus (Vassilyev and
Zherlov, 1995). The negation of PCF is obtained
merely by inverting all symbols ∀,∃ only. We
use instead of proving PCF G the refuting its
negation F = (¬(G)∗)L, where ¬(G)∗ is the
negation of the image (G)∗ of the PCF G in
the predicate calculus, and (·)L means a result of
PCF-representation of the 1st order formula (·) in
L.

Thus, we can consider any PCF as a tree structure
(a graph), where a branching in ∀-node (∃-node)
means disjunction (conjunction). Without loss of
generality we will assume that a) any PCF F
is a finite set of trees, the roots and leaves of
those are existential (positive) quantifiers, b) in
any root with empty conjunct the set of variables
is nonempty.

The formulas corresponding to these trees of the
F are called as basic subformulas of F . If the

set of trees for F is not a singleton, then image
(F)∗ of F is the disjunction of images of formulas,
corresponding those trees, otherwise the image
(F)∗ is described as above in the definition of
semantics. This representation will be denoted
the canonical form. Each PCF is taken to be in
that form. Instead of >|X : A Φ, where Φ =
{F1, . . . ,Fn}, n ≥ 0, we write also >|X : A {Φ.
In accordance to that the formula

F = {∃X : A Φ,Ψ}, (1)

where Ψ 6= 0 means the formula (∃X : A Φ)∗ ∨
(Ψ)∗ and the 2nd bracket in (1) means conjunctive
branching.

The root ∃X : A of any tree from the set of trees of
F is referred to as the base of the tree. It includes
the conjunct A which is spoken of as data base.
Any immediate successor ∀Y : B of the root is
designated the inquiry to the data base A (or the
question to the base ∃X : A). Any substitution
Θ : Y → X such that the result of simultaneous
substitutions of all variables y from Y by variables
x = Θ(y) ∈ X in any atom from B belongs to A,
i.e. BΘ ⊆ A, is said to be the answer for the
question ∀Y : B to the base ∃X : A.

In order to refute the PCF F it is sufficient to
obtain in any of its bases the atom F by the
above mentioned question-answering procedure of
supplementing the data bases by new atoms. The
rigorous definition of this procedure is determined
by an inference rule ω defined below.

Let in (1) (with arbitrary subformulas Ψ,Φ) Φ
includes a subformula ∀Y : B{∃Zi : Ci Φi}1,n.
Then the result ωF of application of the inference
rule ω to the question ∀Y : B with the answer
Θ : X → Y is the formula ωF = {{∃X ∪
Zi : A ∪ CiΘ {Φ,ΦiΘ}}i=1,k, Ψ}. Any finite
sequence of PCFs F , ωF , ω2F , . . . , ωnF , where
ωsF = ω(ωs−1F), ω1 = ω, ωnF = ∃ : F, is
called a derivation of F in J = 〈∃ : F, ω〉. The
calculus J has one unary inference rule ω and one
axiom scheme being contradiction. The calculus J
has the soundness property: if

J̀
F , then ` ¬(F)∗.

Some examples of problems which have been com-
plicated for many provers known in the litera-
ture, has been solved by our software program
system QUANT/1 (Cherkashin, 1999; Vassilyev
et al., 2000) which implements the calculus J .
Among them there is the known Shubert’s steam-
roller problem (Walther, 1984). It should be noted
that in the clause language paradigm only by
development a many-sorted version of resolution
this problem has been solved (Walther, 1984).

Theorem 1. (Vassilyev et al., 2000). The calculus
J is complete, i.e. for any PCF F ` ¬(F)∗ ⇒

J̀
F .



Example 2. Let us consider the problem of action
planning for a mobile robot when the goal is to
grab some object which is located in a certain
place and after that to release it in a container.
The world is changeable and accordingly to the
known robot’s actions is absolutely predictable.
Let it be the discrete time scale with instants
t0, t1, . . . The formula for the generating the in-
stants has the form ∀t : T (t) ∃t′ : T (t′), N(t, t′),
where T (t) iff ”t is an instant”, N(t, t′) iff ”t′ is
immediate successor of t”.

The peculiarities of this style of formalization are
as follows. Each action is described by a PCF

∀xtt′ : A(x, t), N(t, t′) ∃ : A′(x, t′), (2)

where A(x, t), A′(x, t′) are the complete descrip-
tions of the world in the instant t and the immedi-
ately next instant t′. If some precondition A(x, t)
is the same for some different actions, then for the
corresponding time interval more than one action
can be planned. If the actions are inconsistent
in one instant, then we need to supplement the
logical derivation by the heuristics which forbids
the derivation of more than one action for one
time interval.

The merit of this style of formalization is its pure
logical modeling the time scale and dynamics of
the world (see also (Gabbay and Reynolds, 1995)).
The known system STRIPS (Fikes and Nilsson,
1993) couples logic with algorithmic deletion of
obsolete facts, resulting in a failure to some extent
of the main goal of artificial intelligence and logic
programming (to reach pure descriptive style of
programming).

Yet another style of formalization which does
not use the extra-variable of time and fills an
intermediate place between our and STRIPS’s
approaches is described in (Vassilyev et al., 2000).

Example 3. Consider the world without any reli-
able prediction. We model the alternative futures
assuming that the future has not happened yet.
We use two time scale of reasoning: real-time scale
and abstract (more fast) time scale.

We model the properties of multiple futures in
abstract time scale under actions of different ad-
missible controls. This modeling allows to predict
to some extent the evolving world (its reaction
on the controls), and to estimate logically as well
as to select logically the “best” control. In the
real-time scale a fixed length of time interval of
one step of the decision-making is limited by a
priori time sampling in control system. In the ab-
stract time scale the total duration of fast multi-
step predicting immediate futures with selecting
the most preferable one cannot exceed the length
of the aforementioned decision-making interval of

real-time scale and depends on throughput of
computer. Instead of proving a given theorem
we derive a priori unknown theorems as some
immediate logical consequences of the past and
present state of controlled object under alterna-
tive controls. By the initial instant of next interval
of real-time scale some information on real world
changes is entered into the control system by
special sensors and is accounted as updated set
of facts (atoms).

This approach has been proposed in (Vassilyev
and Zherlov, 1998) and is discussed there with
application to control of group of passenger ele-
vator cabins when there are floor calls as external
perturbations.

The well-known Call Assignment Method of nu-
merical multicriteria optimization widely imple-
mented in practice of elevators’ control can be
successfully replaced by our approach which is
more flexible for accounting many peculiarities of
specific maintenance of buildings.

3. ON CONSTRUCTIVE SEMANTICS

In many cases the classical derivation is not suit-
able for solving control problems. E.g., classical
derivation of the formula A∨¬A, where A means
“control u0 is optimal”, is trivial and gives nothing
for the question on optimality of u0; the deriva-
tion has to be constructive, when it is possible
to extract from the derivation the constructive
procedure of answering what is valid specifically:
either A or ¬A?

Theorem 4. The constructive task F ⇒ G, where
G has the form ∀x̄(A → ∨ {∃yi : Bi, i = 1, n}),
may be replaced by solving the classical task ∃ : T
{∀ : T F, G} ⇒ ∃ : F in the calculus J , i.e. by the
J-refutation of the formula ∃ : T{∀ : T F, G}.

Example 5. Consider the simple (propositional)
example of formalization of a task of structural
reconfiguration of attitude control system after
detecting the failure, say, of yaw angle sensor (f3).
Let the other 2 angle sensors (f1, f2) and 3 angle
velocity sensors (g1, g2, g3) are trouble free, and
there are a digital P -controller (h) and on-board
algorithm (H) of computing the yaw angle θ̃ on
the basis of 2 others and 3 angle velocities. This
example presents the constructive task F ⇒ G,
where G = ∀ϕ,ψ, θ, ϕ′, ψ′, θ′ ∃u, and

F = ∃ : T {∀ϕ̃, ψ̃, θ̃ ∃u, (h)

∀ϕ ∃ϕ̃, ∀ψ ∃ψ̃, (f1, f2)

∀ϕ′∃ϕ̃′, ∀ψ′∃ψ̃′, ∀θ′∃θ̃′, (g1, g2, g3)

∀ψ̃, θ̃, ϕ̃′, ψ̃′, θ̃′ ∃θ̃}. (H)



The desirable structure extracted from the deriva-
tion has the form of the composition h(f1, f2,
H(f1, f2, g1, g2, g3)) (instead of h(f1, f2, f3) for
the normal mode of operation) and eliminates the
uncertainty of yaw angle θ.

Theorem 4 extends the known (Horn) part of 1st
order logic which has the procedural semantics
(Kowalski, 1974). A 1st order example of applying
the constructive part of the calculus J in on-
board telescope guidance system with automated
diagnostics and reconfiguration of measurement
system and with sliding mode of control synthesis
has been described in (Vassilyev and Cherkashin,
1998).

4. ADVANTAGES OF PCF-FORMALISM

Consider the peculiarities of the language L. Al-
though the elements of PCFs belong mostly to the
classical predicate calculus syntax, PCFs have as a
whole rather unconventional and ingenious form.

1. Any formula of L has large-block structure and
positive quantifiers only.

2. Any PCF has simple and regular structure, i.e.
the formula has to some degree a predictability of
the structure, determined by the order of ∃- and
∀-nodes which alternate in each branch.

3. The negation of PCF is obtained merely by
inverting the symbols ∃,∀ (followed by canoniza-
tion).

4. The PCF-representation is more compact than
the representation in the clause language (Davis
and Putnam, 1960) and more compact than repre-
sentations in standard disjunctive or conjunctive
normal forms.

5. It is not necessary to preprocess the formulas
by the elimination of all existential quantifiers.
Known Scolemization procedure for this elimina-
tion leads to increasing the complexity of terms
(Davis and Putnam, 1960).

6. With the L, the natural structure of the knowl-
edge is preserved better.

Let us consider the features 5, 6 in some detail. To
illustrate them consider the following example.

Example 6. The formula

∀x(A& → (∃y1 B
&
1 ∨ . . . ∨ ∃yk B&

k )), (3)

whereB&
i = Ci1& . . .&Cin, A& = A1& . . .&Al, i =

1, k, in the PCF-representation has l+n ·k atoms.
In the clause language it will have the form

&(i1,...,ik)∈(1,n)k(¬A1 ∨ . . .

. . . ∨ ¬Al ∨ C1
i1 ∨ . . . ∨ C

k
ik

), (4)

i.e. contains (l + k)nk atoms (nk clauses)!

It is obvious also that not counting the auxil-
iary quantifiers, the number of atoms in PCF-
representation is no more than in any classical
disjunctive (conjunctive) normal form. Moreover,
the following theorem is valid.

Theorem 7. (Zherlov, 1997). For all k > 0
there exists a sequence f1, . . . , fn, . . . of Boolean
functions such that the complexity of PCF-
representation of fn is kk

n−1/2
times less than the

complexity of representation of fn in disjunctive
(conjunctive) normal form.

It is apparent that the representation (4) of (3)
not only more complicated, but also destroys
substantially the original structure, although in L
it preserves the original structure: ∀x : A {∃y1 :
B1, . . . ,∃yk : Bk}.

The clause language has been used in the reso-
lution method due to homogeneity of representa-
tion (4) in comparison with the formulas of the
classical predicate calculus. That has allowed to
J.Robinson to create on the basis of Herbrand’s re-
sults (Herbrand, 1930) the most popular method
of automated deduction with the single, binary
inference rule (resolution rule).

7. The calculus J has only single, unary and
large-block inference rule (ω), leaving no room for
much redundancy in a search space. Such a rule
decreases the complexity of the search space to a
greater extent than the resolution rule which is
also the single rule, but it is binary and small-
sized. We was able also to develop the calculus
with the single rule ω, but is has been done for
the PCF-representation which is essentially more
attractive due to the features 1-6 than the clause
language.

8. The deduction (refutation) technique described
has centered on application of ω to the questions
only, i.e. to the successors of the PCF roots. This
is based on the features 1, 2 and allows to focus
”the attention of the technique” on the local frag-
ments of PCF without loss of completeness of the
technique and avoiding stupid processing many
irrelevent parts of the formula under refutation.

9. The deduction technique can be described in
meaningful terms of question-answering proce-
dure instead of technical terms of formal de-
ducibility (i.e. in terms of logical connectives,
atoms, etc.). This technique is easy to combine
with procedures like solving 1st order logical equa-
tions for operating under incomplete information
(Vassilyev, 1997).



10. Owing to the features 1, 2, 6, 8-9 the deduction
technique is well compatible with heuristics of spe-
cific applications as well as with general heuristics
of control of derivation. Owing to the feature 7
the derivation process consists of large-block steps
and is well observable and controllable. Thus, all
these features allow to incorporate domain specific
knowledge and heuristic guidance.

11. The deduction technique offers natural OR-
parallelism, because the refutations of basic sub-
formulas are performed independently of one an-
other.

12. The derivations obtained are well interpretable
by human through the features 9, 10. This is
important in man-machine applications. Thus,
conceptually, the language L and the calculus J
are not only machine-oriented, but also human-
oriented: to a greater or lesser degree an imple-
mentation for specific application can use these
both possibilities.

13. Due to the peculiarities of the language L and
the calculus J there is very important merit of
the logic: its semantics can be modified without
any changes of the axiom ∃ : F and the inference
rule ω. Such modifications are realized merely by
some restrictions of applying the ω and allow us
to transform the classical semantics of the calcu-
lus J in non-monotonous semantics, constructive
(intuitionistic) semantics (see the section 3), etc.
A theoretical basis of such modifications with ap-
plications to control of dynamical systems is given
in (Vassilyev et al., 2000).

5. CONCLUSIONS

In this paper we have considered the new logical
instrument with applications in intelligent control
problems. We have described the logical language
and calculus which have many important merits in
comparison with traditional logical basic systems
for knowledge representation and processing. We
have described some examples of using the lan-
guage and calculus which confirm the efficiency of
the presented logical means.
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