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Abstract - This paper proposes a behavior-based scheme for high-level control of 
autonomous robots. Two main characteristics can be highlighted in the control scheme. 
Behavior coordination is done through a hybrid methodology, which takes in advantages of 
the robustness and modularity in competitive approaches, as well as optimized trajectories 
in cooperative ones. As a second feature, behavior state/action mapping is learnt by means 
of Reinforcement Learning (RL). A new continuous approach of the Q_learning algorithm, 
implemented with a multi-layer neural network, is used. The behavior-based scheme 
attempts to fulfill simple missions in which several behaviors/tasks compete for the 
vehicle’s control. This paper is centered in the RL-based behaviors. In order to test the 
feasibility of the proposed Neural-Q_learning scheme, real experiments with the 
underwater robot ODIN in a target following behavior were done. Results showed the 
convergence of the behavior into an optimal state/action mapping. Discussion about the 
proposed approach is given, as well as an overall description of the high level control 
scheme. Copyright  2002 IFAC 
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networks, robot navigation. 
 

 
1. INTRODUCTION 

 
The control of an autonomous vehicle to fulfill a 
mission in an unstructured and unknown 
environment is still a challenge. In the middle of 
1980s the appearance of Behavior-based Robotics 
(Arkin, 1998) philosophy revolutionized the 
development of robots. Its principles of parallelism, 
modularity, situatedness/embeddedness and behavior 
emergence provided a more feasible approach than 
traditional top-down deliberative architectures. 
Behavior-based control architectures propose a 
bottom-up methodology in which several behaviors 
or tasks act  independently generating  set-points to 
be followed by the robot. A coordination module is 
in charge of choosing the final set-point to be 
followed. Two main coordination methodologies can 
be found. In competitive coordinators a single 
behavior is selected whereas in cooperative 
coordinators several behavior responses are 
superposed.  
 

In the implementation of a behavior-based system, 
the design and tune-up of the behaviors is a hard task 
and requires a lot of experimentation. In these 
systems, there is also the need of performing in 
unknown and time-varying environments, which 
means that some kind of adaptation is needed. To 
solve these difficulties, many robotic systems include 
learning techniques. There is not yet an established 
methodology to develop adaptive behavior-based 
systems. However, a commonly used approach is 
Reinforcement Learning (Sutton and Barto, 1998), a 
class of learning algorithm in which an agent tries to 
maximize a scalar evaluation (reward or punishment) 
of its interaction with the environment. The goal of a 
RL system is to find the optimal policy, which maps 
the state of the environment to an action that will 
maximize the accumulated future rewards. Most RL 
techniques are based on Finite Markov Decision 
Processes (FMDP) causing that state and action 
spaces are finite. The main advantage of RL is that it 
does not use any knowledge database, as in most 
forms of machine learning, making this class of 
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learning suitable for online learning. The main 
disadvantages are the large convergence time and 
lack of generalization among continuous variables. 
The latter one is one of the most active research 
topics in RL. 
 
Many RL-based systems have been applied to 
robotics during last years.  Most of them use classic 
RL algorithms combined with some methodologies 
that reduce the generalization problem. In (Smart and 
Kaebling, 2000), an instance-based learning 
algorithm was applied to a real robot in a corridor-
following task. Also for the same task, in (Hernandez 
and Mahadevan, 2000) a hierarchical memory-based 
RL was proposed. A very common approach is the 
use of Q_learning (Watkins and Dayan, 1992) as the 
base of the learning algorithm due to the good 
learning capabilities in discrete domains: online and 
off-policy. Many generalization techniques have 
been applied to Q_learning. In (Takahashi et al., 
1999) a memory-based implementation was proposed 
for vision-guided behavior acquisition, and (Takeda 
et al., 2001) shows a state/action quantification by a 
set of triangular patches. Also, a lot of proposals 
combine Q_learning and Neural Networks (NN), see 
(Gaskett et al., 1999)  for an overview. Finally, 
several recent publications have pointed to the 
possibility of solving the RL problem by estimating 
the policy function instead of the value function. In 
(Bagnel and Schneider, 2001), a practical application 
to control an autonomous helicopter was presented. 
 
This paper presents a behavior-based scheme for 
high-level control of autonomous robots. Such 
scheme has been conceived to accomplish the tasks 
given by a higher level deliberative layer. Each task, 
i.e.: “target following”, “go to a position”, 
“environment exploration”, is a simple sub-mission 
of the whole mission. The control scheme is 
structured as a set of behaviors and a hybrid 
coordinator between competitive and cooperative 
methodologies. This hybrid approach keeps the 
robustness and modularity of competitive approaches 
as well as the optimized paths of cooperative ones. 
As a second important feature, behaviors are learnt 
with a Neural-Q_learning (NQL) approach. Our 
approach differentiates from other NQL proposals in 
that we implement directly the Q-function into a NN, 
instead of decomposing the problem into a finite set 
of actions, features or clusters. This NQL 
implementation, known as direct Q_learning (Baird, 
1995), is the most simple and straight way to 
generalize with a NN. This implies more learning 
capabilities, causing instability in the learning of the 
optimal state/action mapping. To avoid this problem, 
a database of the most recent learning samples taken 
from the whole state/action space is repeatedly used 
in the NN weight update phase.  
 
To test the feasibility of the Neural-Q_learning 
algorithm, real experiments were carried out with the 
Autonomous Underwater Vehicle (AUV) ODIN 

(Choi et al., 1995), see figure 1. The experiments 
consisted in learning a “target following” behavior 
with the vehicle in a pool environment. Real results 
showed the convergence of the NQL behaviors into 
an optimal policy, and therefore, the achievement of 
the behavior. 
 
The structure of this paper is as follows. Section 2 
describes the behavior-based control scheme. Section 
3 introduces the Neural-Q_learning algorithm used 
for behavior learning. In section 4, the target 
following task using ODIN’s AUV is detailed. In 
section 5, real results and some discussion is given. 
And finally, conclusions and future work are 
presented in section 6. 
 

 
Fig.1. ODIN executing the target following behavior. 
 

2. BEHAVIOR-BASED CONTROL SCHEME 
 
A set of simple behaviors and a coordinator 
constitute the behavior-based control scheme. For a 
given task, the behaviors, with the corresponding 
priorities among them, must be determined. Each 
behavior has an independent goal, which tries to 
accomplish by perceiving the state of the 
environment and proposing a control action. An 
hybrid coordinator (Carreras et al., 2001) between 
competitive and cooperative methodologies is used. 
The general structure is shown in figure 2.  
 
This coordinator is based on normalized behavior 
outputs. Each output contains a three-dimensional 
vector “vi” which represents the velocity proposed by 
the behavior. And, associated with this vector, an 
activation level “ai” indicates how important it is for 
the behavior to take control of the robot. This value is 
between 0 and 1, see figure 3. 
 
The hybrid coordination system is implemented with 
a set of hierarchical hybrid nodes, see figure 3. The 
nodes have two inputs and generate also a merged 
normalized control response. One of the inputs is 
used by a dominant behavior which suppresses the 
responses of the non-dominant behavior when the 
first one is completely activated (ai=1). However, 
when the dominant behavior is partially activated 
(0<ai<1), the final  response will be a combination of 
both inputs. The basic idea is to use the optimized 
paths from cooperation when the predominant 
behavior is not completely active. Non-dominant 



 

behaviors can slightly modify the responses of 
dominant behaviors when they aren’t completely 
activated. When non-decisive situations occur, 
cooperation between behaviors is allowed. 
Nevertheless, robustness is present when dealing 
with critical situations. The hybrid nodes do not need 
any tuning phase. The coordination of a set of 
behaviors is defined hierarchically, classifying each 
behavior depending on its priority. 
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Fig. 2. Behavior-based architecture with the hybrid 
coordination system. 
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Fig. 3. Normalized output of a behavior and 
equations of the hierarchical hybrid node. 
 
 

3. NEURAL-Q_LEARNING BASED 
BEHAVIORS 

 
A Neural-Q_learning approach is used to learn the 
mapping between the state and action spaces 
(policy). The state space is the sensor information 
perceived by the robot and needed by the behavior in 
order to accomplish its goal. And the action space is 
the velocity set-points that the robot should follow.  

3.1   Q_learning 

Q-learning (Watkins and Dayan, 1992) is a temporal 
difference algorithm, see (Sutton and Barto, 1998), 
designed to solve the reinforcement learning problem 
(RLP). Temporal difference  algorithms solve the 
RLP without knowing the transition probabilities 
between the states of the Finite Markov Decision 
Problem (FMDP), and therefore, in our context, the 
dynamics of the robot environment does not have to 
be known. Temporal difference methods are also 
suitable for learning incrementally, or online robot 
learning. The importance of online learning resides in 
the possibility of executing new behaviors without 
any previous phase like “on-site manual tuning” or 
“data collection + offline learning”. Another 

important characteristic about Q_learning is that it is 
an off-policy algorithm. The optimal state/action 
mapping is learnt independently of the policy being 
followed, which is very important in our approach 
because all the behaviors can be learnt even if they 
are not controlling the vehicle.  
 
The original Q_learning algorithm is based on 
FMDPs. It uses the perceived states (s), the taken 
actions (a) and the received reinforcements (r), to 
update the values of a table, denoted as Q(s,a) or Q-
function. If state/action pairs are continually visited, 
the Q values converge to a greedy policy, in which 
the maximum Q value for a given state, points to the 
optimal action. Figure 4 shows the Q_learning 
algorithm. There are several parameters which define 
the learning evolution: 

• γ: discount rate [0 1]. Concerning the 
maximization of future rewards. If γ=0, the agent 
maximizes only immediate rewards. 
• α: learning rate [0 1].  
• ∈: random action probability [0 1]. Exploitation 
versus exploration. The final action is called ∈-
greedy action. 
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Fig. 4. Q_learning algorithm.  

3.2   Neural Q_learning 

When working with continuous states and actions, as 
it is usual in robotics, the Q-function table becomes 
huge for the required state/action resolution. In these 
cases, tabular Q-learning has a considerably large 
learning time and memory requirements, which 
makes impractical the implementation of the 
algorithm in a real-time control architecture. The use 
of a Neural Network (NN) to generalize among states 
and actions decreases the number of values stored in 
the Q-function table to a set of NN weights. The 
implementation of a feed-forward NN with the 
backpropagation algorithm (Haykin, 1999) is known 
as direct Q_learning (Baird, 1995).  
 
Direct Q-learning algorithm has no convergence 
proofs and demonstrated to be unstable when trying 
to learn a behavior. The instability was caused by the 
lack of weight updating in the whole state/action 
space. To solve this limitation the proposed Neural-
Q_learning based behaviors maintain a database of 
the most recent learning samples. All the samples of 
this database are used at each iteration to update the 
weights of the NN. This assures a generalization in 
the whole visited state/action space instead of a local 
generalization in the current visited space. Each 



 

learning sample is composed by the initial state st, the 
action at, the new state st+1 and the reward rt. The 
action used by the NQL behaviors, is the one sent by 
the coordinator to the low-level control system. For 
this reason, a feedback of the last generated control 
action is needed, see figure 2. Finally, in order to 
prevent a huge database, each new learning sample 
substitutes old samples closer than a threshold. The 
distance between samples is geometrically computed 
from both {st, at, rt} vectors. It is important to 
maintain a database with the most recent samples to 
keep the current dynamics of the environment. 
 
The structure and phases of the proposed neural 
Q_learning algorithm is showed in figure 5. The 
Q_function approximated by the NN is:  

1 1t+1a
ˆ ˆ+  max

t t t t t
Q(s ,a ) = r Q(s ,a )γ + +

 

therefore, its inputs are the continuous state and 
actions, and the output is the Q_value. According to 
the output value, the error is found and the weights 
are updated using the standard backpropagation 
algorithm. A two layer NN has been used with a 
hyperbolic tangent and a lineal activation functions 
for the first and second layers respectively. Weights 
are initialized randomly. To find the action that 
maximizes the Q_value, the network evaluates all the 
possible actions that could be applied. Although 
actions are continuous, a finite set, which guarantees 
enough resolution, is used.  

3.3   Reinforcement function 

The reinforcement function determines the policy 
learnt by the behavior. The definition of this function 
requires the knowledge of a human designer. The 
function associates each state with a reward “r”. In 
our approach, we have reduced the possible values to 
three : {-1, 0, 1}. By associating the desired states 
with “r=1” and the undesired with “r = -1”, the 
algorithm learns how to act. 
 

 
4. TARGET FOLLOWING TASK 

 
To test the feasibility of the NQL based behaviors, a 
target following behavior with ODIN’s AUV was 
carried out. ODIN (Choi et al., 1995) is the testbed 
AUV developed at the Autonomous Systems 
Laboratory of the University of Hawaii. ODIN is a 
sphere shaped vehicle with eight thrusters (4 
horizontal and 4 vertical). It is capable of 
maneuvering with six degrees-of-freedom (DOF).  
ODIN has various sensors such as 8 sonar 
transducers, a pressure sensor, and an inertial 
navigation system. It also has an on-board CPU with 
VxWorks OS in VMEbus.  
 
The task consisted in following a target by means of 
a colour camera attached to the vehicle towards X-
axis, see figure 6. This application was designed to 
be carried out in a diving pool where light absorption 
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Fig. 5. Neural Q_learning algorithm structure. 
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Fig. 6. Colour video camera layout  

 
Fig. 7. Real and segmented images used by the target 

following behavior. 
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Fig. 8. ODIN’s target following task control system. 
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does not apply, therefore a simple segmentation 
algorithm was used to detect the position of a tinted 
target, see figure 7. The two-dimensional position of 
the target in the image and its area were used as the 
input state of the NQL behavior. Each DOF was 
learnt with an independent NQL algorithm. Aside 
from the position of the target, the euler derivative of 
it was used also as input. A reinforcement function 
was designed to give positive rewards (r=1) when 
the target was around the vehicle’s relative position 
x=2, y=0 and z=0. Otherwise, values like r=0 or r=-1 
were given. The general control scheme for the target 
following behavior can be seen in figure 8. As the 
figure shows, an additional behavior, the “target 
recovery”, was used. This behavior moved the 
vehicle in the direction in which the target was last 
seen when this disappeared from the image. 
 

5. RESULTS 
 
The described “target following” task was carried out 
with ODIN’s AUV in a diving pool. Several phases 
were accomplished in order to test the 
communication interface, the onboard sensors, the 
low-level controllers, the computer vision algorithm 
and the NQL algorithm. An external computer was in 
charge of processing the video images, as well as 
executing the behavior-based layer. As stated above, 
the experiments were designed to test the feasibility 
of the NQL-based behaviors. The target following 
behavior was implemented with 3 different NQL 
algorithms (one for each DOF). In these preliminary 
experiments, only one NQL algorithm was learnt at 
each time, no simultaneous learning between 
different DOF was tested.  
 
During initial experimentation phases some problems 
were found. One of these problems was the choice of 
the sample time of the behavior-based layer. A small 
sample time was required to ensure the control 
performance. However in order to learn properly 
with the NQL algorithm, a bigger period was needed 
to ensure an identifiable state variation compared 
with the inherent noise of the data. Finally, we 
adopted an intermediate value of 0.8 seconds. 
Another problem was related to the NN 
generalization approach. We tried to update the 
weights using only the current learning sample, but 
the NN was not able to maintain the Q-value for all 
the visited points. For this reason, we added the 
database in which the newest and most indicative 
learning samples of all the visited space were stored. 
This drastically solved the instability problem we had 
before. 
 
Despite of these problems, we successfully were able 
to learn the NQL behavior. The robot was able to 
learn how to move in the 3 DOFs achieving the target 
following behavior. The internal parameters and 
configuration we used in this behavior can be seen in 
table 1. Also, the learnt state/action mappings for 
each DOF is shown.  

The NQL behavior showed a very good robustness 
and small convergence time. Figure 9 shows a typical 
online learning evolution of the X DOF in which the 
behavior was learnt in less than 350 iterations (280 
seconds). During this learning phase, aleatory actions 
caused the exploration of the space until the optimal 
policy was learnt and the algorithm found the 
maximum reward. Finally, once the 3 DOF were 
learnt, the target following behavior was tested. 
Figure 10, 11 and 12 show the performance of the X, 
Y and Z DOF respectively. In these figures it can be 
seen how after the suppression of the target following 
behavior by a manual behavior, driving away the 
vehicle from the target, the target following behavior 
took the control and reached the target again. 
 

6.  CONCLUSIONS 
 
This paper has proposed a behavior-based scheme for 
high-level control of autonomous robots. The scheme 
is compound by a hybrid coordination system and 
several Reinforcement Learning-based behaviors. In 
particular, a Neural-Q_learning approach has been 
proposed and evaluated in a target following 
behavior with ODIN’s AUV. Real results showed the 
feasibility of the algorithm demonstrating its 
convergence, robustness and efficiency. In the 
presented work, each DOF was learnt independently. 
Future work will concentrate on simultaneously 
learning different DOFs and behaviors. 
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Table 1. Target following behavior specifications 

Sensors color camera + target detection algorithm using 
color segmentation  

Codification [fx, fy, fz] : target position + normalization [-1, 1] 
Activation if target detected: af= 1; else af= 0  

X DOF 
state 
fx : position 
fvx : euler derivative 
action 
afx : desired speed 
reinforcement function 
If  fx < 0.15 : rfx = 1 
else if   fx < 0.4 : rfx = 0 
else rfx = -1 

-1
-0.5

0
0.5

1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Position 

Velocity 

Action 

NQL parameters NQL configuration 
α = 0.05; γ = 0.9; ∈ = 0.4 
Database size = up to 50 
learning samples 

inputs: 3 : [fx, fvx, afx] 
output: Q_value 
layer 1: 6 neurons (hyperbolic tangent a.f.) 

layer 2: 1 neuron (lineal a.f.) 

Y DOF 
state 
fy : position 
fvy : euler derivative 
action 
afy : desired speed 
reinforcement function 
If  fy < 0.2 : rfy = 1 
else if   fy < 0.5 : rfy = 0 
else rfy = -1 

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
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-0.5

0

0.5

1

Position Velocity 

Action 

NQL parameters NQL configuration 
α = 0.05; γ = 0.9; ∈ = 0.4 
Database size = up to 50 
learning samples 

inputs: 3 : [fy, fvy, afy] 
output: Q_value 
layer 1: 3 neurons (hyperbolic tangent a.f.) 
layer 2: 1 neuron (lineal a.f.) 

Z DOF 
state 
fz : position 
fvz : euler derivative 
action 
afz : desired speed 
reinforcement function 
If  fz < 0.2 : rfz = 1 
else if   fz < 0.4 : rfz = 0 
else rfz = -1 

-1

-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

Position 
Velocity 
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NQL parameters NQL configuration 
α = 0.05; γ = 0.9; ∈ = 0.4 
Database size = up to 50 
learning samples 

inputs: 3 : [fz, fvz, afz] 
output: Q_value 
layer 1: 3 neurons (hyperbolic tangent a.f.) 
layer 2: 1 neuron (lineal a.f.) 
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Fig. 9. Online learning evolution of the target 

following behavior in the X DOF. The states, 
actions and rewards are shown. 
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Fig. 10. Performance of the target following behavior 
in the X DOF. Once the behavior took ODIN’s 
control, the target was reached. 
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Fig. 11. Performance of the target following behavior 

in the Y DOF. Once the behavior took ODIN’s 
control, the target was reached. 
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Fig. 12. Performance of the target following behavior 

in the Z DOF. Once the behavior took ODIN’s 
control, the target was reached. 


