

HIGH-LEVEL CONTROL OF AUTONOMOUS ROBOTS USING A BEHAVIOR-
BASED SCHEME AND REINFORCEMENT LEARNING

M. Carreras1, J. Yuh2 and J. Batlle1

1 Institut d’Informàtica i Aplicacions
Universitat de Girona

Edifici Politècnica II, Campus Montilivi,
17071 Girona, Spain

2 Autonomous Systems Laboratory
University of Hawaii

2540 Dole St., Holmes 302
Honolulu, HI 96822, USA

Abstract - This paper proposes a behavior-based scheme for high-level control of
autonomous robots. Two main characteristics can be highlighted in the control scheme.
Behavior coordination is done through a hybrid methodology, which takes in advantages of
the robustness and modularity in competitive approaches, as well as optimized trajectories
in cooperative ones. As a second feature, behavior state/action mapping is learnt by means
of Reinforcement Learning (RL). A new continuous approach of the Q_learning algorithm,
implemented with a multi-layer neural network, is used. The behavior-based scheme
attempts to fulfill simple missions in which several behaviors/tasks compete for the
vehicle’s control. This paper is centered in the RL-based behaviors. In order to test the
feasibility of the proposed Neural-Q_learning scheme, real experiments with the
underwater robot ODIN in a target following behavior were done. Results showed the
convergence of the behavior into an optimal state/action mapping. Discussion about the
proposed approach is given, as well as an overall description of the high level control
scheme. Copyright  2002 IFAC

Keywords: Autonomous vehicles, decentralized control, learning algorithms, neural

networks, robot navigation.

1. INTRODUCTION

The control of an autonomous vehicle to fulfill a
mission in an unstructured and unknown
environment is still a challenge. In the middle of
1980s the appearance of Behavior-based Robotics
(Arkin, 1998) philosophy revolutionized the
development of robots. Its principles of parallelism,
modularity, situatedness/embeddedness and behavior
emergence provided a more feasible approach than
traditional top-down deliberative architectures.
Behavior-based control architectures propose a
bottom-up methodology in which several behaviors
or tasks act independently generating set-points to
be followed by the robot. A coordination module is
in charge of choosing the final set-point to be
followed. Two main coordination methodologies can
be found. In competitive coordinators a single
behavior is selected whereas in cooperative
coordinators several behavior responses are
superposed.

In the implementation of a behavior-based system,
the design and tune-up of the behaviors is a hard task
and requires a lot of experimentation. In these
systems, there is also the need of performing in
unknown and time-varying environments, which
means that some kind of adaptation is needed. To
solve these difficulties, many robotic systems include
learning techniques. There is not yet an established
methodology to develop adaptive behavior-based
systems. However, a commonly used approach is
Reinforcement Learning (Sutton and Barto, 1998), a
class of learning algorithm in which an agent tries to
maximize a scalar evaluation (reward or punishment)
of its interaction with the environment. The goal of a
RL system is to find the optimal policy, which maps
the state of the environment to an action that will
maximize the accumulated future rewards. Most RL
techniques are based on Finite Markov Decision
Processes (FMDP) causing that state and action
spaces are finite. The main advantage of RL is that it
does not use any knowledge database, as in most
forms of machine learning, making this class of

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

learning suitable for online learning. The main
disadvantages are the large convergence time and
lack of generalization among continuous variables.
The latter one is one of the most active research
topics in RL.

Many RL-based systems have been applied to
robotics during last years. Most of them use classic
RL algorithms combined with some methodologies
that reduce the generalization problem. In (Smart and
Kaebling, 2000), an instance-based learning
algorithm was applied to a real robot in a corridor-
following task. Also for the same task, in (Hernandez
and Mahadevan, 2000) a hierarchical memory-based
RL was proposed. A very common approach is the
use of Q_learning (Watkins and Dayan, 1992) as the
base of the learning algorithm due to the good
learning capabilities in discrete domains: online and
off-policy. Many generalization techniques have
been applied to Q_learning. In (Takahashi et al.,
1999) a memory-based implementation was proposed
for vision-guided behavior acquisition, and (Takeda
et al., 2001) shows a state/action quantification by a
set of triangular patches. Also, a lot of proposals
combine Q_learning and Neural Networks (NN), see
(Gaskett et al., 1999) for an overview. Finally,
several recent publications have pointed to the
possibility of solving the RL problem by estimating
the policy function instead of the value function. In
(Bagnel and Schneider, 2001), a practical application
to control an autonomous helicopter was presented.

This paper presents a behavior-based scheme for
high-level control of autonomous robots. Such
scheme has been conceived to accomplish the tasks
given by a higher level deliberative layer. Each task,
i.e.: “target following”, “go to a position”,
“environment exploration”, is a simple sub-mission
of the whole mission. The control scheme is
structured as a set of behaviors and a hybrid
coordinator between competitive and cooperative
methodologies. This hybrid approach keeps the
robustness and modularity of competitive approaches
as well as the optimized paths of cooperative ones.
As a second important feature, behaviors are learnt
with a Neural-Q_learning (NQL) approach. Our
approach differentiates from other NQL proposals in
that we implement directly the Q-function into a NN,
instead of decomposing the problem into a finite set
of actions, features or clusters. This NQL
implementation, known as direct Q_learning (Baird,
1995), is the most simple and straight way to
generalize with a NN. This implies more learning
capabilities, causing instability in the learning of the
optimal state/action mapping. To avoid this problem,
a database of the most recent learning samples taken
from the whole state/action space is repeatedly used
in the NN weight update phase.

To test the feasibility of the Neural-Q_learning
algorithm, real experiments were carried out with the
Autonomous Underwater Vehicle (AUV) ODIN

(Choi et al., 1995), see figure 1. The experiments
consisted in learning a “target following” behavior
with the vehicle in a pool environment. Real results
showed the convergence of the NQL behaviors into
an optimal policy, and therefore, the achievement of
the behavior.

The structure of this paper is as follows. Section 2
describes the behavior-based control scheme. Section
3 introduces the Neural-Q_learning algorithm used
for behavior learning. In section 4, the target
following task using ODIN’s AUV is detailed. In
section 5, real results and some discussion is given.
And finally, conclusions and future work are
presented in section 6.

Fig.1. ODIN executing the target following behavior.

2. BEHAVIOR-BASED CONTROL SCHEME

A set of simple behaviors and a coordinator
constitute the behavior-based control scheme. For a
given task, the behaviors, with the corresponding
priorities among them, must be determined. Each
behavior has an independent goal, which tries to
accomplish by perceiving the state of the
environment and proposing a control action. An
hybrid coordinator (Carreras et al., 2001) between
competitive and cooperative methodologies is used.
The general structure is shown in figure 2.

This coordinator is based on normalized behavior
outputs. Each output contains a three-dimensional
vector “vi” which represents the velocity proposed by
the behavior. And, associated with this vector, an
activation level “ai” indicates how important it is for
the behavior to take control of the robot. This value is
between 0 and 1, see figure 3.

The hybrid coordination system is implemented with
a set of hierarchical hybrid nodes, see figure 3. The
nodes have two inputs and generate also a merged
normalized control response. One of the inputs is
used by a dominant behavior which suppresses the
responses of the non-dominant behavior when the
first one is completely activated (ai=1). However,
when the dominant behavior is partially activated
(0<ai<1), the final response will be a combination of
both inputs. The basic idea is to use the optimized
paths from cooperation when the predominant
behavior is not completely active. Non-dominant

behaviors can slightly modify the responses of
dominant behaviors when they aren’t completely
activated. When non-decisive situations occur,
cooperation between behaviors is allowed.
Nevertheless, robustness is present when dealing
with critical situations. The hybrid nodes do not need
any tuning phase. The coordination of a set of
behaviors is defined hierarchically, classifying each
behavior depending on its priority.

NQL-Behav ior 1

NQL-Behav ior 2

NQL-Behav ior 4S
T
I

M
U
L
U
S

NQL-Behav ior 3se
ns

or
s

HYBRID
COORDINATOR

n21

D

ND

n34

D

ND

n2’1’

D

ND

co
nt

ro
l

ac
tio

n

Fig. 2. Behavior-based architecture with the hybrid
coordination system.

XL

YL

ZL

yixi

zi
vi

XL

YL

ZL

yixi

zi
vi

vi=(vi,x, vi,y, vi,z);

ai=[0 1]

vi=(vi,x, vi,y, vi,z);

ai=[0 1]

rd

rnd

ri
Dominant

Non-dominant

ni

ai ad + and ·(1 - ad)
2

if (ai>1) ai=1

ai ad + and ·(1 - ad)
2

if (ai>1) ai=1

Vi Vd·ad/ai +vnd ·and·(1 - ad)2 /ai

if (|vi|>1) vi= vi /|vi|

S bdbd

bndbnd
S

Fig. 3. Normalized output of a behavior and
equations of the hierarchical hybrid node.

3. NEURAL-Q_LEARNING BASED
BEHAVIORS

A Neural-Q_learning approach is used to learn the
mapping between the state and action spaces
(policy). The state space is the sensor information
perceived by the robot and needed by the behavior in
order to accomplish its goal. And the action space is
the velocity set-points that the robot should follow.

3.1 Q_learning

Q-learning (Watkins and Dayan, 1992) is a temporal
difference algorithm, see (Sutton and Barto, 1998),
designed to solve the reinforcement learning problem
(RLP). Temporal difference algorithms solve the
RLP without knowing the transition probabilities
between the states of the Finite Markov Decision
Problem (FMDP), and therefore, in our context, the
dynamics of the robot environment does not have to
be known. Temporal difference methods are also
suitable for learning incrementally, or online robot
learning. The importance of online learning resides in
the possibility of executing new behaviors without
any previous phase like “on-site manual tuning” or
“data collection + offline learning”. Another

important characteristic about Q_learning is that it is
an off-policy algorithm. The optimal state/action
mapping is learnt independently of the policy being
followed, which is very important in our approach
because all the behaviors can be learnt even if they
are not controlling the vehicle.

The original Q_learning algorithm is based on
FMDPs. It uses the perceived states (s), the taken
actions (a) and the received reinforcements (r), to
update the values of a table, denoted as Q(s,a) or Q-
function. If state/action pairs are continually visited,
the Q values converge to a greedy policy, in which
the maximum Q value for a given state, points to the
optimal action. Figure 4 shows the Q_learning
algorithm. There are several parameters which define
the learning evolution:

• γ: discount rate [0 1]. Concerning the
maximization of future rewards. If γ=0, the agent
maximizes only immediate rewards.
• α: learning rate [0 1].
• ∈: random action probability [0 1]. Exploitation
versus exploration. The final action is called ∈-
greedy action.

1. Initialize arbitrarily
2. Repeat:
 (a) s the current state

ˆ (b) choose an action that maximizes over all
 (c) -greedy action, carry out action in the world with pro

ˆ

t

t t

t

(s,a)

a Q(s ,a) a
a

Q

ε

←

1 1t+1a

bability
 (1-), otherwise apply a random action (exploration)
 (d) Let the short term reward be , and the new state be s

ˆ ˆ ˆ ˆ (e) [- + max
t t+1

t t t t t t t t t

r
Q(s ,a) = Q(s ,a)+ r Q(s ,a) Q(s ,a

ε

α γ
+ +

])

Fig. 4. Q_learning algorithm.

3.2 Neural Q_learning

When working with continuous states and actions, as
it is usual in robotics, the Q-function table becomes
huge for the required state/action resolution. In these
cases, tabular Q-learning has a considerably large
learning time and memory requirements, which
makes impractical the implementation of the
algorithm in a real-time control architecture. The use
of a Neural Network (NN) to generalize among states
and actions decreases the number of values stored in
the Q-function table to a set of NN weights. The
implementation of a feed-forward NN with the
backpropagation algorithm (Haykin, 1999) is known
as direct Q_learning (Baird, 1995).

Direct Q-learning algorithm has no convergence
proofs and demonstrated to be unstable when trying
to learn a behavior. The instability was caused by the
lack of weight updating in the whole state/action
space. To solve this limitation the proposed Neural-
Q_learning based behaviors maintain a database of
the most recent learning samples. All the samples of
this database are used at each iteration to update the
weights of the NN. This assures a generalization in
the whole visited state/action space instead of a local
generalization in the current visited space. Each

learning sample is composed by the initial state st, the
action at, the new state st+1 and the reward rt. The
action used by the NQL behaviors, is the one sent by
the coordinator to the low-level control system. For
this reason, a feedback of the last generated control
action is needed, see figure 2. Finally, in order to
prevent a huge database, each new learning sample
substitutes old samples closer than a threshold. The
distance between samples is geometrically computed
from both {st, at, rt} vectors. It is important to
maintain a database with the most recent samples to
keep the current dynamics of the environment.

The structure and phases of the proposed neural
Q_learning algorithm is showed in figure 5. The
Q_function approximated by the NN is:

1 1t+1a
ˆ ˆ+ max

t t t t t
Q(s ,a) = r Q(s ,a)γ + +

therefore, its inputs are the continuous state and
actions, and the output is the Q_value. According to
the output value, the error is found and the weights
are updated using the standard backpropagation
algorithm. A two layer NN has been used with a
hyperbolic tangent and a lineal activation functions
for the first and second layers respectively. Weights
are initialized randomly. To find the action that
maximizes the Q_value, the network evaluates all the
possible actions that could be applied. Although
actions are continuous, a finite set, which guarantees
enough resolution, is used.

3.3 Reinforcement function

The reinforcement function determines the policy
learnt by the behavior. The definition of this function
requires the knowledge of a human designer. The
function associates each state with a reward “r”. In
our approach, we have reduced the possible values to
three : {-1, 0, 1}. By associating the desired states
with “r=1” and the undesired with “r = -1”, the
algorithm learns how to act.

4. TARGET FOLLOWING TASK

To test the feasibility of the NQL based behaviors, a
target following behavior with ODIN’s AUV was
carried out. ODIN (Choi et al., 1995) is the testbed
AUV developed at the Autonomous Systems
Laboratory of the University of Hawaii. ODIN is a
sphere shaped vehicle with eight thrusters (4
horizontal and 4 vertical). It is capable of
maneuvering with six degrees-of-freedom (DOF).
ODIN has various sensors such as 8 sonar
transducers, a pressure sensor, and an inertial
navigation system. It also has an on-board CPU with
VxWorks OS in VMEbus.

The task consisted in following a target by means of
a colour camera attached to the vehicle towards X-
axis, see figure 6. This application was designed to
be carried out in a diving pool where light absorption

Reinforcement
function

state s t+1 action at

Q(st,i ,a t,i) = rt,i +γ · maxQa’(st+1,i,a’)

Back-
propagation
learning

unit
delay

s t+1 r t s t at

amax|Q(s
t+1

,a
max

)
=max(Q(s,a))

Q(s
t+1

,a
max

)

ε-greedy

amax
P

H
A

S
E

 1
P

H
A

S
E

 2
P

H
A

S
E

 3

R
E

W
A

R
D

C

O
M

P
U

TA
TI

O
N

N
N

 W
EI

G
H

T
S

U

P
D

A
T

E
A

C
TI

O
N

S

E
L

E
C

T
IO

N

S

LE
A

R
N

IN
G

S

A
M

P
L

E
S

 U
P

D
A

T
E

1

-1
A

-1

0

10

P
H

A
S

E
 4

action at+1

s t+1

Fig. 5. Neural Q_learning algorithm structure.

αH= 30º
αV= 22.5º

αV

αH

αV

αH

Fig. 6. Colour video camera layout

Fig. 7. Real and segmented images used by the target

following behavior.

TARGET RECOVERY

HYBRID
COORDINATOR

SENSORS:
VIDEO CAMERA

LOW-LEVEL
CONTROL

(depth, yaw)

TARGET FOLLOWING

CAMERA St,TF

at-1

NEURAL Q_LEARNING

NEURAL Q_LEARNING

NEURAL Q_LEARNING

s
x
,a

x

s
y
,a

y

s
z
,a

z

 a ’
x

 a ’
y

 a ’
z

nc

D

ND

ODIN

Fig. 8. ODIN’s target following task control system.

(1)

does not apply, therefore a simple segmentation
algorithm was used to detect the position of a tinted
target, see figure 7. The two-dimensional position of
the target in the image and its area were used as the
input state of the NQL behavior. Each DOF was
learnt with an independent NQL algorithm. Aside
from the position of the target, the euler derivative of
it was used also as input. A reinforcement function
was designed to give positive rewards (r=1) when
the target was around the vehicle’s relative position
x=2, y=0 and z=0. Otherwise, values like r=0 or r=-1
were given. The general control scheme for the target
following behavior can be seen in figure 8. As the
figure shows, an additional behavior, the “target
recovery”, was used. This behavior moved the
vehicle in the direction in which the target was last
seen when this disappeared from the image.

5. RESULTS

The described “target following” task was carried out
with ODIN’s AUV in a diving pool. Several phases
were accomplished in order to test the
communication interface, the onboard sensors, the
low-level controllers, the computer vision algorithm
and the NQL algorithm. An external computer was in
charge of processing the video images, as well as
executing the behavior-based layer. As stated above,
the experiments were designed to test the feasibility
of the NQL-based behaviors. The target following
behavior was implemented with 3 different NQL
algorithms (one for each DOF). In these preliminary
experiments, only one NQL algorithm was learnt at
each time, no simultaneous learning between
different DOF was tested.

During initial experimentation phases some problems
were found. One of these problems was the choice of
the sample time of the behavior-based layer. A small
sample time was required to ensure the control
performance. However in order to learn properly
with the NQL algorithm, a bigger period was needed
to ensure an identifiable state variation compared
with the inherent noise of the data. Finally, we
adopted an intermediate value of 0.8 seconds.
Another problem was related to the NN
generalization approach. We tried to update the
weights using only the current learning sample, but
the NN was not able to maintain the Q-value for all
the visited points. For this reason, we added the
database in which the newest and most indicative
learning samples of all the visited space were stored.
This drastically solved the instability problem we had
before.

Despite of these problems, we successfully were able
to learn the NQL behavior. The robot was able to
learn how to move in the 3 DOFs achieving the target
following behavior. The internal parameters and
configuration we used in this behavior can be seen in
table 1. Also, the learnt state/action mappings for
each DOF is shown.

The NQL behavior showed a very good robustness
and small convergence time. Figure 9 shows a typical
online learning evolution of the X DOF in which the
behavior was learnt in less than 350 iterations (280
seconds). During this learning phase, aleatory actions
caused the exploration of the space until the optimal
policy was learnt and the algorithm found the
maximum reward. Finally, once the 3 DOF were
learnt, the target following behavior was tested.
Figure 10, 11 and 12 show the performance of the X,
Y and Z DOF respectively. In these figures it can be
seen how after the suppression of the target following
behavior by a manual behavior, driving away the
vehicle from the target, the target following behavior
took the control and reached the target again.

6. CONCLUSIONS

This paper has proposed a behavior-based scheme for
high-level control of autonomous robots. The scheme
is compound by a hybrid coordination system and
several Reinforcement Learning-based behaviors. In
particular, a Neural-Q_learning approach has been
proposed and evaluated in a target following
behavior with ODIN’s AUV. Real results showed the
feasibility of the algorithm demonstrating its
convergence, robustness and efficiency. In the
presented work, each DOF was learnt independently.
Future work will concentrate on simultaneously
learning different DOFs and behaviors.

REFERENCES

Arkin, R. Behavior-based Robotics. MIT Press, 1998.
Bagnell, J.A. and Schneider, J.G., Autonomous

Helicopter Control using Reinforcement
Learning Policy Search Methods, IEEE
International Conference on Robotics &
Automation, Korea, 2001.

Baird, K. Residual Algorithms: Reinforcement
Learning with Function Approximation.
Machine Learning: Twelfth International
Conference, San Francisco, USA, 1995.

Carreras, M., Batlle, J. and Ridao, P. Hybrid
Coordination of Reinforcement Learning-based
Behaviors for AUV control, In: IEEE/RSJ
IROS, Hawaii, USA 2001.

Choi, S.K., Yuh, J. and Takashige, G.Y..
Development of the Omni-Directional
Intelligent Navigator. IEEE Robotics and
Automation Magazine, pp. 44-53, 1995.

Gaskett, C., Wettergreen, D. and Zelinsky, A. Q-
learning in continuous state and action spaces.
Proc. of the 12th Australian Joint Conference on
Artificial Intelligence, Sydney, Australia, 1999.

Haykin, S. Neural Networks, a comprehensive
foundation. Prentice Hall, 2nd ed., 1999.

Hernandez, N. and Mahadevan, S., Hierarchical
Memory-Based Reinforcement Learning, 15th
Intern. Conference on Neural Information
Processing Systems, Denver, USA, 2000.

Smart, W.D. and Kaelbling, L.P., Practical
Reinforcement Learning in Continuous Spaces,
Intern. Conference on Machine Learning, 2000.

Sutton, R. and Barto, A. Reinforcement Learning, an
introduction. MIT Press, 1998.

Takahashi, Y., Takada, M. and Asada, M.
Continuous Valued Q-learning for Vision-
Guided Behavior Acquisition. In International
Conference on Multisenso Fusion and
Integration for Intelligent Systems, pages 716-
721, 1999.

Takeda, M., Nakamura, T. and Ogasawara, T.,
Continuous Valued Q-learning Method Able to
Incrementally Refine State Space, IEEE/RSJ
IROS, Hawaii, USA 2001.

Watkins, C.J.C.H., and Dayan, P. Q-learning.
Machine Learning, 8:279-292, 1992.

Table 1. Target following behavior specifications

Sensors color camera + target detection algorithm using
color segmentation

Codification [fx, fy, fz] : target position + normalization [-1, 1]
Activation if target detected: af= 1; else af= 0

X DOF
state
fx : position
fvx : euler derivative
action
afx : desired speed
reinforcement function
If fx < 0.15 : rfx = 1
else if fx < 0.4 : rfx = 0
else rfx = -1

-1
-0.5

0
0.5

1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Position

Velocity

Action

NQL parameters NQL configuration
α = 0.05; γ = 0.9; ∈ = 0.4
Database size = up to 50
learning samples

inputs: 3 : [fx, fvx, afx]
output: Q_value
layer 1: 6 neurons (hyperbolic tangent a.f.)

layer 2: 1 neuron (lineal a.f.)

Y DOF
state
fy : position
fvy : euler derivative
action
afy : desired speed
reinforcement function
If fy < 0.2 : rfy = 1
else if fy < 0.5 : rfy = 0
else rfy = -1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

Position Velocity

Action

NQL parameters NQL configuration
α = 0.05; γ = 0.9; ∈ = 0.4
Database size = up to 50
learning samples

inputs: 3 : [fy, fvy, afy]
output: Q_value
layer 1: 3 neurons (hyperbolic tangent a.f.)
layer 2: 1 neuron (lineal a.f.)

Z DOF
state
fz : position
fvz : euler derivative
action
afz : desired speed
reinforcement function
If fz < 0.2 : rfz = 1
else if fz < 0.4 : rfz = 0
else rfz = -1

-1

-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

Position
Velocity

Action

NQL parameters NQL configuration
α = 0.05; γ = 0.9; ∈ = 0.4
Database size = up to 50
learning samples

inputs: 3 : [fz, fvz, afz]
output: Q_value
layer 1: 3 neurons (hyperbolic tangent a.f.)
layer 2: 1 neuron (lineal a.f.)

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350

position derivative

action

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350

action

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350

reward

Iterations

Iterations

Fig. 9. Online learning evolution of the target

following behavior in the X DOF. The states,
actions and rewards are shown.

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

target following
coordinated response

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

state
reward

Fig. 10. Performance of the target following behavior
in the X DOF. Once the behavior took ODIN’s
control, the target was reached.

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45

target following coordinated response

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45

state reward

Fig. 11. Performance of the target following behavior

in the Y DOF. Once the behavior took ODIN’s
control, the target was reached.

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

target following coordinated response

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

state reward

temps

temps

Fig. 12. Performance of the target following behavior

in the Z DOF. Once the behavior took ODIN’s
control, the target was reached.

