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Abstract: In this article,projection operatorsare used for obtaining an adaptive canonical
form for sliding mode controlled uncertain nonlinear systems. For systems already in this
canonical form, a simple variable structure input coordinate transformation together with an
update law for the unknown parameters are used to achieve passivity and, thus, a feedback
sliding mode control can be synthesized to require that the state trajectories slide on a given
submanifold of the state space.
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1. INTRODUCTION

Passivity based control enjoys popularity due to sev-
eral advantages related to controller simplicity, ro-
bustness and the physically appealing features of the
approach. A seminal contribution is that of Willems
(1972) in the context ofdissipative systems. The works
by Hill (1976, 1977) constitute also a general ap-
proach with emphasis on conditions for stability of
feedback interconnected systems. A geometric ap-
proach to feedback equivalence of nonlinear passive
systems was contributed by the work of Byrneset al
(1991). The passivity approach has found application
developments in the area of robotics, electrical ma-
chines and power electronics. The reader is referred
to the works by Ortega and his coworkers (1995), and
Sira-Ram´ırez et al (1997). The initial developments
of passivity based control were carried out within the
context of Hamiltonian systems, with a view towards
applications in the control of robotic manipulator sys-
tems (Takegaki and Arimoto, 1981) General devel-
opments were later advanced, within the formulation
of Lagrangian systems, in the work of Ortegaet al
(1995) and Shishkinet al (1996), and also in the con-
text of Hamiltonian systems (van der Schaft, 1996).

Nevertheless, passivity based control should not be re-
garded as a control technique which is suitable only in
the field of electromechanical systems (or,lagrangian
systems in short). Applications in the context of chem-
ical and biochemical processes are also possible, as
demonstrated by the works of Sira-Ram´ırez and Del-
gado (1997), Sira-Ram´ırez and Angulo-N´uñez (1997);
and more recently, by the approach proposed by R´ıos-
Bolı́varet al (2000).

On the other hand, Sliding Mode Control (SMC) is a
robust control approach which employs discontinuous
control to enforce the system state trajectories to slide
on a prescribed manifold, (Utkin, 1978). Recently,
Sira-Ram´ırez (1998) proposed a general canonical
form for sliding mode controlled nonlinear systems
which have provided further insights on the connec-
tions between passivity based control and SMC.

In this article, a further extension of this latter ap-
proach is used to achieve an adaptive canonical form
for sliding mode control nonlinear systems contain-
ing constant but unknown parameters. Anatural drift
vector field decomposition is firstly obtained on the
basis of aprojection operator, induced by the given
sliding surface function and the control input vector
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field. This decomposition is aimed at naturally ex-
hibiting theworkless, theattracting(or beneficial) and
the locallyrejectingforces acting on the uncontrolled
motions of the system. The workless or conservative
forces yield invariance of the switching surface co-
ordinate, the beneficial forces make the sliding man-
ifold attractive and try to drive the surface coordinate
function to lower absolute values while, the rejecting
forces drive the system to achieve higher absolute val-
ues of the switching surface coordinate. These two last
forces change their nature depending on the local sign
of the surface coordinate function i.e., attracting forces
abovethe surface become repelling forcesbelow the
surface and viceversa. The adaptive canonical field is
obtained by incorporating estimate of the unknown
parameter and taking into account the parameter es-
timate error. Then, by proposing an update law for
the uncertain parameters and, by suitably respecting
the local beneficial nonlinearities, on each side of the
sliding surface, an autonomous non-divergence from
the sliding surface is guaranteed and thus, the variable
structure feedback controller yielding convergence to-
wards the surface can be easily synthesized. The con-
troller design simply consists in injectingdamping,
or attractivity terms, which suitably complement the
local beneficial nonlinearities of the system.

2. A CANONICAL FORM FOR SLIDING MODE
CONTROL

2.1 Assumptions, definitions and results

Consider the class of nonlinear single-input single-
output systems described by

_x(t) = f(x) + g(x)u ; x 2 X � R
n ;

y= �(x) ; y 2 Y � R u 2 U � R (1)

whereX denotes theoperating regionof the system,
constituted by a sufficiently large open set containing
a continuum of equilibrium points, possibly parame-
terized by a constant control input valueu = U 2 U ,
of the formx = x(U) and given by the solution of
f(x) + g(x)U = 0. In particular, foru = 0, we
assumef(x) = 0 impliesx = 0. However, motivated
by a large class of real life systems, we are specifically
interested innonzeroconstant state equilibrium points
x = x, corresponding to nonzero constant control in-
putsu = U . The output functiony = �(x) is assumed
to be zero at the equilibrium point, i.e.,�(x) = 0.

We assume that�(x) is aC1 scalar function, called
the sliding surface function� : Rn ! R such that
when the state trajectories are confined to its zero level
set S0 = fx 2 X : �(x) = 0g, the behaviour
of the system is asymptotically stable towards a given
equilibrium.

The column vector field@�=@x, with components
@�=@xi i = 1; : : : ; n, denotes the gradient field of

�. The transpose of this gradient field is denoted
by the row vector@�=@xT . Let Lg�(x) denote the
directional derivative of the scalar function�(x) with
respect to the control input vector fieldg(x) at the
pointx 2 X . We assume throughout the entire article
that the following assumption holds valid:

Lg�(x) =
@�

@xT
g(x) 6= 0 8x 2 X

This condition is usually known as thetransversality
conditionand simply establishes that the vector field
g(x), is not orthogonal to the gradient of�(x) at
any pointx in X . In other words, the control vector
field g(x) is not tangential, at eachx, to the sliding
surface function level sets, defined in the state space
of the system asSk = fx 2 X : �(x) =

kg. This condition is quite familiar in sliding mode
control of nonlinear systems (Sira-Ram´ırez, 1988)
and it amounts to having a sliding surface function
which is locally relative degreeone inX . The zero
dynamicscorresponding to the ideal sliding condition
y = �(x) = 0 is assumed to be asymptotically stable
towards the isolated equilibrium pointx 2 S. In other
words, the system isminimum phasewith respect to
the outputy = �(x).

For eachx 2 X , we define aprojection operator,
along the span of the control input vector fieldg(x)
onto the tangent space to the constant level sets of
the sliding surface function�(x), as the matrixM(x)

given by

M(x) =

�
I �

1

Lg�
g(x)

@�

@xT

�
(2)

The following proposition points out some properties
of the matrixM(x) which further justify the given
name of “projection operator”

Proposition 1.The matrixM(x) enjoys the following
properties:

@�

@x
2 Ker M

T (x)

M(x)(I �M(x)) = 0 (3)

g(x) 2 Ker M(x)

The first property is equivalent to@�=@xTM(x) = 0

and simply states that the span ofM(x) lies in the
tangent space to the level sets of�(x). The second
property establishes thatM(x) leaves invariant any
vector field, or distribution, in the tangent space to
the level sets of�(x). Finally, the third property es-
tablishes that, locally,M(x)g(x) = 0. The following
proposition depicts further properties of the projection
matrixM(x)

Proposition 2.Letf(x) be a smooth vector field, then
the vectorM(x)f(x) can be written as



M(x)f(x) = ~J (x)
@�

@x

where ~J (x) is a skew-symmetric matrix, i.e.~J (x) +
~J T (x) = 0.

On the other hand, the vector field(I �M(x))f(x)

can be written as

(I �M(x))f(x) = �
1

2
~J (x)

@�

@x
+ S(x)

@�

@x

whereS(x) is a symmetric matrix, i.e.,S(x) = ST (x)

Proof. The first part of the proposition is straightfor-
ward from algebraic manipulations.

M(x)f(x) =

�
I �

1

Lg�
g(x)

@�

@xT

�
f(x)

=
1

Lg�(x)

�
(Lg�(x))f(x) � g(x)Lf�(x)

�

=
1

Lg�(x)

�
@�(x)

@xT
g(x)f(x)� g(x)

@�(x)

@xT
f(x)

�

=
1

Lg�

�
f(x)gT (x) � g(x)fT (x)

�
@�

@x

= ~J (x)
@�

@x
(4)

For the proof of the second part of the proposition note
that,

(I �M(x))f(x) =
1

Lg�
g(x)

@�

@xT
f(x)

=
1

Lg�

�
g(x)fT (x)

� @�
@x

(5)

The result follows from the fact thatanysquare matrix
N(x) and, in particular,

N(x) =
1

Lg�

�
g(x)fT (x)

�

can always be written as the sum of a symmetric
matrix and a skew symmetric matrix, i.e.,

N(x) = 1=2(N(x)�N
T (x))

+1=2(N(x) +N
T (x))

The first summand, which is written as,

1

2
(N(x) �N

T (x)) =
1

2Lg�

�
g(x)fT (x) � f(x)gT (x)

�
=�

1

2
~J (x) = �J

is clearly skew-symmetric, while the second summand
(1=2)(N(x)+N

T (x)) is symmetric. For the purposes
of further reference we define the matrixS(x) as
follows

S(x) =
1

2

�
N(x) +N

T (x)
�

=
1

2Lg�

�
g(x)fT (x) + f(x)gT (x)

�

2.2 Vector field decompositions through projection
operators

As a consequence of the results and definitions of the
previous section, we have the following proposition.

Proposition 3.An n-dimensional smooth vector field
f(x) can be naturally decomposed in the following
sum,

f(x) =M(x)f(x) + (I �M(x))f(x)

=J (x)
@�

@x
+ S(x)

@�

@x

whereJ (x) is skew-symmetric andS(x) is symmet-
ric.

Proof. Indeed,

M(x)f(x) = ~J (x)
@�

@x

and

(I �M(x))f(x) = �
1

2
~J (x)

@�

@x
+ S(x)

@�

@x

then,

f(x) =M(x)f(x) + (I �M(x))f(x)

= ~J (x)
@�

@x
�

1

2
~J (x)

@�

@x
+ S(x)

@�

@x

=
1

2
~J (x)

@�

@x
+ S(x)

@�

@x

=J (x)
@�

@x
+ S(x)

@�

@x
(6)

The following lemma is a well known decomposition
result for symmetric matrices.

Lemma 4.LetS(x) be a symmetric matrix, thenS(x)
can be decomposed as the sum of a positive semi-
definite matrixSp(x) and a negative semi-definite ma-
trix Sn(x). If the above decomposition is not possible,
then eitherS(x) is positive definite or, at least, positive
semi-definite or, else, it is negative definite or, at least,
negative semi-definite.

2.3 A canonical form for sliding mode controlled
nonlinear systems

As a corollary to the above results, a nonlinear sys-
tem of the form (1), with a positive definite storage



function�(x), satisfying the transversality condition
Lg�(x) 6= 0, can always be rewritten as

_x = J (x)
@�

@x
+ Sp(x)

@�

@x
+ Sn(x)

@�

@x
+ g(x)u

with J (x) being skew-symmetric, andSp(x) be-
ing positive semi-definite andSn(x) negative semi-
definite. However, ifSp(x) is positive definite, then
Sn(x) is zero and conversely ifSn(x) is negative
definite thenSp(x) is zero.

3. AN ADAPTIVE CANONICAL FORM FOR
SLIDING MODE CONTROLLED UNCERTAIN

NONLINEAR SYSTEMS

Consider a SISO nonlinear system with linearly pa-
rameterized uncertainty in the form

_x= f(x) +

pX
i=1

fi(x)�i + g(x)u (1)

y = �(x)

wherex 2 � � <n is the state;u; y the scalar input
and output respectively; and�i, i = 1; : : : ; p is a set of
constant unknown parameters. The drift vector fields
f(x), f1(x); : : : ; fp(x), and the “input” vector field
g(x) are smoothn-dimensional vector fields.

System (1) may always be rewritten as follows

_x= f(x) + �(x)� + g(x)u (2)

y= �(x)

where the matrix�(x) 2 <n�p and the vector� of
unknown parameters are defined as follows

�(x) = [f1(x); : : : ; fp(x)] ; � = [�1; : : : ; �p]
T

By incorporating a parameter estimate vector�̂ of the
constant unknown parameters, (2) may be rewritten as
follows

_x= f(x) + �(x)�̂ + g(x)u+�(x)(� � �̂)

y= �(x)

After proceeding with the natural decomposition of
the vector fieldf(x), according to the procedure ex-
plained above, anadaptive canonical form for sliding
mode controlled uncertain nonlinear systemsis ob-
tained as follows

_x=J (x)
@�

@x
+ Sp(x)

@�

@x
+ Sn(x)

@�

@x

+�(x)�̂ + g(x)u+�(x)(� � �̂) (3)

y= �(x)

3.1 Adaptive feedback sliding mode control for uncertain
systems in canonical form

Consider an uncertain nonlinear system in the canon-
ical form (3). Along the solutions of the system, the
time derivative of the “energy function”

V (x; �̂) =
1

2
�
2(x) +

1

2
(� � �̂)T��1(� � �̂) (4)

is evaluated as

_V = �(x) _�(x) + (� � �̂)T��1(�
_̂
�)

= �

�
@�

@xT
J (x)

@�

@x
+

@�

@xT
(Sn(x) + Sp(x))

@�

@x

+
@�

@xT
�(x)�̂ + Lg�(x)u

�

+(� � �̂)��1
�
�
_̂
� + ��T (x)

@�

@x
�(x)

�
(5)

In order to eliminate the destabilizing estimate error
term in _V (x; �̂), we choose theupdate law

_̂
� = ��T (x)

@�

@x
�(x) (6)

to obtain

_V = �

�
@�

@xT
(Sn(x) + Sp(x))

@�

@x

+
@�

@xT
�(x)�̂ + Lg�(x)u

�
(7)

For�(x) > 0 we have,

_V (x)� �

�
@�

@xT
Sp(x)

@�

@x

+
@�

@xT
�(x)�̂ + Lg�(x)u

�
(8)

while for �(x) < 0 we obtain

_V (x)� �

�
@�

@xT
Sn(x)

@�

@x

+
@�

@xT
�(x)�̂ + Lg�(x)u

�
(9)

Consider now the following variable structure input
coordinate transformation, with� denoting a new ex-
ternal independent control input.

For�(x) > 0,

u =
1

Lg�

�
� �

@�

@xT
Sp(x)

@�

@x
�

@�

@xT
�(x)�̂

�

For�(x) < 0,

u =
1

Lg�

�
� �

@�

@xT
Sn(x)

@�

@x
�

@�

@xT
�(x)�̂

�



It is clear that the transformed system is given by the
following variable structure system:

For�(x) > 0

_x=J (x)
@�

@x
+ Sn(x)

@�

@x

+�(x)(� � �̂) +
1

Lg�
g(x)��

I �
1

Lg�
g(x)

@�

@xT

��
Sp(x) + �(x)�̂

�
@�

@x

_̂
�=��T (x)

@�

@x
�(x) (10)

y = �(x)

while, for�(x) < 0

_x=J (x)
@�

@x
+ Sp(x)

@�

@x

+�(x)(� � �̂) +
1

Lg�
g(x)��

I �
1

Lg�
g(x)

@�

@xT

��
Sn(x) + �(x)�̂

�
@�

@x

_̂
�=��T (x)

@�

@x
�(x) (11)

y= �(x)

Notice that the projected vector field given by either�
I �

1

Lg�(x)
g(x)

@�

@xT

��
Sp(x) + �(x)�̂

�
@�

@x

or �
I �

1

Lg�(x)
g(x)

@�

@xT

��
Sn(x) + �(x)�̂

�
@�

@x

can be rewritten, respectively, as

Kp(x; �̂)
@�

@x
and Kn(x; �̂)

@�

@x

with Kp(x; �̂) and Kn(x; �̂) being skew-symmetric
matrices. In other words, the transformed system is of
the form,

For�(x) > 0,

_x= Ip(x; �̂)
@�

@x
+ Sn(x)

@�

@x

+�(x)(� � �̂) +
1

Lg�(x)
g(x)�

_̂
�=��T (x)

@�

@x
�(x) (12)

y= �(x)

with Ip(x; �̂) = J (x) + Kp(x; �̂) being skew-
symmetric and,

For�(x) < 0,

_x= In(x; �̂)
@�

@x
+ Sp(x)

@�

@x

+�(x)(� � �̂) +
1

Lg�(x)
g(x)�

_̂
�=��T (x)

@�

@x
�(x) (13)

y= �(x)

with In(x; �̂) = J (x) + Kn(x; �̂) being skew-
symmetric.

The input coordinate transformation, viewed as a par-
tial variable structure feedback, has achievedcompen-
sationof the destabilizing nonlinear terms in the sys-
tem. The partial variable structure feedback has also
achieved passivity for the variable structure system
with respect to the sliding surface function viewed as
a storage function. This latter point is established in
the following proposition.

Proposition 5.The system (3) ispassivewith re-
spect to the storage function (4), viewed as a positive
semidefinite storage function, wheneverSn(x), (re-
spectivelySp(x)) is negative semidefinite (resp. pos-
itive semidefinite) and it is strictly passive ifSn(x)
is strictly negative definite (resp. strictly positive defi-
nite).

Proof. Taking the time derivative ofV (x; �̂), along
the solutions of the transformed system, and using the
update law (6) one obtains:

For�(x) > 0

_V (x; �̂) = �(x)

"
@�

@xT
Ip(x; �̂)

@�

@x
+

@�

@xT
Sn(x)

@�

@x

+
@�

@xT

1

Lg�(x)
g(x)�

#

= �(x)

�
@�

@xT
Sn(x)

@�

@x

�
+ �(x)�

� �(x)� = y� (14)

The calculation is similar for�(x) < 0.

3.2 A Sliding Mode Controller

The sliding mode controller for the input� may now
be obtained by simply injecting complementarydamp-
ing to the natural beneficial nonlinearities acting at
each side of the sliding manifold. LetSnI(x) be
a symmetric negative semidefinite matrix such that
Sn(x) + SnI (x) is negative definite. Similarly, let
SpI (x) be a symmetric positive semidefinite matrix
such thatSp(x) + SpI(x) is positive definite. The
following variable structure controller achieves the
reaching of the sliding surface and the creation of a
local sliding regime on such a surface



� =

8>>><
>>>:

@�

@xT
SnI (x)

@�

@x
for �(x) > 0

@�

@xT
SpI (x)

@�

@x
for �(x) < 0

(15)

4. CONCLUSIONS

We have proposed a new adaptive canonical form for
sliding mode controlled systems with constant but un-
known parameters. The canonical form is motivated
from passivity based considerations for the same class
of nonlinear systems, on which a natural decompo-
sitions of the drift vector field is achieved to help in
designing a more efficient feedback variable structure
controller. Furthermore, an update law is synthesized
for the estimate of the unknown parameters. This up-
date law together with a variable structure input coor-
dinate transformation render the system passive with
respect the given sliding surface function. The sliding
mode control is simply the injection of complemen-
tary damping terms to the natural beneficial nonlin-
earities acting on each side of the sliding manifold.
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