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Abstract: This paper focuses on the design of a model-based predictive control (MPC or
MBPC) technique to regulate the concentration levels of nitrate in both anoxic and aerobic
zones of a pre-denitrifying activated sludge plant, aiming to improve the nitrogen (N)-
removal from wastewater. The synthesis of the MPC controller is based on a linear
extended state-space model of the process, where an identification horizon is added to
include a sequence of past inputs/outputs. This sequence can be used to estimate the model
or the updated state of the process, thus eliminating the need for a state observer. The linear
state-space model was obtained through subspace identification methods. The controller
performance is tested by simulation and the results show the efficiency of the proposed
strategy. Copyright © 2002 IFAC
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1. INTRODUCTION

The interest in using the activated sludge (AS)
process for biological N-removal has been
drastically increasing in the last 5-10 years due to
stricter effluent legislation. N-removal from
wastewater in an AS plant is performed in two
stages: nitrification, in aerobic compartments, where
ammonium ( +

4NH ) is converted into nitrate ( −
3NO ),

and denitrification, in anoxic compartments, where
−
3NO  is converted into gaseous N, with the use of

organic compounds (COD) as reducing agent. In
principle, biological N-removal is possible by using
the following configurations: pre-denitrification,
post-denitrification, simultaneous nitrification-
denitrification and alternating nitrification-
denitrification. The most common and economic
configuration is the pre-denitrification system
(Henze, 1991). However, in all cases the AS plants
need to be properly operated in order to optimize the
N-removal.

In comparison with conventional AS plants (COD
removal and, often partly, +

4NH ), N-removal AS
plants are more complex. The co-existence of
nitrification and denitrification processes is
accompanied by new operational problems.
Increasing the efficiency of one process will always
have negative impacts on the efficiency of the other
one. According to Hoen et al. (1996), the use of the
manipulated variable is useful for controlling N-
removal, just if either the nitrification or the
denitrification process is not working at full
capacity. Hence, automatic control in N-removal
plants is important to achieve the adequate balance
between nitrification and denitrification processes in
the system.

The control of N-removal plants is mainly focused
on ( +

4NH ), ( −
3NO ) and ( +

4NH  plus −
3NO ). This work

is related to −
3NO -removal. In a pre-denitrification
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plant the following approaches are commonly
applied to achieve this target:

(1) control of −
3NO  concentration in the aerobic

zone by manipulating the internal recycling
flow rate (Singman, 1999; Rehnström, 2000;
Ekman et al., 2001)

(2) control of −
3NO  concentration in the anoxic

zone by manipulating the internal recycling
flow rate (Sotomayor et al., 2000; Yuan et al.,
2001; Ghavipanjeh et al., 2001)

(3) control of −
3NO  concentration in the anoxic

zone by manipulating an external carbon flow
rate (Marsili-Libelli and Manzini, 2000;
Samuelsson and Carlsson, 2001; Carlsson and
Milocco, 2001).

Carlsson and Rehnström (2001) used two single loop
controllers to concurrently regulate both approaches
(1) and (3). Nevertheless, these approaches (1 to 3)
are highly interrelated and for optimal control of the
process they should be simultaneously performed in
a multivariable control philosophy.

MPC or receding horizon control (RHC) is currently
the most widely implemented advanced process
control technology for process plants, and they are
commonly found in the medium level of a plant-
wide control structure. The MPC formulation
naturally handles multivariable interactions and
constraints. Actually, MPC algorithms compute a
sequence of manipulated variable adjustments, in
order to optimize the future behavior of a plant
through the use of an explicit process model. At each
sampling instant, the MPC solves on-line a finite-
horizon open loop optimal control problem with
Bolza objectives, using the current state of the plant
as the initial state. The optimization yields an
optimal control sequence and the first control action
in this sequence is applied to the plant. The entire
procedure is repeated at subsequent sampling
intervals. This is its main difference from
conventional control, which employs a pre-
computed control law.

When input and state constraints are not present,
infinite-horizon MPC is simply the well-known
linear-quadratic control (LQC) problem. Whereas
LQC has been mainly developed in academic circles,
MPC has arisen out of industrial needs. The first
MPC techniques were developed in the late 1970s,
because conventional single-loop controllers were
unable to satisfy increasingly stringent performance
requirements of power plant and petroleum refinery
applications. Nowadays they can be found in a large
variety of process industries, including chemicals,
food processing, automotive, metallurgy, aerospace
and pulp and paper (Qin and Badgwell, 1997). The
current generation of commercially available MPC
technology is based on linear models and, therefore,
it is referenced by the generic term linear model
predictive control (LMPC). While nonlinear MPC

(NMPC) offers the potential for improved process
operation, it offers theoretical and practical problems
(in design, implementation and maintenance) which
are considerably more challenging than those
associated with LMPC (Nikolaou, 2001).

In this paper, a MPC based on an extended linear
state-space model of the process is developed,
aiming to control the −

3NO  concentrations in the
anoxic and aerobic zones of an ASP and, therefore,
to inferentially control the effluent inorganic
nitrogen concentration. The manipulated variables
are the internal recycling flow rate and the external
carbon flow rate. The state-space model is obtained
by using subspace identification methods. Two
different control configurations are analyzed: one
taking into account the influent flow as a
manipulated variable (in a 3x2 system) and another
one considering it as being constant (in a 2x2
system). The MPC controller performance is tested
by simulation employing the ASWWTP-USP
benchmark (Sotomayor et al., 2001a).

2. THE ACTIVATED SLUDGE PLANT

The ASWWTP-USP benchmark is a dynamic
simulator of a pre-denitrifying AS plant for the
removal of COD and N from domestic effluents,
operating at a constant temperature of 15°C and
neutral pH. The process layout is shown in figure 1.
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Fig. 1. Layout of the ASWWTP-USP benchmark

The process configuration is formed by a bioreactor
composed of an anoxic zone (zone 1 with 13 m3),
two aerobic zones (zone 2 and zone 3 with 18 m3

and 20 m3, respectively) and a secondary settler (20
m3). In nominal steady-state conditions, the influent
flow rate inQ  is 4.17 m3/h, with an average
proportion of 224 mg COD/l of biodegradable
organic matter and 45.88 mg N/l of total N and the
hydraulic retention time is 17.0 hours. The internal
recycle flow rate is inQQ 3.1int = , the external
sludge recycle flow rate is insl QQ 5.0= , the wastage
flow rate is 8.25=wQ  l/h and the external carbon
flow rate is 0=extQ  l/h. An external carbon source
is available, in this case, pure methanol as a 33%-
solution with a concentration of 80,000 mg COD/l.
In the aerobic zones, the DO concentration is
controller at 2.0 mg O2/l by simple PI controllers,
whereas in the anoxic zone the DO concentration is
assumed as being zero. For a reliable simulation, this
benchmark is based on model widely accepted by
the international community.



3. A LINEAR STATE-SPACE MODEL OF THE
PROCESS

Subspace identification methods is a branch recently
developed in system identification, which has
attracted much attention, owing to its computational
simplicity and effectiveness in identifying dynamic
linear state-space multivariable systems. These
algorithms are numerically robust and do not involve
nonlinear optimization techniques (Favoreel et al.,
2000).

A comparative study of several subspace
identification methods was carried out in Sotomayor
et al. (2001b), employing the ASWWTP-USP
benchmark as a data generator. In this case, the
nitrate concentrations in the anoxic zone 1Sno  (mg
N/l) and in the last aerobic zone 3Sno  (mg N/l) are
selected as outputs. intQ  (m3/h) and extQ  (l/h) are
considered as inputs. However, to improve the
model inQ  (m3/h), influent readily biodegradable
substrate2 inSs  (mg COD/l) and influent ammonium
concentration inSnh  (mg N/l) are assumed as
measurable disturbances, while influent nitrate
concentration inSno  (mg N/l) is assumed as an
unmeasurable disturbance. These signals were
collected at a sampling rate of 0.16 hours and after
they were pre-processed, i.e. normalized and
detrended. The resulting subspace state-space model
is described by a 3rd-order deterministic strictly
proper system, as:
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where x  is the state vector, u  is the input vector
(including disturbances), y  is the output vector, A
is the state transition matrix, B  is the input matrix
and C  is the output matrix. The time index k
denotes the sampling instant. For this case, the
following matrices describe the system (1):
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This system is asymptotically stable, with ( A,C )
observable and ( A,B ) controllable.

                                                          
2 Sensors of readily biodegradable substrate are not
commercially available nowadays, but it can be inferred
from a respirometer or TOC (total organic carbon).

The system (1) can be more suitably written in the
following way:
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where u  is the manipulated variable vector and d  is
the measurable disturbance vector. In MPC,
feedforward disturbances are removed by
incorporating their effects into the model. Therefore,
aiming to reject disturbance effects and also to
incorporate integral error action, these dynamics
have to be modeled and then be included in the state
vector, forming a new state-space model. This
extended subspace state-space model (E3SM) has
the following form (Sotomayor et al., 2001c):
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4. MODEL PREDICTIVE CONTROL

The MPC algorithm is based on the fact that E3SM
can be applied as a model, which is convenient for
prediction and predictive control. This prediction
model is independent of the state vector x~ . Hence,
there is no need for a state observer (Di Ruscio,
1997). The algorithm presented below will be called
3SMPC (subspace state-space MPC).

4.1 The control problem

A discrete time LQ objective can be written in
compact matrix form as follows:
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where L  is the prediction horizon, Lkr /1+  is a vector
of future references, Lky /1+  is a vector of future
outputs, Lku /∆  is a vector of future input changes,
and Lku /  is a vector of future inputs. Q, R and P are
block diagonal weighting matrices. The problem can
be formulated as follows:

   k
Lku

ℑ
∆ /
min                              (5)

subject to linear constraints on ku , ku∆  and ky .

4.2 Prediction model (PM)

The PM is assumed to be of the form:

                  LkLLLk uFkpy //1 )( ∆+=+          (6)

where )(kpL  is a known vector. It represents the
information of the past, which is used to predict the



future. This vector is a function of the known
number J (identification horizon) and the E3SM
matrices. LF  is a constant lower triangular matrix,
which is a function of the known E3SM matrices. A
simple algorithm to compute )(kpL  and LF  is
giben by (Di Ruscio and Foss, 1998):
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the extended observability matrix for the pair

( CA ~,~ ), with L block rows, ( ) T
JJ

T
JJ ΟΟΟ=Ο

−1†  is
the Moore-Penrose pseudo-inverse of the extended
observability matrix JΟ  for the pair ( CA ~,~ ), with J

block rows, d
J 1−Γ  is the reverse extended

controllability matrix for the pair ( BA ~,~ ), with J-1
block columns, and the d

LH  is the lower block

triangular Toeplitz matrix for the triple ( CBA ~,~,~ ),
with L block rows and L-1 block columns.

4.3 Constraints

The constraints can be written as an equivalent linear
inequality of the form:

kLku βα ≤∆⋅ /                           (8)

a) Relationship between Lku /∆  and Lku / :

It is convenient to find the relationship between
Lku /∆  and Lku /  in order to formulate the

constraints in terms of future deviation variables
Lku /∆  by using:

        1// −⋅+∆⋅= kLkLk ucuSu          (9)

where S  is a lower block triangular identity matrix
and c  is a block rows identity matrix, of suitable
size.

b) Input amplitude, input change and output
constraints:
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4.4 Solution by quadratic programming

The objective functional kℑ  may be written in terms
of Lku /∆ . The future output Lky /1+  can be
eliminated from kℑ  by using the PM (6). The input
amplitude Lku /  can be eliminated from kℑ  by
using (9). Therefore, the LQ objective functional
becomes:
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H  is the Hessian matrix, a constant positive definite
matrix. kf  is a time-varying vector, independent of

the unknown control deviation variable. 0
kℑ  is a

known time-varying scalar, independent of the
optimization problem.

The problem can be solved by the following QP
approach:

         ( )Lk
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subject to (8). When Lku /∆  is computed, the control
signal to be applied to the process is

kkk uuu ∆+= −1 . (Note that only the first change in

Lku /∆  is used, i.e. a RHC strategy).

5. SIMULATION RESULTS

In order to test the performance of the 3SMPC
controller, two different configurations are analyzed,
just for set-point changes. It is necessary to state that
depending on the use or not of inQ  as a manipulated
variable, the dimensions of the matrices 1B  and 2B
in (2) change and, therefore, the objective function
(14) and the constraints (8) are different for each
control configuration. The tuning parameters of the
both configurations are not here presented.

5.1 3x2 system

In this configuration, the influent flow is considered
as a manipulated variable. In pre-denitrifying
processes, the raw sewage is used as carbon source.
Therefore, this configuration is applied to make
good use of the influent COD concentration. In
figures (2) to (4) the responses of the process to set-
point changes are shown. It can be observed that the
system responds quite well. The effluent inorganic
nitrogen concentration (defined as the sum of the
effluent ammonium and effluent nitrate
concentration) is maintained at low level.
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Fig. 3. Response of the process to set-point changes:
manipulated variables.
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Fig. 4. Response of the process to set-point changes:
COD/N ratio in the inlet of bioreactor.

5.2 2x2 system

In this case, the influent flow is kept constant (i.e.
previously controlled, e.g. with a PI controller).
Figures (5) to (7) show the response of the process to
set-point changes. The variables are well-controlled.
Nevertheless, a higher control effort is required.

 Aiming to compare the performance of both
configurations, here it is adopted the integral square
error (ISE), which is based on the response system,
defined as:
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Fig. 5. Response of the process to set-point changes:
controlled variables.
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Fig. 6. Response of the process to set-point changes:
manipulated variables.
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In table 1, it can be observed that the 2x2 system
presents a better performance, i.e. a lower ISE index.

Table 1. Numerical performance comparison for the
two control configurations

System ISE1
(Sno1)

ISE3
(Sno3)

ISET=ISE1
+ISE3

3x2 3.15 4.08 7.23
2x2 2.84 3.13 5.97



6. CONCLUSIONS

In this paper, a MPC controller was implemented to
improve N-removal capability of AS plants,
regulating the nitrate concentration in both zones of
the bioreactor: the anoxic and the aerobic ones. In
this approach, the effluent nitrate concentration was
inferentially controlled. The MPC controller design
is based on a general linear state-space model.
However, there is no need for a state observer (e.g.
Kalman filter).

The control was successful for set-point changes in
both control configurations presented. In the 2x2
system, a higher control effort was required in the
manipulated variables than in the 3x2 system. The
2x2 system presented a better performance in
controlling the nitrate concentrations, but the 3x2
system was better successful in controlling
inferentially the effluent inorganic nitrogen
concentration, see figure (2) The mean variation of
the COD/N ratio for both configurations are
practically the same (see figure (4) and figure (7)).
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