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Abstract: A novel approach to design fuzzy controllers using fuzzy-arithmetic-based 
Lyapunov function that gives a linguistic description on the plant and the control 
objective is presented in this paper. An inverted pendulum system is used as a benchmark 
dynamic nonlinear plant for evaluating the proposed method. It is shown that a set of 
stable fuzzy control rules can be derived from perception-based information 
systematically, rather than heuristically. Based on Lyapunov’s approach, conditions to 
ensure the stability of a pendulum-cart system are given, and these conditions are then 
used to verify the perception-based information for balancing a pendulum. Based on these 
perceptions and standard-fuzzy-arithmetic-based Lyapunov function, a set of traditional 
fuzzy control rules can be derived. On the other hand, a singleton fuzzy controller can be 
devised by using constrained-fuzzy-arithmetic-based Lyapunov’s function. Further more 
the stability of the fuzzy controllers can be guaranteed by means of fuzzy version of 
Lyapunov stability analysis. The results obtained are illustrated with a design of stable 
fuzzy controllers for an autonomous pole balancing mobile robot. Copyright © 2002 
IFAC 
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1. INTRODUCTION  

 
The advantages of fuzzy control often become most 
apparent for very complex problems where we have 
an intuitive idea about how to achieve high 
performance control. How to make use of the 
intuitive knowledge, or perceptions, to design a 
stable fuzzy control system is still a challenging 
problem. However, existing results for stability 
analysis of fuzzy control systems typically require 
that the plant model be deterministic, satisfy some 
continuity constraints, and sometimes require the 
plant to be linear or “linear-analytic.”  Classical 
Lyapunov synthesis suggests the design of a 
controller that should guarantee 0)( <xV&  for a 
Lyapunov function )(xV . Fuzzy Lyapunov synthesis 
(Magaliot and Langholz, 1999a, b) follows the same 
idea but the linguistic description (perception-based 
information) of the plant and control objective is 
utilized by means of computing with words (CW) 
(Zadeh, 1996, 1999). The basic assumption of fuzzy 
Lyapunov synthesis is that, for a Lyapunov function 

)(xV , if the linguistic value of )(xV&  is Negative, 

then 0)( <xV& , so the stability can be guaranteed. As 

an example, for =)(xV& Negative Negative⋅  
uNegative ⋅+ , we may choose BigPositiveu =  to 

make NegativexV =)(& . But this is again a heuristic 
method! An important point addressed here is that 

)(xV&  might not be Negative unless there exists a set 
of suitable linguistic variables and their arithmetic 
operations to guarantee this. On the other hand, for 
the fuzzy Lyapunov synthesis proposed by Magaliot 

and Langholz (1999a, b), only the sign of the fuzzy 
linguistic value, such as “Negative” or “Positive” is 
used. Its magnitude is not considered. This means it 
ignores the changes in states. It could be considered 
as a very crude estimator of the derivative. Hence, 
the information from the perceptions could be very 
limited. Also, it seems difficult to derive more fuzzy 
rules as there are only a few of linguistic terms, such 
as Negative and Positive, are utilised. The number of 
fuzzy rules is therefore limited.  
 
To solve the above problems, a fuzzy Lyapunov 
synthesis approach in connection with fuzzy numbers 
and their arithmetic operations is investigated in our 
previous study (Zhou and Ruan, 2001). However, the 
standard fuzzy arithmetic dose not take into account 
all the information available, and the obtained results 
are more imprecise than necessary or, in some cases, 
even incorrect. On the other hand, the perception-
based information used for fuzzy controller design is 
not always reliable. To overcome the above 
deficiencies, the constrained fuzzy arithmetic (Klir, 
1997) is firstly introduced for “word” manipulation 
of Lyapunov function. Then Lyapunov’s indirect 
method is employed to verify the perception-based 
information to make sure it is reliable in terms of 
Lyapunov’s stability.  

 
In the following section, a brief introduction of both 
standard and constrained fuzzy arithmetic is given. In 
Section 3, an inverted pendulum balancing system is 
used as a benchmark to demonstrate a systematic 
method to design a fuzzy controller from perception-
based information using standard-fuzzy-arithmetic-
based Lyapunov function. In Section 4 , a deficiency 
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of the standard fuzzy arithmetic in fuzzy controller 
design is identified, and the constrained-fuzzy-
arithmetic-based Lyapunov function is proposed.  
The practical implementation of fuzzy control to the 
pole-balancing mobile robot is given in Section 5 to 
verify the proposed method. This is followed by 
some discussions and concluding remarks. 
 
 

2. BASICS OF FUZZY ARITHMETIC  
 
 
In this paper, the discussion is based on the triangular 
fuzzy numbers (TFN) as shown in Fig. 1. We can 
represent this type of TFN by a 3-tuple A = <a, b, c>, 

where α -cut is >−−−+=< αα
α

)(,)( bccabaA .  
In Fig. 1, PB  = <2, 3, 4>, PM  = <1, 2, 3>, PS  = <0, 
1, 2>, ZE = <-1, 0, 1>, NS  = <-2, -1, 0>, NM  = <-3, 
-2, -1>, NB  = <-4, -3, -2>.  

   -4           -3           -2          -1   0     1            2            3            4

NB NM ZENS PS PM PB
x

µ
 1.0

 

Fig. 1.  A linguistic variable with seven terms. 

 

There are two common ways of defining fuzzy 
arithmetic operations (Klir, 1997). One is based on 
the α -cut representation and another is on the 
extension principle of fuzzy set theory. Employing 
the α -cut representation, arithmetic operations on 
fuzzy intervals are defined in terms of the well-
established arithmetic operations on closed intervals 
of real numbers. Let A  and B  denote fuzzy sets, 
and let /},,,{* ⋅−+∈ , which denotes any of the four 
basic arithmetic operations. Then, we define a fuzzy 
set on ℜ , BA∗  by the following equation 
 

},|{)( BAyxyxBA ααα ×>∈<∗=∗           (1) 

where Aα  and Bα  are the α -cuts of fuzzy sets A 
and B, ]1,0(∈α ; when the operation is division of A 
and B, it is required that Bα∉0  for any ]1,0(∈α . 
Employing the extension principle, the arithmetic 
operations on fuzzy sets A and B are defined by 
 

))(),(min(sup)( yxz BA
yxz

BA µµµ
∗=

∗ =         (2)                                 

for all ℜ∈z . As an example, NSPMNB ≈+  
where SN ′ = NB + PM = <-3, -1, 1>, and NS = <-2, -
1, 0>.  

Results obtained by the standard fuzzy arithmetic 
suffer from greater impression than justifiable in all 
computations that involve the requisite equality 
constraint (Klir, 1997).  However, the equality 
constraint is always satisfied in the classical 
arithmetic on real numbers. Because ignoring 
equality constraints will lead to results that are less 
precise than necessary, it is essential to include the 
constraints, when applicable, into the general 
definition of basic arithmetic operations on fuzzy 
numbers. In general, each constraint R on BA∗  is a 
relation (crisp or fuzzy) on BA× . For the extension 

principle of the fuzzy set theory, the constrained 
arithmetic operations RBA )( ∗  are defined by the 
following equation 

)),(),(),(min(sup)()( yxyxz RBA
yxz

BA R
µµµµ

∗=
∗ =   (3) 

For the cut representation of the fuzzy intervals, 

})(,|{)( RBAyxyxBA R
αααα ∩×>∈<∗=∗           (4) 

Any operations BA∗  or AB ∗  are unconstrained, 
even though A = B, while operations BA∗  and 

AB ∗  are subject to the equality constraint. These 
constrained operations, for example on A, may 
conveniently be expressed as follows, where E 
denotes the relation R representing the equality 
constraint. 

]2,2[}|{)( aaAxxxAA E
ααα =∈+=+          (5) 

0}|{)( =∈−=− AxxxAA E
αα           (6) 

}|{)( AxxxAA E
αα ∈⋅=⋅           (7) 

1}0,|/{)/( =∉∈= AAxxxAA E
ααα          (8) 

Under the equality constraint for X, where A, B, 
X ℜ∈ , we can obtain  

ABXBXA −=⇔=+           (9) 

BXA =⋅  )0(/ AABX α∉=⇔ .         (10) 

But these are not, in general, solutions in the standard 
fuzzy arithmetic. 

 

3. STANDARD-FUZZY-ARITHMETIC-BASED 
LYAPUNOV FUNCTION 

 
The inverted pendulum is frequently used as a 
benchmark dynamic nonlinear plant for evaluating a 
control algorithm or a combination of them. It has 
been extensively studied by numerous researchers (Li 
and Shieh, 2000, Wang, 1996, Zak, 1999). Its state 
variables are θ=1x  (the pendulum’s angle), and 

θ&=2x  (the pendulum’s angular velocity). The 
system’s dynamic equations are given as follows 
(Slotine and Li, 1991) 
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Where cm  is the mass of the cart, m  is the mass of 
the pole, l2  is the pole’s length, and u  is the applied  
force (control).  
 



     

3.1 Lyapunov Stability Analysis of Inverted 
Pendulum Systems 

 
In this subsection, the use of Lyapunov’s indirect 
method for stability analysis of an inverted pendulum 
is illustrated (Jenkins and Passino, 1999, Passino and 
Yurkovich, 1999).  The stability conditions derived 
below will be used to verify the perception-based 
information for the balancing of a pendulum. From 
Eq. (11), 
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The eigenvalues of A  are given by the determinant 
of AI −λ .  

IA −λ =
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To ensure that the origin ex = 0 is asymptotically 

stable, the eigenvalues iλ  of A  must be in the left 
half of the complex plane. It is sufficient that 
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has its roots in the left half-plane. Eq. (13) will have 
its roots in the left half-plane if each of its 
coefficients is positive. Hence, to ensure the 
asymptotic stability, the following conditions must 
be satisfied  

)(8.9
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mm
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        (14) 

From Eq. (14), we can easily conclude that the force 
u  is inversely proportional to the pendulum’s 
angular velocity 2x , and is also inversely 
proportional to the pendulum’s angle. This is exactly 
reflected by perceptions on balance of a inverted 
pendulum. For example, as the pole is falling over to 
the right hand side, one must move his/her finger to 
the right hand side at once.   
 

Table 1. Perceptions for balancing a pole 

 Perceptions Remarks 
S1 21 xx =&  From the state 

description. 
S2 θ&&& =2x  is 

proportional to 
the control u  

The angular acceleration 
is proportional to the 
force applied to the cart. 

S3 u  is inversely 
proportional to 

θ=1x   

From the knowledge of 
balancing a pole. It is also 
verified by Eq. (14). 

S4 u  is inversely 
proportional to 

θ&=2x   

From the knowledge of 
balancing a pole. It is also 
verified by Eq. (14). 

3.2 Design of a Stable Fuzzy Controller using 
Perception-based Information 

 
Assume that the model (11) is not known. However, 
based on the physical intuition and the experience on 
balancing a pole, the perception-based information 
can be got as shown in Table 1. In the following, it 
will demonstrate that the fuzzy control rules can be 
derived from the perceptions by means of fuzzy-
arithmetic-based Lyapunov function, and the stability 
of the fuzzy controller can be guaranteed. 
 
Consider the Lyapunov function candidate ),( 21 xxV  

= )( 2
2

2
12

1 xx + which can be used to represent a 
measure of the distance of the pendulum’s actual 
state ),( 21 xx  and the desired state )0,0(),( 21 =xx . 
Differentiating V  yields: 

2211 xxxxV &&& +=                           (15)                     

Using  S2 in Table 1, Eq. (15) can be rewritten as 

)( 12221211 uxxuxxxuxxxV +=+=+≈ &&         (16)        

Its linguistic description is given below 

)())(( 12 LVuLVxLVxxVLV +=&                (17) 

Where ))(( xVLV & , 1LVx , 2LVx , and LVu  are 

linguistic values of )(xV& , 1x , 2x , and u  
respectively.  

 
Theorem 1. If )(xV  is a Lyapunov function and the 

linguistic value NegativexVLV =))(( &  and 
)(NegativeSupp  ]0,(−∞⊂ , then the fuzzy controller 

designed by fuzzy Lyapunov synthesis is locally 
stable. Furthermore, if )0,()( −∞⊂NegativeSupp , 
then the stability is asymptotic. 

The proof of Theorem 1 is given in Zhou and Ruan 
(2001). It provides a guidance to design a stable 
fuzzy controller only using the perception-based 
information. For example, if PMx =2 , and  choose 

NMux =+1 , then a set of fuzzy control rules as 
shown in Table 2 can be derived by using standard 
fuzzy arithmetic operations defined in Eq. (1) and 
(2).  From Eq. (17), we have ))(( xVLV &  

NegativeNMPM =⋅= . This is illustrated in Fig. 2. 
It can be seen that )(NegativeSupp  

]0,(]1,9[ −∞⊂−−⊂ . From Theorem 1, It can be seen 
that the fuzzy control rules in Table 2 are stable. 

 
Table 2. Fuzzy control rules (x2 = PM)   

 

1x  ux +1 = NM u Remarks 

NM NM + u = NM ZE NM + ZE = NM 
NS NS + u = NM NS NS + NS = NM 
ZE ZE + u = NM NM ZE + NM = NM 
PS PS + u = NM NB PS + NB = NM 
PM PM + u = NM NL PM + NL = NM 
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Fig. 2. Illustration of ))(( xVLV & = NMPM ⋅  
 
 

Table 3. Fuzzy control rules derived from the 
perception-based information 

1x         u 
NM NS ZE PS PM 

NM PL PB PM PS ZE 
NS PB PM PS ZE PS 
ZE PM PS ZE PS PM 
PS PS ZE PS PM PB 

 
2x  

PM ZE PS PM PB PL 
 
Repeating the similar procedure, a set of fuzzy 
control rules as shown in Table 3 can be derived 
from the perception-based information (Table 1) 
using standard-fuzzy-arithmetic-based Lyapunov 
function.  
 
 

4. CONSTRAINED-FUZZY-ARITHMETIC-
BASED LYAPUNOV FUNCTION 

 
 
Consider the following fuzzy rule derived from fuzzy 
Lyapunov synthesis approach using standard fuzzy 
arithmetic as shown in Table 3. 

If  1x  is NS and 2x  is PS  Then u  is ZE       (18) 

From Eq. (17), )())(( ZENSPSxVLV +⋅=& . This is 
illustrated in Fig. 3.  

 

 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

NS ZE PS 

)( ZENSPS +⋅

NSPS ⋅

Fig. 3. Illustration of )())(( ZENSPSxVLV +⋅=&  

 
From Fig. 3, it can be seen that 

]0,(]2,6[))(( −∞⊄−=+⋅ ZENSPSSupp . The 
stability condition given in Theorem 1 is not 
satisfied. This is caused by the deficiency of the 
standard fuzzy arithmetic. The standard fuzzy 
arithmetic does not utilise some of the information 
available. Therefore, the obtained results may be 
more imprecise than necessary or, in some cases, 
even incorrect. To overcome this deficiency, a 
constrained fuzzy arithmetic (Klir, 1997) is needed to 
take all available information into account in terms of 
relevant requisite constrains. 

In the following, we will demonstrate how to use the 
constrained-fuzzy-arithmetic-based Lyapunov 
function to derive fuzzy control rules from the 
perception-based information given in Table 1. The 
same condition as Table 2 is considered here, that is, 

2x  = PM.  By choosing ux +1 =NM, under the 
equality constraint for u , from (9), we have 

1xNMu −=          (19) 
If  1x = NM = <-3, -2, -1>, under the equality 

constraint, ENMNSLVu )()( −=αα . Considering 

],2[)( ααα −+−=NS  and ]1,3[)( ααα −−+−=NM , 
then ]1,1[)]1()(),3()2[()( =−−−−+−−+−= ααααα LVu . 
This leads to u = 1. Hence, the following fuzzy 
control rule can be derived 

If  1x  is NM and 2x  is PS  Then u  = 1  
It is a fuzzy control rule with singleton consequent 
(Sugeno, 1999). The rest of fuzzy rules for the 
condition 2x  = PM are illustrated in Table 4.  
 

Table 4. Fuzzy control rules  (x2 = PM) 
 

1x  ExNMLVu )()( 1−=αα  u 

NM )]1()1(),3()3[( αααα −−−−−+−−+−  
= [0, 0] 

0 

NS )]()1(),2()3[( αααα −−−−+−−+−  
= [-1, -1] 

-1 

ZE )]1()1(),1()3[( αααα −−−−+−−+−  
= [-2, -2] 

-2 

PS )]2()1(,)3[( αααα −−−−−+−  
= [-3, -3] 

-3 

PM )]3()1(),1()3[( αααα −−−−+−+−  
= [-4, -4] 

-4 

 
 

Table 5. Singleton fuzzy rules derived by 
constrained-fuzzy-arithmetic-based Lyapunov 

Function 
 

1x  u 
NM NS ZE PS PM 

NM 4 3 2 1 0 
NS 3 2 1 0 -1 
ZE 2 1 0 -1 -2 
PS 1 0 -1 -2 -3 

 
2x  

PM 0 -1 -2 -3 -4 
 



     

Repeating the same procedure, a set of fuzzy control 
rules with singleton consequent shown in Table 5 can 
be produced by using the constrained-fuzzy 
arithmetic-based Lyapunov function. 
 
To investigate the stability of the above fuzzy control 
rules with singleton consequent, let’s consider the 
same condition as that of the fuzzy control rule (18). 
The corresponding rule in Table 5 is  

If  1x  is NS and 2x  is PS  Then u  is  0       (20) 
Under the equality constraint, ELVuLVx )( 1 +  = NS.  

From the Eq. (17), we have ))(( xVLV &  
)( 12 LVuLVxLVx += = NSPS ⋅ .  From Fig. 3, we 

can see that )( NSPSSupp ⋅ = ]0,(]0,4[ −∞⊂− . From 
Theorem 1, the fuzzy control rule (20) is stable. 
Compare with fuzzy control rule (18), it can be seen 
that the deficiency of the fuzzy Lyapunov synthesis 
with the standard fuzzy arithmetic can be overcome 
by the constrained fuzzy arithmetic. 
 
 

5. EXPERIMENT 
 
To demonstrate the effectiveness of the proposed 
fuzzy controller design method, a real-time 
experiment of the fuzzy control of an autonomous 
pole-balancing mobile robot with an onboard TMS 
320C32 DSP processor was conducted (see Fig. 5). 
This project aims to design and fabricate an 
autonomous mobile robot to participate in the 
Singapore Robotic Games (SRG). The mobile robot 
is able to balance a free-falling pole by means of 
horizontal movement. While balancing the pole, it 
would also travel with a pre-designed slope profile. 
The mobile robot with the highest number of 
successful cycles in a single untouched attempt 
within a predefined time slot will be considered the 
winning entry. 
 

The parameters of the physical robot are given as 
follows: the pole’s length is ml 12 = , the mass of the 
pole is kgm 1.0= , and the mass of the cart is 

kgmc 5.2= . Fig. 5 shows the trajectory of the pole 
angle and the velocity tracking results using the 
fuzzy control rules (Table 3) derived from 
perception-based information using the standard-
fuzzy-arithmetic-based Lyapunov function. It can be 
seen that the pole never falls down as the mobile 
robot can always track the desired trajectory though 
the pole swings very much. This may be due to the 
limited perception-based information. A similar 
experiment is also conducted using the singleton 
fuzzy control rules (Table 5) derived by the 
constrained-fuzzy-arithmetic-based Lyapunov 
function. The results are similar to that of Fig. 5. 
From Fig. 6, it can be found that the pole angle is 
sometimes bigger than 0.2 rad. However, for the 
fuzzy control rules in Table 3, the pole angle is 
always less than 0.2 rad. This may mean that the 
traditional fuzzy control rules can achieve better 
tracking and balancing results than the singleton 
fuzzy controller.    

 

 
 

Fig. 4. An autonomous pole-balancing mobile robot. 
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Fig. 5. Balancing and tracking results using the fuzzy 

control rules derived from the perception-based 
information by means of the standard-fuzzy-
arithmetic-based Lyapunov function.  
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Fig. 6. Balancing and tracking results using the fuzzy 
control rules derived from the perception-based 
information by means of the standard-fuzzy-
arithmetic-based Lyapunov function. 

 



     

To improve the pole-balancing performance, further 
learning is necessary, for example, the fuzzy 
reinforcement learning methods (Zhou, Yang and Jia, 
2001). 
 

 

6. CONCLUDING REMARKS 

 

A novel approach to design fuzzy controllers using 
fuzzy-arithmetic-based Lyapunov function that gives 
a linguistic description on the plant and the control 
objective is presented in this paper. It is found that 
by using the standard-fuzzy-arithmetic-based 
Lyapunov function, the conventional fuzzy control 
rules can be produced. While by using the 
constrained-fuzzy-arithmetic-based Lyapunov 
function, the fuzzy control rules with singleton 
consequent can be derived. We also demonstrate that 
the constrained fuzzy arithmetic can be utilised to 
overcome some deficiencies in the standard fuzzy 
arithmetic for fuzzy controller design. On the other 
hand, based on Lyapunov’s indirect method, 
conditions to ensure the stability of a pendulum-cart 
system are given, and these conditions are then used 
to verify the perception-based information for 
balancing a pendulum. In the real-time experiment of 
the fuzzy control of the autonomous pole-balancing 
mobile robot, we found that the pole doesn’t fall 
down as the robot tracks the desired trajectory even 
without further tuning the fuzzy controller proposed 
in this paper, though it swings very much some 
times. 

 

The perception-based information is very limited to 
design a controller.  How to integrate both 
measurement-based information and perception-
based information to design an intelligent controller 
CW will be a new challenge. We will also try to 
incorporate some other techniques in the fuzzy 
controller design approach presented in this paper. 
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