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Abstract: Pareto-optimality is one of the important methodes to multiobjective
optimization problems. It is desirable to find as much as possible Pareto-optimal
solutions, and it is also highly expected to find the ones scattered uniformly over
the Pareto frontier such that a variety of compromise solutions can be provided to
the decision maker. For this purpose, an evolutionary programming algorithm, called
evolutionary programming based on uniform design (UDEP), is proposed to in this
paper. Uniform design technique is used to define some fitness functions which can
guide the search evenly toward the Pareto frontier. In order to overcome premature
and provide as much as possible candidate solution evenly scattered in the whole
search space, uniform design technique, variable region search, as well as nicheo
technique are used. Uniform design makes it possible to explore the search space
evenly, while variable region search and nicheo technique help to keep diversity of the
population. Their combination improves the search ability of EP significantly. Many
numerical experimental results show the usefulness of the proposed method.

Keywords: evolutionary programming, multiobjective optimization, uniform design,
Pareto-optimality, variable region search

1. INTRODUCTION

Multiobjective optimization is with no doubt a
very important research topic both for scientists
and engineers, not only because of the multiob-
jective nature of most real-world problems, but
also because there are still many open questions
in this area. In Operations Research, more than
20 techniques have been developed to deal with
functions that have multiple objectives, and many
approaches have been suggested, going all the way
from a naive combination of objectives into a sin-
gle one to the use of game theory to coordinate the
relative importance of each objective. However,
the fuzziness of this area lies on the fact that
there is no acceptable definition of “optimum” as
in single-objective optimization, and therefore is
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difficult to even compare results of different meth-
ods. Multiobjective optimization problems tend to
be characterized by a family of alternatives which
must be considered equivalent in the absence of
information concerning the relevance of each ob-
jective to the others. Multiple solutions arise in
even the simplest non-trivial case of two compet-
ing unimodal convex objectives. As the number
of competing objectives increases and less well-
behaved objectives are considered, the problem
rapidly becomes increasing complex. During the
past several decades, with the increasing research
on evolutionary algorithms and their successful
application to various problems, it was recong-
nized that evolutionary algorithms were possibly
well-suited to multiobjective optimization. Multi-
ple individuals can search for multiple solution in
parallel, eventually taking advantage of any simi-
larities available in the solution set. The ability to
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handle complex problems, involving features such
as discontinuities, multimodality, disjoint feasi-
ble spaces, reinforce the potential effectiveness
of evolutionary algorithms in multiobjective opti-
mization. Many research results about evolution-
ary algorithms with application to multiobjective
optimization have been published. Evolutionary
algorithms have their own shortcomings too. For
example, premature convergence (to a local op-
timum rather than a global optimum), search
speed as well as numerical accuracy are some
common problem in almost all the evolutionary
algorithms. The key is to keep a proper balance
between “exploration” and “exploitation”. This is
the motivation of this paper.

For multiobjective optimization problems, the
“optimal solution” is not unique in most cases,
therefore, it is desirable to find as much as pos-
sible alternatrive solutions, and it is also highly
expected to find the ones scattered uniformly over
the Pareto frontier such that a variety of com-
promise solutions can be provided to the decision
maker. This is another motivation of this paper.

2. LITERATURE REVIEW

2.1 Concepts on Multiobjective Optimization

The following multiobjective optimization prob-
lem is considered:

Minimize
X∈Ω

(f1(X), f2(X), · · · , fm(X)) (1)

where X = (x1, x2, · · · , xn) ∈ �n, Ω ⊂ �n is the
feasible solution space defined by the constraints.
Usually, it is defined as follows:

gi(X) ≤ 0, i = 1, · · · , k (2)

hj(X) = 0, j = 1, · · · , � (3)

Li ≤ xi ≤ Ui, i = 1, · · · , n (4)

The notion of Pareto-optimality is one of the im-
portant approaches to multiobjective optimiza-
tion. The set of possible Pareto-optimal solu-
tions constitutes a Pareto frontier in the objective
space.

2.2 Methods For Multiobjective Optimization

It includes Weighted sum approach, Goal Pro-
gramming, Goal Attainment, The ε-constraint
Method, Non-aggregating Non-Pareto Approaches,
Pareto-based Approaches, etc. Pareto-based ap-
proaches is a very important one.

2.3 Uniform Design

Experimental design method is a sophisticated
branch of statistics. uniform design is one im-
portant experimental design technique and it has
been used in many real application. It was pro-
posed by K.T. Fang and Y. Wang (Hicks, 1981;
Fang and Wang, 1994) in 1981 and it also was
developed further by other researchers in recent
years. The main objective of uniform design is to
sample a small set of points from a given set of
points such that the sampled points are uniformly
scattered.

Suppose there are n factors and q levels per
factor. When n and q are given, the uniform
design selects q combinations out of qn possible
combinations, such that these q combinations are
scattered uniformly over the space of all possible
combinations. The selected q combinations are
expressed in terms of a uniform array U(n, q) =
(Ui,j)q×n, where Ui,j is the level of the jth factor
in the ith combination.

Uniform array can be constructed as follows. Con-
sider a unit hypercube over an n-dimensional
space. It can be denoted, by the set of points in
it, as

C = {(c1, · · · , cn)|0 ≤ ci ≤ 1 i = 1, · · · , n} (5)

Consider any point in C, say r = (r1, r2, · · · , rn).
A hyper-rectangle is formed between 0 and r, and
it can be denoted by

C(r) = {(c1, · · · , cn)|0 ≤ ci ≤ ri, i = 1, · · · , n}
(6)

A sample of q points are selected such that they
are scattered uniformly in the hypercube. Suppose
q(r) of these points are in the hyper-rectangle
C(r), then the fraction of points in the hyper-
rectangle is q(r)/q. The volume of this hyper-
rectangle is

∏n
i=1 ri. The objective of the uniform

design is to determine q points such that the
following discrepancy is minimized:

sup
r∈C

∣∣∣∣∣
q(r)
q

−
n∏

i=1

ri

∣∣∣∣∣ . (7)

Then these q points in the unit hypercube is
mapped to the space with n factors and q levels.
If q is a prime and q > n, it was proved that Ui,j

is given by

Ui,j = (iσj−1 mod q) + 1, (8)

where σ is a parameter (Hicks, 1981).

3. EVOLUTIONARY PROGRAMMING
BASED ON UNIFORM DESIGN (UDEP) FOR

MULTIOBJECTIVE OPTIMIZATION

At first, we don’t consider inequality (or equality)
constraints.



3.1 Evaluation functions

The value of different objective functions may
have different order of magnitude, so it is nec-
essary to normalize the objective functions as fol-
lows:

hi(X) =
fi(X)

maxy∈ψ{|fi(y)|} for i = 1, 2, · · · ,m,
(9)

where ψ is a of candidate solutions in the current
population. LetD be a prime larger thanm. Using
uniform design, D evaluation functions can be
constructed as follows to guide the search process.

fitnessi(X) = wi,1h1(X) + · · ·+ wi,mhm(X),
for i = 1, 2, · · · ,D.

(10)
where,

wi,j =
Ui,j

Ui,1 + Ui,2 + · · ·+ Ui,m
,

for i = 1, 2, · · · ,D; j = 1, · · · ,m.
(11)

and Ui,j is the entry element of uniform array
U(m,D) = (Ui,j)D×m.

3.2 Generation of the initial population

Uniform design technique is used to generate the
initial population such that they are uniformly
distributed over the search space. If the solution
space was large, it is necessary to divide the search
space into some smaller subspaces if the search is
very large.

Let [l,u] = [(l(1),u(1)); · · · ; (l(n),u(n))] denote
the whole search space. The following method can
be used to divide [l,u] into s disjoint subspaces,
where s can take the value of 2, 22, and 23 etc.

Algorithm 1. Search space division

Step 1: Let l′ = l and u′ = u. Repeat the following

computation log2 s times: select the rth dimension

such that

u′(r) − l′(r) = max
1≤i≤n

{l′(i) − u′(i)},

and then let

u′(r) ⇐ u′(r) + l′(r)
2

.

Step 2: Compute ∆i = u′(i)− l′(i) and Ni =
u′(i)−l′(i)

∆i

for i = 1, 2, · · · , n. Then compute the subspace [lk,uk]

for all 1 ≤ ji ≤ Ni and 1 ≤ i ≤ n as follows:{
lk = l +

(
(j1 − 1)∆1, (j2 − 1)∆2, · · · , (jn − 1)∆n

)
uk = l + (j1∆1, j2∆2, · · · , jn∆n)

where k =
∑n−1

i=1
(ji − 1)

∏n

�=i+1
N� + jn.

After the solution space is divided into s sub-
spaces, Q0 points are selected from each subspace,
and totaly sQ0 (here Q0 is a prime) points are

sampled and they compose the initial population.
Consider any subspace, say the kth subspace, and
it is denoted by

[lk,uk] = [(lk(1), · · · , lk(n)), (uk(1), · · · ,uk(n))].

in this subspace, the domain [lk(i),uk(i)] of xi

is quantized into Q0 levels αk
i,1, α

k
i,2, · · · , αk

i,Q0
,

where αk
i,j is given by

αk
i,j = lk(i) + (j − 1)

uk(i)− lk(i)
Q0 − 1

(i = 1, 2, · · · , n; j = 1, 2, · · · , Q0)
(12)

After this quantization, there are Qn
0 points

for sampling in this subspace. The following
Q0 points can be selected, using uniform array
U(n,Q0), from them for testing:



(
αk

1,U1,1
, αk

2,U1,2
, · · · , αk

n,U1,n

)
,(

αk
1,U2,1

, αk
2,U2,2

, · · · , αk
n,U2,n

)
,

...(
αk

1,UQ0,1
, αk

2,UQ0,2
, · · · , αk

n,UQ0,n

)
.

(13)

In a same manner, Q0 points are selected from
each of the other subspaces, then totaly sQ0

points are selected. These sQ0 points compose the
initial population.

3.3 Selection and Mutation

Each one of the functions in (10) can be used to
evaluate the individuals in the current population
and select the best �N/D� individuals as off-
springs. Then D�N/D� offsprings are generated.
If D�N/D� < N , then other N − D�N/D� < N
offsprings can be generated randomly in the search
space. The selection and mutation process are
directed by the following rules:

Rule 1:

if fitnessi(Xi(k)) < fitnessi(Xi(k − 1)) then

Xi(k)
′ = Xi(k);

dirj
i (k) = sign(xj

i (k) − xj
i (k − 1)) and

age(i) = 1;
else if fitnessi(Xi(k)) > fitnessi(Xi(k − 1)) then

A local search procedure (as discussed later) is
executed, and a middle solution, Xmid, is obtained.

if fitnessi(X
mid) < fitnessi(Xi(k − 1)) then

Xi(k)
′ = Xmid

dirj
i (k) = sign(xmid

i − xj
i (k − 1)) and

age(i) = 1;
else

age(i) := age(i) + 1.
end if

else

age(i) := age(i) + 1.
end if

where, i = 1, 2, · · · , N ; j = 1, 2, · · · , n for each i. sign(·)
denotes the symbolic function.

Rule 2:

if age(i) = 1 then

σ(i) = rem(k1 · fitnessi(Xi(k)), γd) and

xj
i (k)

′
= xj

i (k) + dirj
i · |N(0, σ(i))|;

else



σ(i) = rem(k2 · fitnessi(Xi(k)) · age(i), γd) and

xj
i (k)

′
= xj

i (k) + N(0, σ(i)).

end if

where rem(·, ·) is the remainder function. γ ∈ (0, 1), and
d is the length of the corresponding dimension in the
corresponding subspace. k1 > 0 and k2 > 0 are control

parameters. Usually, k1 takes a larger value, and k2 takes

a smaller value. i = 1, 2, · · · , N ; j = 1, 2, · · · , n for each
i.

3.4 Local Search

Consider an arbitrary, say the kth, generation
of solutions. Suppose one candidate solution, say
the ith (i ∈ {1, 2, · · · , N}) one, is worse than its
predecessor, i.e. it satisfies that fitnessi(Xi(k)) >
fitnessi(Xi(k−1)), then a local search procedure
is executed in order to improve it.

Let

v(j) = min
(
Xj

i (k),X
j
i (k − 1)

)
, (14)

v(j) = max
(
Xj

i (k),X
j
i (k − 1)

)
, (15)

(j = 1, 2, · · · , n).
Then v and v compose an n-dimensional search
space (if ∃ some j ∈ {1, 2, · · · , n} such that
v(j) = v(j), then let v(j) := v(j) + ε, where ε > 0
is a small positive real number). A temporary
population with size Q1 (where Q1 is a prime)
is generated using the procedure discussed in
section 3.2, then let Xmid be the best one in this
temporary population.

3.5 Keeping Population Diversity

Let r > 0 be a given small real number (e.g. 0.5),
the following procedure will be executed after the
generation of each offspring population.

for i = 2 : N

for j = 1 : i − 1
while ||Xi − Xj || < r

for k = 1 : n
X(j, k) := X(j, k) + λ ∗ N (0, 1);

end

end
end

end

where λ is a small positive real number (e.g. 0.05),

N (0, 1) is a standard Normal random variable.

In addition, some part (e.g. 20% of the popula-
tion) of the candidate solutions are generated us-
ing variable region search, i.e., they are generated
uniformly from a real subspace of [L,R].

3.6 Non-dominated Solutions

The final step in each generation is to record
the non-dominated solutions. Suppose the non-
dominated solutions found before generation i is

Non dom(i − 1), then it is updated in the ith
generation as follows: all candidate solutions in set
Non dom(i − 1) as well as that in the new gen-
eration are evaluated according to the definition
of Pareto-optimal condition, then Non dom(i) is
composed of the candidate solutions with no dom-
inance relation between each pair of them.

3.7 Termination Condition

In this paper, a fixed generation number is used
as the termination condition of the procedure.

3.8 Handling of Inequality/Equality Constraints

In this paper, the inequality (quality) constraints
(2) and (3) are treated using the traditional
penalty method. For this purpose, the following
penalty functions are defined.

Fi(X) = fi(X) +
k∑

j=1

pj{[gj(X)]+}α +
�∑

j=1

qj |hj(X)|α,

for i = 1, · · · ,m
(16)

where pi (i = 1, · · · , k), qj (j = 1, · · · , �) and α
are positive penalty factors. The Fi( ) is used in
instead of fi( ) in the previous subsections.

4. NUMERICAL EXPERIMENTS

Problem 1 (Y.B. Yun and Tanino, 2001)

Min
x1,x2

(f1(x1, x2), f2(x1, x2)) = (x1, x2)

s.t.
(x1 − 2)2 + (x2 − 2)2 − 4 ≤ 0
x1 ≥ 0, x2 ≥ 0

Problem 2 (Y.B. Yun and Tanino, 2001)

Min
x1,x2

(f1(x1, x2), f2(x1, x2)) = (2x1 − x2,−x1)

s.t.
(x1 − 1)3 + x2 ≤ 0
x1 ≥ 0, x2 ≥ 0

Problem 3 (Y.B. Yun and Tanino, 2001)

Min
x1,x2

(f1(x1, x2), f2(x1, x2)) = (x1, x2)

s.t.
x3

1 − 3x1 − x2 ≤ 0
x1 ≥ −1, x2 ≤ 2

Problem 4 (A.D. Belegundu and Salagame,
1994)

Min
x1,x2

(f1(x1, x2), f2(x1, x2)) = (−2x1 + x2, 2x1 + x2)

s.t.
− x1 + x2 − 1 ≤ 0
x1 + x2 − 7 ≤ 0
0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3



Problem 5 (J.Fernando and Verdegay, 1996)

Min
X

(f1(X), f2(X)) = (5x1 + 3x2, 2x1 + 8x2)

s.t.
x1 + 4x2 − 100 ≤ 0
3x1 + 2x2 − 150 ≤ 0
− 5x1 − 3x2 + 200 ≤ 0
− 2x1 − 8x2 + 75 ≤ 0
x1 ≥ 0, x2 ≥ 0

Problem 6 (Shigeru, 1997)

Minimize
x1,x2

(f1(x1, x2), f2(x1, x2)) = (x1, x2)

s.t.
x2

1 + x
2
2 − 1 ≤ 0

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

During all the experiments, the following parame-
ters are used. The population size is fixed as 200.
The generation number is fixed as 300. Subspace
number is S = 32. The factor number is equivalent
to the dimension of variable X. D = 31, Q0 = 31,
γ = 0.5, Q1 = 31, λ = 0.05, r = 0.5, k1 = 10,
k2 = 0.1, pj = 1 (for j = 1, · · · , k), qi = 1
(for i = 1, · · · , �), α(t) = 10 × (−0.05t) (t is the
generation number).

For each benchmark problem, simulation is re-
peated for 20 times. The non-dominated solu-
tions are recorded. For all test problems, UDEP
has a good performance in terms of both search
speed and solution accuracy. As an illustration,
the search performance of UDEP for problem 1 is
shown in figures 1–3. The real Pareto frontier is
shown in bold curves, while the non-dominated
solutions are marked using circles. From these
figures, it is obvious that UDEP has a very satis-
factory performance.
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Fig. 1. UDEP results for problem 1 and 2
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Fig. 2. UDEP results for problem 3 and 4
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Fig. 3. UDEP results for problem 5 and 6

5. CONCLUSIONS

An evolutionary programming algorithm, called
evolutionary programming based on uniform de-
sign (UDEP), is proposed to in this paper. Uni-
form design makes it possible to explore the search
space evenly, while variable region search and
nicheo technique help to keep diversity of the pop-
ulation. Their combination improves the search
ability of EP significantly. Many numerical experi-
mental results show the usefulness of the proposed
method.
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