
DEALING WITH EXCEPTIONS IN SAFETY-RELATED
EMBEDDED SYSTEMS

Wolfgang A. Halang � and Matjaž Colnarič ��

� Faculty of Electrical and Computer Engineering
FernUniversität Hagen, D-58084 Hagen, Germany
wolfgang.halang@fernuni-hagen.de

�� Faculty of Electrical Engineering and Computer Science
University of Maribor, SI-2000 Maribor, Slovenia

colnaric@uni-mb.si

Abstract: In embedded hard real-time systems, tasks must complete their executions within
predefined time frames. A necessary pre-condition to achieve this requirement is predictabil-
ity of their temporal behaviour.
Here, the main focus is on handling exceptions in such systems. When handled in a classical
way, they necessarily jeopardise the ultimate requirement, temporal predictability. Hence, it
is argued that exceptions must be either prevented or avoided, as far as this is possible.
For the remaining non-preventable and non-avoidable catastrophic exceptions, a technique
in form of syntactic means is presented allowing to handle them in a well-structured and
predictable way, and as painlessly as possible. The technique is based on recovery blocks
with pre- and post-conditions. Finally, a method for the estimation of the resulting temporal
behaviour (worst case execution time) is described.

Keywords: Hard real-time systems, embedded systems, high-integrity requirements,
safety-related systems, exception handling, real-time programming languages, worst case
execution time (WCET) estimation.

1. INTRODUCTION

Embedded systems are generally employed in control
applications. As a rule, they operate in the hard real-
time domain, which means that their integrity does
not only depend on the functional correctness of the
results, but also on whether these are produced within
specified time periods. Depending on the applications,
these systems are often safety critical; their malfunc-
tion may cause major damage, loss of equipment, or
even endangerment of human lives. Thus, for such
systems high integrity and safety are required, and
mechanisms must be devised to cope with partial or
complete failures.

In recent years, the domain of real-time systems
substantially gained research interest. Certain sub-

domains have been examined very thoroughly, such as
scheduling and analysis of program execution times.
It is typical that most of this research was dedicated
to higher level topics assuming that the underlying
features behave fully predictably. While even in the
systems usually employed in process control, testing
of conformance to functional specifications is well es-
tablished, temporal circumstances are seldom consis-
tently verified. It is almost never proven at design time
that such a system will meet its temporal requirements
in every situation that it may encounter. Such proof
should be provided by a priori schedulability analysis.

For schedulability analysis, worst case execution times
(WCET) of tasks must be known in advance. These,
however, can only be determined if a system func-
tions predictably. To assure overall predictability, all

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



the system’s layers must behave predictably in the
temporal sense, from the processor to the system ar-
chitecture, language, operating system, and exception
handling.

Exception handling is one of the most severe problems
to be solved in case temporally predictable behaviour
is required. When an exception occurs in a program,
the latter is inevitably delayed causing a serious prob-
lem with respect to the a priori determined execu-
tion time. Therefore, exceptions should be prevented
by all means, whenever and wherever it is possible
(Black, 1983). If it is not possible to prevent them
from occurring, they should be handled in a consistent
and safe way in conformity with the design guidelines
holding for hard real-time systems, i.e., timeliness,
simultaneity, predictability, and dependability (Halang
and Stoyenko, 1991). The need for consistent solu-
tions to the exception handling problem is exacerbated
by the fact that exceptions often result from critical
system states when computer control is needed most.

In this paper, a concept for dealing with exceptional
events that may occur in embedded control applica-
tions is presented. The main objective is to propose
practically usable syntax constructs for exception han-
dling. It is not our intention to analytically explore
theoretical background of these matters. Throughout
the paper references to much more thorough and basic
research results on different topics are given.

First, in Section 2, we commence with some general
considerations providing broad conceptual guidelines
for the organisation of exception handling in embed-
ded systems. The exceptions occurring in embedded
hard real-time systems are classified. It is argued that
a number of them can and should be either prevented
or avoided by simple measures and means.

In Section 3 it is shown constructively how be-
havioural predictability can be achieved even in the
presence of the remaining catastrophic exceptions.
Some known solutions to handle them are sum-
marised, which were combined in the approach imple-
mented. An analysis of the impact is given, which the
approach has on the overall predictability of process
timing. Finally, some advantages and drawbacks of the
proposed approach are evaluated.

2. GENERAL CONSIDERATIONS

There are various definitions and classifications of
exceptions.

The main idea of traditional exception handling is to
trigger the execution of dedicated routines (handlers)
when specified events occur. This way, the worst case
execution times of the tasks involved are prolonged
by those of the exception handlers. Since neither the
event occurrences nor just their frequencies can be an-
ticipated, it is impossible to predict the tasks’ WCET.

This, in turn, prevents schedulability analysis and,
thus, predictable time behaviour.

As early as 1983, Black reasons in his PhD thesis
(Black, 1983) against exception handling. He strictly
distinguishes between exceptions and catastrophes:
the difference is not due to severity but to their very
nature. To handle exceptions, one has to be aware of
what can happen. Once this is the case, exceptions can
be handled as ordinary events. Programmers tend to
service desired events directly in their programs, and
undesired ones as exceptions. It is, however, irrelevant
whether an event is desired or not.

Being relevant to hard real-time systems, exceptions
occurring when tasks violate their deadlines

A closer examination of the possible sources of excep-
tions in hard real-time systems leads to the following
classification into three categories: preventable, avoid-
able and catastrophic exceptions.

Preventable Exceptions. The best way to handle
exceptions is to prevent them from occurring at all —
as far as this is possible. This can be achieved by, e.g.,
imposing certain restrictions on the use of potentially
dangerous features such as dynamic data structures,
virtual addressing, recursion or dynamic pointers.

Further exceptions can be caused by illegal data, such
as illegal operations and/or operands (e.g., square root
of a negative argument, array or string index out of
range, declaration/run-time value mismatch) or range
overflow or underflow in arithmetic operations. They
can be prevented by strict type checking in the lan-
guage used, so that possible irregular operations are
detected and reported already at compile time. An ex-
ample for this approach is the exception-less language
NewSpeak (Currie, 1988) supported by an appropriate
safe architecture (Kershaw, 1987).

It is a good practice to employ the principle of the
IEEE binary floating point arithmetic standard (IEE,
1985; IEC, 1989). The input and output data types
are extended by two “irregular” values representing
“signed infinity” to accommodate overflows and un-
derflows, and “undefined (not-a-number – NaN)” to
formalise the results of invalid operations.

Avoidable Exceptions. There are situations in which
unusual (or irregular) events cannot be prevented from
occurring. In certain cases they can be anticipated
during the design phase. In these cases they should
be included into the specifications to be handled ad-
equately. Thus, dealing with them becomes part of
the application software instead of relying on some
universal system exception handling.

Catastrophic exceptions. When a completely unex-
pected and usually undesired event occurs (“the im-



possible happens” (Black, 1983)), for instance due
to a hardware failure, a residual software error, or
wrong specifications, it should not be considered as
an exception, but as a catastrophe. Catastrophes are
not to be serviced (in the sense of exceptions), but to
be survived by bringing the system into a pre-defined,
safe and stable state.

3. COPING WITH CATASTROPHIC
EXCEPTIONS

The concept of exception handlers assigned to oper-
ations can be found in a number of relevant papers
and implementations (Goodenough, 1975; Liskov and
Snyder, 1979; Stroustrup, 1991; Marlow et al., 1994).
In the latter paper it is also shown how the delays
caused by exception handlers can be considered in
schedulability analysis.

Our approach, however, is based on the reference
study in the domain of non-preventable exceptions
which was carried out by Cristian throughout a num-
ber of years (Cristian, 1982; Cristian, 1984).Accord-
ing to this work, exceptional situations can be dealt
with by programmed exception handling, and by de-
fault exception handling based on automatic backward
or forward recovery using recovery blocks. Since pro-
grammed exception handling should be included in
the requirements of embedded hard real-time systems
and can, thus, be treated as normal actions, in the
following the latter approach based on recovery blocks
is considered further.

The principle of backward recovery is to return to a
previous consistent system state after an inconsistency
is detected by consistency tests called post-conditions.
This can be performed in two ways, viz., (a) by the
operating system recording the current context before
a program is “run” and restoring it after unsuccessful
program termination, or (b) by recovery blocks inside
the context of a task whose syntax reads as follows:

RB � ensure post by P0 else by P1 else by . . .
else failure

where P0, P1, etc. are alternatives which are tried
consecutively until either consistency is ensured by
meeting the post-condition, or the segment failure is
executed. Each alternative should be independently
capable of ensuring consistent results.

In the forward error recovery technique it is tried
to obtain a consistent state from partly inconsistent
data. Which data are usable can be determined by
consistency tests, error assumptions, or with the help
of independent external sources.

3.1 Syntax and Semantics

To handle catastrophes, we propose to use a combina-
tion of pre-conditions, post-conditions and modified
recovery blocks implementing both backward and for-
ward recovery. The syntax of this scheme (based on
the syntactic rules of PEARL) is shown in Figure 1.

block ::= block_begin block_tail

block_begin ::BEGIN
j PROCEDURE parameters & attributes;
j TASK parameters & attributes;
j parameters REPEAT

block_tail ::=[declaration_sequence]
[alternative_sequence] END;

declaration_sequence ::= block-specific declarations
[PRESERVE global_var_list]

alternative_sequence ::=
{[ALTERNATIVE [PRE bool-exp;]
[POST bool-exp;]]
[statement_sequence]}

Fig. 1. Syntax of an exception handling mechanism

A block (explicit block, task, procedure, loop, or any
other block structure) consists of alternative sequences
of statements. Each alternative can have its own pre-
and/or post-conditions, represented by Boolean ex-
pressions. When the program flow enters a surround-
ing block, the state variables, that are modifiable by al-
ternatives which might fail, are stacked. Then, the first
alternative statement sequence, whose pre-condition
(if it exists) is fulfilled, is executed. At the end, its
post-condition is checked, and if this is also fulfilled,
execution of the block is successfully terminated. If
the post-condition is not fulfilled, the next alterna-
tive is checked for its pre-condition and eventually
executed. If necessary, values of the state variables
recorded at the beginning of the block are first re-
stored.

If an alternative fails, any effect on the system state
must be discarded. Thus, it is necessary that the orig-
inal value of any variable, which was modified inside
this alternative, is restored. For this purpose, the state
of any such variable was stacked at the time of enter-
ing the block. Whether and which variables must be
stacked can be determined by the compiler. It is only
necessary to restore non-local variables that appear on
the left-hand side of assignments in alternatives which
have post-conditions, since only they may fail after
modifying the state. It is a task of the compiler to
scan the block for such variables and take care of their
stacking. Further, after a non-successful evaluation of
a post-condition, only the variables that were modified
in this alternative are automatically restored.

Stacking all global variables that can be modified
within a block may require a relatively large amount
of time. There are situations that the value of a global
variable is not needed any more after an unsuccessful
termination of an alternative. In such situations the
application programmer may wish to declare which
modifiable global variables should be restored after



an unsuccessful alternative. This can be requested by
the optional PRESERVE declaration in the declara-
tion_sequence. If such a declaration is present, the au-
tomatic search for modifiable global variables is over-
ridden. Hence, the explicitly given list must contain
the complete set. The compiler then scans for global
variables that are both in the list and appear on a left-
hand side in the alternative program, and restores their
original values after an unsuccessful try.

A good technique which outsources the above prob-
lem is to work with private copies of global state vari-
ables inside the alternatives that may cause backward
recovery, and to export their values after a success-
ful post-condition check. However, this is more time-
consuming, especially when there are more such alter-
natives in a block, which require (counter-productive)
transfer of global into local variables and vice versa.

Since embedded hard real-time systems, on which we
focus in this paper, are, as a rule, used in process
control, a severe problem arises if there are any actions
triggered like commencing a peripheral process which
cause an irreversible change of initial state inside of
an alternative that has failed. In this case, backward
recovery is generally not possible. As a consequence,
it is our suggestion that no physical control outputs
should be generated inside the alternatives which may
require backward recovery in case of failure. Then,
only forward recovery is possible, bringing the system
to a certain pre-defined, safe and stable state.

Both forward and backward recovery methods can
be implemented using the proposed syntax. In the
following these approaches are shown.

� Backward recovery: Bearing in mind the dan-
gers of backward recovery in process control
systems, it may be implemented carefully. Back-
ward recovery can be activated by the post-
condition an alternative must meet. Its function-
ing is obvious: if an alternative fails to meet its
post-condition, the next alternative fulfilling its
pre-condition is used to perform the task of the
block. Thus, it is necessary to restore the system
state variables possibly modified in previous un-
successful alternatives.

� Forward recovery: This technique may be some-
what less obvious. When an alternative fails as
indicated by not meeting its post-condition, it
may be followed by one or more alternatives
with pre- but without post-conditions. Probably,
these alternatives will not completely fulfill the
task, since their results are not verified by post-
condition checks. More likely, they will incor-
porate certain fault-tolerance measures. These
are alternatives implementing forward recovery:
the first one with successfully evaluated pre-
condition is executed, and the block is left with-
out further checking. With the pre-conditions it is
possible to check the consistency of data and/or
system state after the failure of a previous alter-

native. It is assumed that the situation is resolved
by bringing the system into a consistent and safe
state in conformance to the specifications. Al-
though the function of the block may have failed
(at least to a certain extent), the process execu-
tion may be continued safely.

The backward recovery alternatives should contain
diversely designed and coded programs to cope with
specification errors and to eliminate possible imple-
mentation problems or residual software errors. They
may employ alternative design solutions or redundant
hardware resources, when problems are expected. A
further possibility is to assert gradually less restrictive
pre- and/or post-conditions and, thus, to degrade per-
formance gracefully in the case of exceptional situa-
tions.

By the means presented in (Verber et al., 1996) it is
also possible to bound the execution times of alterna-
tives to trap timing errors.

If there is no alternative, whose pre- and post-
conditions are fulfilled, the block execution is unsuc-
cessful. If the block is nested inside an alternative on
the next higher level, this alternative fails as well (the
failure is propagated), and control is given to the next
one on this level, thus providing a chance to resolve
the problem in a different way. On the highest level,
however, the last alternative must not have any pre- or
post-conditions. It must solve the problem by applying
some safe action like employing robust fault-tolerance
measures or performing smooth shut-down. Since the
system is then in an extreme and unrecoverable catas-
trophic condition, different control and timing policies
are put into action, requesting safe termination of the
process and, possibly, post mortem diagnostics. For
the case of extremely safety-critical applications, in
this ultimate alternative very basic electrical or me-
chanical back-up systems can be engaged.

The proposed exception handling mechanism was
integrated into a laboratory prototype of the high-
level real-time programming language miniPEARL
(Verber et al., 1996). A new version featuring object-
orientation is currently in preparation.

3.2 Considering Recovery in WCET Analysis

Using the exception handling mechanism described
above, the worst case program execution times re-
quired for schedulability analysis can be estimated at
compile time. In the following paragraphs three differ-
ent cases are considered.

(a) Exclusively backward recovery (all alternatives
have post-conditions): In the worst case execution
time estimation all times must be considered, i.e.,
time for stacking all global variables’ contents, for
evaluating all pre- and post-conditions, for executing
the program alternatives, and times to restore used
variables.



WCET = tst +∑n
i=1

�
tprei

+ tbodyi
+ tposti

+ tresti

�

with

n number of alternatives in the block
WCET worst case block execution time
tst time to store global variables
tprei

i-th alternative pre-condition
evaluation time

tbodyi
i-th alternative program execution time

tposti
i-th alternative post-condition evaluation
time

tresti
time to restore global variables in i-th
alternative

(b) No backward recovery (no alternatives have post-
conditions): In this case it must be scanned for the
maximum time composed of an alternative body exe-
cution time plus the sum of unsuccessful pre-condition
evaluation times of all preceding alternatives. There is
no stacking or restoring of variables.

WCET = maxk=1;n

�
tbodyk

+∑k
i=1 tprei

�

(c) Mixed alternatives with and without post-conditions:
In this case, the estimation of the worst case execution
time is slightly more complicated. During operation,
alternatives are tried one after another according to
their sequence in the block. Thus, execution times are
evaluated as follows:

� the execution time of the sequence of alterna-
tives with post-conditions is calculated as in case
(a) and is added to the execution time of the
body of the subsequent alternative without post-
condition if it exists, or forms a virtual alternative
without pre- or post-condition if it stands at the
end of the block,

� afterwards, one proceeds as in case (b).

Actually, the last method (c) is generally valid and also
applicable in both previous cases.

Especially the backward recovery method inevitably
yields pessimistic estimations of execution times.
However, this is not due to this specific solution. In
safety-critical hard real-time systems it is always nec-
essary to consider worst case execution times, which
must also include handling of exceptional situations.
Depending on the performance reserve of a system,
more or less alternatives may be provided, performing
more or less degraded functions. In extremely time-
critical systems, just a single alternative in the highest
level block may be implemented performing merely
a robust fault-tolerant and fail-safe measure, like safe
and smooth shut-down.

To cope with the problem of pessimism in run-time
estimation of the execution of alternatives, some fur-
ther solutions are possible. As an example, each sub-

sequent alternative of a set of backward recovery alter-
natives may be bounded to half of the execution time
of the previous one. Thus, the block will terminate
in at most twice the execution time of the primary
alternative.

Further, from a failure of an alternative it is possi-
ble to deduce which subsequent alternatives in sub-
sequent blocks are reasonable and which are not, and
to set their pre-conditions accordingly. However, this
requires a more sophisticated run-time analyser.

4. CONCLUSION

Exception handling presents one of the most severe
obstacles to the predictability of the temporal be-
haviour of hard real-time systems. In this paper, the
possible exceptions were classified. The first group
comprises exceptions whose occurrences can be pre-
vented by appropriate measures. The exceptions of
the second group can be avoided at run-time. Their
servicing is implicit, and the corresponding service
times can be predicted by common methods of exe-
cution time estimation. To cope with the third group,
i.e., non-preventable and non-avoidable exceptions, a
well-structured method was introduced, providing se-
quences of gradually more and more evasive software
reactions with fully predictable execution behaviour.

Embedded hard real-time systems for process control
often operate in safety-critical environments. Uncon-
trolled malfunctions can have severe consequences
with regard to repair costs, production loss, or even
endangerment of human health or lives. By our ap-
proach, overall system safety is greatly enhanced.

Possible system failures are already being consid-
ered during the specification phase. During the de-
sign phase, alternative solutions are devised and pre-
pared. Having to consider these measures in worst
case execution time estimation, performance may be
reduced, but safety is retained, since they will either
solve the problems, or bring the system into some
controlled and safe state. These alternative measures
either employ software approaches or redundant hard-
ware means. They are gradually less complex and,
thus, less sensitive to disturbances and failures. There-
fore, they rely on very simple means of fault-tolerance,
employing minimum resources. They may even em-
ploy basic electrical or mechanical means.

Applications designed this way fulfill the require-
ments of hard real-time systems, viz., timeliness,
simultaneity, predictability, and dependability. Al-
though worst case analysis necessarily introduces
pessimism into run-time estimation, the proposed
methodology is usable in practice to develop safety-
critical embedded hard real-time applications if the al-
ternative solutions to the critical parts of control tasks
are designed reasonably.



5. REFERENCES

Black, Andrew P. (1983). Exception handling: The
case against. Technical Report TR 82-01-02. De-
partment Of Computer Science, University of
Washington. (originally submitted as a PhD the-
sis, University of Oxford, January 1982).

Colnarič, Matjaž and Domen Verber (2001). Dealing
with tasking overload in object oriented real-time
applications design. In: Sixth International Work-
shop on Object-oriented Real-time Dependable
Systems WORDS2001. Rome, Italy. pp. 226–232.

Cristian, Flaviu (1982). Exception handling and soft-
ware fault tolerance. IEEE Transactions on Com-
puters 31(6), 531–540.

Cristian, Flaviu (1984). Correct and robust pro-
grams. IEEE Transactions on Software Engineer-
ing 10(2), 163–174.

Currie, Ian F. (1988). NewSpeak: a reliable pro-
gramming language. In: High-integrity Software.
pp. 122–158. Pitman Publishing. London.

Goodenough, John. B. (1975). Exception handling:
Issues and a proposed notation. Communication
of the ACM 18(12), 683–696.

Halang, Wolfgang. A. and Alexander D. Stoyenko
(1991). Constructing Predictable Real Time Sys-
tems. Kluwer Academic Publishers. Boston–
Dordrecht–London.

IEC (1989). Binary Floating-Point Arithmetic for Mi-
croprocessor Systems. IEC 559:1989.

IEE (1985). IEEE Standard for Binary Floating-Point
Arithmetic. ANSI/IEEE Std 754-1985.

Kershaw, John (1987). The VIPER microprocessor.
Technical Report 87014. Royal Signals And
Radar Establishment. Malvern,Worcs, London:
Her Majesties’ Stationery Office.

Liskov, Barbara H. and Alan Snyder (1979). Excep-
tion handling in CLU. IEEE Transactions on
Software Engineering 5(6), 546–558.

Marlow, Thomas J., Alexander D. Stoyenko,
Stephen P. Masticola and Lonnie R. Welch
(1994). Schedulability–analyzable exception
handling for fault–tolerant real–time languages.
Real-Time Systems 7(2), 183–212.

Stroustrup, Bjarne (1991). The C++ Programming
Language. Addison–Wesley.

Verber, Domen, Matjaž Colnarič and Wolfgang A. Ha-
lang (1996). Programming and time analysis of
hard real-time applications. Control Engineering
Practice 4(10), 1427–1434.


