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Abstract: A biologically inspired neural computation model is proposed for dynamic
planning and tracking control of robots. The dynamic environment is represented by
a neural activity landscape of a topologically organized neural network, where each
neuron is characterized by a shunting equation. The collision-free path is generated in
real-time through the activity landscape without any prior knowledge of the dynamic
environment. The real-time tracking control of robots to follow the planned path is
also designed using shunting equations. The effectiveness is demonstrated through
case studies. Simulation in several computer-synthesized virtual environments further
demonstrates the advantages of the proposed approach. Copyright c©2002 IFAC
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1. INTRODUCTION

Real-time path planning and tracking control of
robotic systems are fundamentally important but
very difficult issues in robotics, particularly in a
nonstationary environment. Many previous works
deal with the path planning and the tracking con-
trol separately (e.g., Lozano-Pérez, 1983; Khatib,
1986; Glasius et al., 1995; Muñiz et al., 1995;
Zelinsky, 1994; Ong and Gilbert, 1998; Fierro
and Lewis, 1997; Zhang et al., 1999). There are
many studies on path planning of robots us-
ing various approaches (e.g., Lozano-Pérez, 1983;
Khatib, 1986; Glasius et al., 1995; Muñiz et
al., 1995; Zelinsky, 1994; Ong and Gilbert, 1998).
However, most of the previous models deal with
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static environment only and are computationally
complicated. Most of the previous models use
global methods to search the possible paths in
the free space. Ong and Gilbert (1998) proposed
a new model for path planning with penetra-
tion growth distance, which searches over collision
paths instead of the free space. However, these
models deal with static environment only and
are computationally complicated when in a com-
plex environment (e.g., Lozano-Pérez, 1983; Zelin-
sky, 1994; Ong and Gilbert, 1998).

Several neural network models were proposed to
generate real-time trajectories through learning,
e.g., Muñiz et al. (1995) proposed a neural net-
work model for the navigation of a mobile robot,
which can generate dynamic trajectory with ob-
stacle avoidance through unsupervised learning.
But the generated trajectory using learning based
approaches is not optimal, particularly at the ini-
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tial learning phase. Glasius et al. (1995) proposed
a neural network model for dynamic trajectory
generation without any learning process. However,
it suffers from slow dynamics and cannot perform
properly in a fast changing environment.

Many tracking controllers are proposed for robots
using various methods, such as sliding mode, lin-
earization, backstepping, neural networks, fuzzy
systems, and neuro-fuzzy systems (Fierro and
Lewis, 1997; Zhang et al., 1999). However, most
of the tracking controllers are very complicated,
some can be used for mobile robots only.

In this paper, a biologically inspired neural net-
work approach is proposed for real-time collision-
free path planning and tracking control of robots
in a nonstationary environment. The state space
of the topologically organized neural network is
the configuration space of the robot, which can
be the Cartesian workspace for a mobile robot
or the joint space for a multi-joint robot ma-
nipulator. The dynamics of each neuron is char-
acterized by a shunting equation derived from
Hodgkin and Huxley’s (1952) membrane model
for a biological neural system. There are only
local lateral connections among neurons. Thus the
computational complexity linearly depends on the
neural network size. The varying environment is
represented by the dynamic activity landscape
of the neural network. The real-time robot path
is directly planned through the dynamic neural
activity landscape without any prior knowledge
of the changing environment (note the current
knowledge of the environment is assume to be
completely known), without any explicit searching
over the free space or obstacle paths, without any
explicit optimizations of global cost functions, and
without any learning procedures. Therefore the
model algorithm is computationally efficient. Note
that the robot responds instantaneously to the
dynamic environment. It requires the real-time
current knowledge of the changing environment,
although it does not need any prior or past envi-
ronmental information.

Inspired by the features of neural dynamics in a
shunting equation, a novel tracking controller is
proposed for real-time tracking control of robots.
Distinct from the previous neural networks based
approaches, no learning procedures are needed.
The proposed controller is capable of generat-
ing smooth, continuous control commands. The
proposed path planner generates the next robot
location based on the current environment that
includes the target, the robot and obstacles. The
proposed tracking controller generates real-time
velocity commands driving the robot to follow the
generated path. The current robot position that
results from the tracking commands is used for
the real-time collision-free path planning.

2. THE PROPOSED MODEL

In this section, the biological inspiration will be
briefly presented. Then the fundamental concept
of using a recurrent shunting neural network
for real-time collision-free path planning will be
pointed out, and the model algorithm will be
presented. Finally, the shunting neural model for
tracking control will be presented.

2.1 Biological Inspiration

Hodgkin and Huxley (1952) proposed a computa-
tional model for a patch of membrane in a biologi-
cal neural system using electrical circuit elements.
In this model, the dynamics of voltage across the
membrane, Vm, is described using state equation
technique as

Cm
dVm

dt
=−(Ep + Vm)gp + (ENa − Vm)gNa

−(EK + Vm)gK , (1)

where Cm is the membrane capacitance, EK , ENa

and Ep are the Nernst potentials (saturation po-
tentials) for potassium ions, sodium ions and the
passive leak current in the membrane, respec-
tively. Parameters gK , gNa and gp represent the
conductances of potassium, sodium and passive
channels, respectively. This model provided the
foundation of the shunting model and led to a lot
of model variations and applications. By substi-
tuting Cm = 1, ξi = Ep + Vm, A = gp, B = ENa +
Ep,D = Ek − Ep, S

e
i = gNa and Si

i = gK in Eq.
(1), a shunting equation is obtained (Öğmen and
Gagné, 1990)

dξi
dt

=−Aξi+(B − ξi)Se
i (t)−(D + ξi)Si

i(t), (2)

where ξi is the neural activity (membrane poten-
tial) of the ith neuron. Parameters A, B and D
are nonnegative constants representing the pas-
sive decay rate, the upper and lower bounds of
the neural activity, respectively. Variables Se

i and
Si

i are the excitatory and inhibitory inputs to the
neuron. This shunting model was first proposed
by Grossberg to understand the real-time adap-
tive behavior of individuals to complex and dy-
namic environmental contingencies, and has a lot
of applications in visual perception, sensory motor
control, and many other areas (Grossberg, 1988).

2.2 Real-time Path Planning

The fundamental concept of the proposed model
is to develop a neural network architecture, whose
dynamic neural activity landscape represents the
dynamically varying environment, not only mark-
ing the currently target and obstacle locations,



but also memorizing some history of the changing
environment. By properly defining the external
inputs from the varying environment and internal
neural connections, the target and obstacles are
guaranteed to stay at the peak and the valley of
the activity landscape of the neural network, re-
spectively. The target globally attracts the robot
in the whole state space through neural activity
propagation, while the obstacles have only local
effect to avoid collisions. The real-time collision-
free robot path is planned through the dynamic
activity landscape of the neural network.

The proposed topologically organized model is
expressed in a finite (F−) dimensional (F−D)
state space S, which can be either the Cartesian
workspace W or the configuration joint space C
of a multi-joint manipulator. The location of the
ith unit (“neuron”) at the grid in the F -D state
space, denoted by a vector qi ∈ RF , uniquely
represents a position in W or a configuration in
C. In the proposed model, the excitatory input
results from the target and the lateral connections
among neurons, while the inhibitory input results
from the obstacles only. Each neuron has a local
lateral connections to its neighboring neurons that
constitute a subset Ri in S. The subset Ri is
called the receptive field of the ith neuron in
neurophysiology. The neuron responds only to
the stimulus within its receptive field. Thus, the
dynamics of the ith neuron in the neuron network
is characterized by the shunting equation given by

dξi
dt

=−Aξi + (B − ξi)

[Ii]+ +

k∑
j=1

wij [ξj ]+




−(D + ξi)[Ii]−, (3)

where k is number of neural connections of the
ith neuron to its neighboring neurons within the
receptive field Ri. The external input Ii to the ith
neuron is defined as Ii = E, if there is a target;
Ii = −E, if there is an obstacle; Ii = 0, otherwise,
where E � B is a very large positive constant.
The terms [Ii]++

∑n
j=1 wij [xj ]+ and [Ii]− are the

excitatory and inhibitory inputs, Se
i and Si

i in Eq.
(2), respectively. Function [a]+ is a linear-above-
threshold function defined as, [a]+ = max{a, 0},
and the nonlinear function [a]− is defined as
[a]− = max{−a, 0}, The connection weight wij

from the ith neuron to the jth neuron is given
by wij = f(|qi − qj |), where |qi − qj | represents
the Euclidean distance between vectors qi and qj
in the state space, and f(a) is a monotonically
decreasing function, such as a function defined as
f(a) = µ/a, if 0 ≤ a < r0; f(a) = 0, if a ≥ r0,
where µ and r0 are positive constants. Therefore
each neuron has only local lateral connections in
a small region [0, r0]. It is obvious that the weight
wij is symmetric, i.e., wij = wji. A schematic

diagram of the neural network in 2D is shown in
Fig. 1, where r0 is chosen as r0 = 2. The receptive
field of the ith neuron is represented by a circle
with a radius of r0.

r0

i

j

wij

Fig. 1. Schematic diagram of the neural network
for robot path planning when the state space
is 2D. The ith neuron has only 8 lateral
connections to its neighboring neurons that
are within its receptive field.

The proposed network characterized by Equation
(3) guarantees that the positive neural activity
can propagate to all the state space, but the
negative activity only stays locally. Therefore, the
target globally attract the robot, while the obsta-
cles only locally avoid the collision. In addition,
the activity propagation from the target is blocked
when it hits the obstacle. The locations of the
target and obstacles may vary with time. The
activity landscape of the neural network dynam-
ically changes due to the varying external inputs
from the targets and obstacles and the internal
activity propagation among neurons. The optimal
robot path is planned from the dynamic activity
landscape by a steepest gradient ascent rule. For
a given present robot location in S (i.e., a location
in W or a configuration in C), denoted by pp,
the next robot location pn (also called “command
location”) is obtained by

pn ⇐ ξpn
= max{ξj , j = 1, 2, · · · , k}, (4)

where k is the number of neighboring neurons of
the ppth neuron, i.e., all the possible next loca-
tions of the present location pp that are subject
to the nonholonomic constraint. After the present
location reaches its next location, the next loca-
tion becomes a new present location (if the found
next location is the same as the present location,
the robot stays there without any movement). The
current robot location adaptively changes accord-
ing to the varying environment.

Note that the dynamic activity landscape is used
to determine where the next robot position is.
However, when to generate the next robot position
is determined by the robot moving speed. In
a static environment, the activity landscape of



the neural network will reach a steady state.
Mostly the robot reaches the target much earlier
than the activity landscape reaches the steady
state of the neural network. When a robot is in
a dynamically changing environment, the neural
activity landscape will never reach a steady state.
Due to the very large external input constant E,
the target and the obstacles keep staying at the
peak and the valley of the activity landscape of
the neural network, respectively. The robot keeps
moving toward the target with obstacle avoidance
till the designated objectives are achieved.

2.3 Real-time Tracking Control

The function of a tracking controller in this paper
is to implement a mapping between the known
information (e.g., the desired path information
for the path planner and the measurable sensory
information of the current robot position) and
the velocity commands designed to achieve the
robot’s task. The controller design problem can
be described as: given the desired robot config-
uration qd(t) = [qd1(t), q

d
2(t), · · · , qdF (t)]T in F -

D, design a control law for the velocity v(t) =
[v1(t), v2(t), · · · , vF (t)]T , which drive the robot to
move, such that the actual robot position q(t) will
precisely track the desired robot position qd(t).

Inspired by the dynamic characteristics of the bio-
logical shunting model, a novel tracking controller
for robots is proposed using a set of shunting
equations. In the proposed tracking control, the
real-time velocity commands are obtained by

dvi
dt

=−Avvi + (Bv − vi)[ei]+

−(Dv + vi)[ei]−, (5)

where vi, i = 1, 2, · · · , F are the velocity com-
mands for the robot. For a point mobile robot
in a 3D Cartesian workspace, F = 3, and v(t) =
[vx, vy, vz]T are the velocity commands in the X,
Y and Z directions. The control input is from the
tracking error ei, which is defined as ei = qdi − qi.
The nonlinear function [a]+ and [a]+ are defined
as the same as in Eq. (2).

2.4 Stability Analysis of Shunting Neural Network

In the shunting model in (2), the neural activity
ξi increases at a rate of (B − ξi)S+

i , which is
not only proportional to the excitatory input S+

i ,
but also proportional to an auto gain control
term B − ξi. Thus, with an equal amount of
input S+

i , the closer the values of ξi and B are,
the slower ξi increases. When the activity xi is
below B, the excitatory term is positive causing
an increase in the neural activity. If ξi is equal

to B, the excitatory term becomes zero and ξi
will no longer increase no matter how strong the
excitatory input is. In case the activity ξi exceeds
B, B − ξi becomes negative and the shunting
term pulls ξi back to B. Therefore, ξi is forced
to stay below B, the upper bound of the neural
activity. Similarly, the inhibitory term forces the
neural activity stay above the lower bound −D.
Therefore, once the activity goes into the finite
region [−D,B], it is guaranteed that the neural
activity will stay in this region for any value of
the total excitatory and inhibitory inputs.

The stability and convergence of the proposed
shunting neural network model can also be rig-
orously proved using a Lyapunov stability the-
ory. Introducing the new variables, yi = ξi − B,
by variable substitutions the proposed shunting
model can be written into Grossberg’s general
form (Grossberg, 1988)

dyi
dt

= ai(yi)
(
bi(yi)−

N∑
j=1

cijdj(yj)
)
. (6)

It can be proved that the proposed shunting
model satisfies all the three stability conditions
of Grossberg’s general form in (6. Therefore, the
proposed neural network system is stable. The
dynamics of the neural network is guaranteed to
converge to an equilibrium state of the system.

3. SIMULATION STUDIES

Virtual reality environments have been used for
various applications. In this paper, the virtual
reality modeling language (VRML) is used to im-
plement the proposed real-time collision-free path
planning and tracking control algorithms for mo-
bile robots and manipulation robots. Simulation
in several computer-synthesized virtual environ-
ments further demonstrates the advantages of the
proposed approach with encouraging experimen-
tal results.

3.1 A Point Robot to Reach a Target in 3D

The proposed model is first applied to the obstacle
avoidance problem for a 3D U-shaped obstacles.
Potential field based methods and other strictly
local avoidance schemes cannot deal with this type
of deadlock problems (Muñiz et al., 1995). The
3D U-shaped obstacles are shown in Fig. 2 by
semi-transparent walls (a box with one side open).
The neural network has 30×30×30 topologically
organized neurons, where all the neural activities
are initialized to zero. The model parameters are
chosen as: A = 10 and B = D = 1 for the
shunting equation; µ = 1 and r0 = 2 for the lateral



connections; and E = 100 for the external inputs.
The initial robot position is at (15,15,15) that is
inside box, while the target is at (12,12,25) that is
on opposite side of the open side. The generated
robot path is shown in Fig. 2 (two panels are
viewed from two different points) by dark balls,
where the robot has to first move away from
the target, then pass through the 3D U-shaped
obstacles from the open side, and eventually reach
the target position. It shows that the generated
robot path is a continuous, smooth route from
the starting position to the target with obstacle
avoidance.

Fig. 2. Path planning of a point robot to reach a
target in 3D.

3.2 A Robot Manipulator with Multiple Targets

The proposed model is capable of generating real-
time path with multiple targets as well, where
the task can be designed as either catching the
closest target or catching all the targets. In the
latter case, a target should disappear from the
state space once it is caught. The proposed model
is applied a 2-link planar robot with two targets
in the state space of the neural network. The
base of the first link is fixed at the center (0,0)
of the Cartesian workspace. Initially the tip of
the second link is at position (1.366,1.366) in
the workspace (Fig. 3A). The task is to move
the tip of the second link to position (1.366,-
1.366) in the workspace (Fig. 3A). Thus there
are two target configurations in the joint space,
(330o, 330o), and (300o, 30o) (shown in Fig. 3B by
hollow triangles). There are three obstacles in the
workspace (shown in Fig. 3A by solid circles), and
the corresponding obstacles in the configuration
joint space are shown in Fig. 3B by solid squares.
The task in the robot joint space is to generate a
trajectory from the initial robot configuration to
the closest target configuration.

The neural network has 60 × 60 topologically or-
ganized neurons, which represents the joint angles
from 0o to 354o with a step of 6o. Since geo-
metrically 360o = 0o, the neuron at (0,0) is an
immediate neighboring neuron of the neuron at
(59,59) or (0,59) in the state space, and likewise.
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Fig. 3. Path planning of a 2-link planner robot
with two target configurations. A: the robot
performance in the workspace using VRML;
B: the trajectory in the joint space.

The model parameters are chosen as the same as
in previous case, i.e., A = 10, B = D = 1, µ = 1
and r0 = 2. The dynamic robot performance in
Cartesian workspace are shown in Fig. 3A imple-
mented by VRML. The path in joint space are
shown in Fig. 3B by solid circles. It shows that
the robot travels a smooth, continuous, collision-
free route in both the workspace and the joint
space, and reaches the closest target, Target 1.
When there is no obstacle in the workspace, the
robot reaches the closest target, Target 2 instead
of Target 1.

3.3 A Mobile Robot to Track a Moving Target

The proposed model is then applied to a real-time
trajectory generation problem for a robot to track
a moving target. The neural network assumes
30 × 30 neuron structure with the same model
parameters as in previous cases, i.e., A = 10,
B = D = 1, µ = 1 and r0 = 2. In a 2-D
workspace without any obstacles, the traveling
route of the target is shown in Fig. 4A as indicated
by hollow triangles, with an initial position at
(X,Y )=(5,5). The target moves at a speed of
25 block/min (it is convenient to assume that
the space and time units are block and minute,
respectively), and stops at (25,25) after it arrives
there. Note that the proposed neural network
responds to the real-time location of the targets
and obstacles. No prior knowledge of the varying
environment is needed. The robot starts to move
from position (0,0) at a speed of 10 block/min.
The generated trajectory of the robot is shown
in Fig. 4A by solid circles. In the virtual reality
environment, the activity landscapes of the neural
network at a time instant during the motion
are shown in Fig. 4B, where the peak location
in the activity landscape is the current target
location due to the very large external input
parameter E from the target. It shows that after
the target moving ahead, there is a long tail
following the target pick, which results from the
natural decay of neural activity. Therefore, the
activity landscape not only indicate the current
target and obstacle locations, but also has some



memory of the changing environment, which is
determined by the passive decay parameter A in
Eq. (3).

The parameters for the tracking controller is cho-
sen as: Av = 3 and Bv = Dv = 1. The gen-
erated velocity in X− and Y− directions are
shown in Fig. 4C and 4D, respectively. It shows
that the proposed simple tracking controller is
capable of generating smooth, continuous velocity
commands. The actual robot navigation path is
almost overlapped with the desired robot path
generated by the neural network path planner
shown in Fig. 4A.
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Fig. 4. Path planning and tracking control of a
mobile robot to track a moving target. A:
the dynamic trajectories of the target (hollow
triangles) and the robot (solid circles); B: the
activity landscapes at a time point in virtual
reality environment; C and D: the generated
velocity control commands in X− and Y−
directions, respectively.

4. CONCLUSION

In this paper, a novel biologically inspired ap-
proach to dynamic path planning and tracking
control of robots is proposed. The developed ap-
proach is capable of planning real-time collision-
free path, and generating real-time smooth ve-
locity tracking commands for a mobile or ma-
nipulation robot in a nonstationary environment.
The robot can precisely travel along the planned
robot path. Some points are worth to mention
about the proposed neural network approach: (1)
the proposed model does not very sensitive to

model parameters. There are only very few model
parameters, which can be chosen in a very wide
arrange. Only two model parameters A and µ are
important factors; (2) the model algorithm is com-
putationally efficient. The robot path is is gen-
erated without explicitly searching over the free
workspace or the collision paths, without explicitly
optimizing any global cost functions, without any
prior knowledge of the dynamic environment, and
without any learning procedures; (3) This model
is biologically plausible. The neural activity is
a continuous analog signal and has both upper
and lower bounds. In addition, the continuous
activity prevents the possible oscillations related
to parallel dynamics of discrete neurons (Glasius
et al., 1995).
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