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Abstract: Real-time collision-free path planning and tracking control of a nonholo-
nomic mobile robot in a dynamic environment is investigated using a neural dynamics
based approach. The real-time robot path is generated through a dynamic neural
activity landscape of a topologically organized neural network that represents the
changing environment. The dynamics of each neuron is characterized by an additive
neural dynamics model. The real-time tracking velocities are generated by a novel
non-time based controller, which is based on the conventional event based control
technique and an additive model. The effectiveness and efficiency of this approach are
demonstrated through simulation and comparison studies. Copyright c©2002 IFAC
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1. INTRODUCTION

Real-time collision-free path planning and track-
ing control of mobile robots are fundamentally im-
portant but very difficult issues in robotics, partic-
ularly in a nonstationary environment. Many pre-
vious works deal with the path planning and the
tracking control separately. (e.g. Zelinsky, 1994;
Jiang et al., 1997; Podsedkowski, 1998; Svestka
and Overmars, 1997; Xi, 1993; Kang et al., 1999).
There are many studies on robot path planning
using various approaches. Most of the previous
models for path planning deal with static environ-
ment only and are computationally complicated.
A local collision checking procedure is required
at each step of the robot movement, e.g., to de-
tect local collisions, Zelinsky (1994) model uses a
hierarchical collision testing procedure based on
“distance space bubbles”.

� This work was partially supported by Natural Sciences
and Engineering Research Council (NSERC) and Materials
and Manufacturing Ontario (MMO) of Canada.

Most previous models for nonholonomic mobile
robots use two-step approaches that first compute
a collision-free holonomic path, and then trans-
form this path by a sequence of feasible ones. The
quality of the solution and the computational cost
of the second step depend on the shape of the
holonomic path, e.g., Jiang et al. (1997) proposed
a time-optimal path planning method for a robot
with kinematic constraints, which consists of three
stages: planning for a point mobile robot; planning
for a mobile robot; and optimizing cost functions
for a time-optimal solution. Podsedkowski (1998)
proposed a path planner for nonholonomic mobile
robot using a searching algorithm, which requires
a local collision checking procedure and the mini-
mization of cost functions.

There are some learning based path planning
models, e.g., Svestka and Overmars (1997) pro-
posed a probabilistic learning approach to path
planning of mobile robots, which involves a learn-
ing phase and a query phase and uses a local
method to compute the feasible paths for the
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robots. However, the learning procedures require
extra computational cost, and the planned path
is not optimal at its initial learning phase.

Effective robot control design is a fundamentally
important issue in robotics. There are many stud-
ies on control of robotic systems. Most of the
previous control approaches are time based, where
the time plays an important role of action refer-
ence in both desired trajectory information and
measurable system feedback. A typical conven-
tional time-based control system is shown in Fig.
1A, where yd(t) is the desired robot trajectory,
y(t) is the actual robot position, and e(t) is the
tracking error.

Xi (1993) proposed a non-time based control
method, which produces a better solution to some
control problems. The basic idea of non-time
based control design is to introduce the concept
of an action reference parameter other than time,
which is directly relevant to the sensory measure-
ment and the event (thus it is also called event-
based control). A typical non-time based control
system is shown in Fig. 1B, where s is the action
reference parameter, yd(s) and e(s) are the desired
robot path and the tracking error as a functions
of s. There are many successful theoretical and
practical studies of non-time based controllers,
such as robot motion control, multi-robot coordi-
nation, force and impact control, robotic teleop-
eration, manufacturing automation, and Internet
based teleoperation. Recently, the concept of non-
time based control design is applied to tracking
control of nonholonomic mobile robots (Kang et
al., 1999), which can track an arbitrary twice dif-
ferentiable robot path. In addition, the construc-
tion of the control system has integrated planning
capability, thus the planning and control become
a closed-loop system. However, it can deal with
small tracking errors only (Kang et al., 1999).
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Fig. 1. Schematic diagrams of robot control sys-
tem. A: conventional control; B: non-time
based control.

In this paper, a novel biologically inspired neu-
ral network approach is proposed for real-time
collision-free path planning and tracking control
of a nonholonomic mobile robot in a nonstation-
ary environment. The real-time collision-free path

planner for nonholonomic mobile robots is based
on the neural network model for path planning
of a point mobile robot (Yang and Meng, 2001).
The varying environment is represented by the
dynamic activity landscape of the neural net-
work. The real-time robot path is directly planned
through the dynamic activity landscape of the
neural network without any prior knowledge of
the changing environment, without any explicit
searching procedures, without any explicit opti-
mizations of global cost functions, without any
learning procedures, and without any local col-
lision checking procedures at each step of the
robot movement. The computational complex-
ity linearly depends on the neural network size.
Therefore the model algorithm is computation-
ally efficient. Inspired by the features of neural
dynamics in a shunting model, a novel non-time
based tracking controller is proposed for tracking
control of a mobile robot. The proposed control
algorithm can generate a smooth and continuous
velocity control commands, which removes the
small tracking error limitation in the conventional
non-time based controllers. The proposed path
planner generates the next robot location based
on the current environment that includes the tar-
get, the robot and obstacles. The proposed track-
ing controller generates real-time velocity com-
mands driving the robot to follow the generated
path. The current robot position that results from
the tracking commands is used for the real-time
collision-free path planning.

2. PATH PLANNING AND TRACKING
CONTROL PROBLEM

The location of a mobile robot in the 2D Carte-
sian workspace W can be uniquely determined by
the spatial position (x, y) of the base point and
the orientation angle θ with respect to the base
(see Fig. 2A, where φ is the steering angle). A
robot location in W, also called a robot configu-
ration, uniquely corresponds to a point (x, y, θ) in
the configuration space C. Under the conditions
of pure rolling and non-slipping, the kinematic
constraint of a nonholonomic mobile robot is de-
scribed as

−ẋ sin θ + ẏ cos θ = 0. (1)

The kinematic constraint can be parameterized by
time t. Given the robot linear velocity v and the
angular velocity ω of the robot, the robot velocity
is given by

ẋ = v sin θ, ẏ = v cos θ, θ̇ = ω = vK, (2)

where K = ω/v is the curvature of the curve fol-
lowed by the robot. The velocity v and the curva-
ture K (the control variables) are limited to vmax



andKmax, respectively, i.e., |K| ≤ Kmax and |v| ≤
vmax. Thus the control space may be denoted as
Cartesian product of two intervals, [−vmax, vmax]
× [−Kmax,Kmax]. The minimum turning radius R
is given by R = 1/Kmax. When planning the robot
path, the control variables v and K should be dis-
cretized (Podsedkowski, 1998). For a given robot
configuration, for simplicity there are at most six
possible next configurations by setting the v and
K to the six discretized values: {−vmax, vmax} ×
{−Kmax, 0,Kmax}. Such a discretization is used
to generate the robot movement (one step). After
the integration over the time interval of one step,
the next robot position is obtained. Fig. 2B shows
an example of the possible next robot configura-
tions of a given robot configuration. In realistic
robot path planning, the length of one step of
robot movement is significantly smaller, so the
next robot configuration partially overlaps them-
selves. Note that an obstacle in W results in that
several robot configurations in C are not allowed
(“forbidden”, called obstacle configurations in C).
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Fig. 2. Schematic diagram of a nonholonomic
mobile robot. A: the kinematics of a mobile
robot; B: the six possible next robot location
of a given location.

A nonholonomic mobile robot can be controlled
by two control commands: the linear velocity u1

and the angular velocity u2 (Kang & et al., 1999).
The tracking control design in this paper is to
implement a mapping between the known infor-
mation (e.g., the desired path information and
the measurable system output) and the velocity
commands designed to achieve the robot’s task.
The controller design problem can be described
as: given the desired robot path xd(s), yd(s), θd(s)
and φd(s), design a control law for the linear
velocity u1(t) and angular velocity u2(t), which
drive the robot to move, such that the actual robot
position x(s), y(s), θ(s) and φ(s) will precisely
track the desired robot path xd(s), yd(s), θd(s)
and φd(s). Note that the planned robot path by
most models is discretized.

3. THE PROPOSED MODEL

In this section, the biological inspiration from a
biological membrane model to a additive dynam-
ics model is first outlined. Then the proposed
neural dynamics based approach to real-time nav-
igation of mobile robot in a dynamic environment

is presented, including the neural network model
for path planning and the neural dynamics based
tracking controller are presented.

3.1 Biological Inspiration

Hodgkin and Huxley (1952) proposed a computa-
tional model for a patch of membrane in a biologi-
cal neural system using electrical circuit elements.
In this model, the dynamics of voltage across the
membrane, Vm, is described using state equation
technique as

Cm
dVm

dt
=−(Ep + Vm)gp + (ENa − Vm)gNa

−(EK + Vm)gK , (3)

where Cm is the membrane capacitance, EK , ENa

and Ep are the Nernst potentials (saturation po-
tentials) for potassium ions, sodium ions and the
passive leak current in the membrane, respec-
tively. Parameters gK , gNa and gp represent the
conductances of potassium, sodium and passive
channels, respectively. This model provided the
foundation of the shunting model and led to a lot
of model variations and applications.

By setting Cm = 1 and substituting ξi = Ep +
Vm, A = gp, B = ENa + Ep,D = Ek − Ep, S

e
i =

gNa and Si
i = gK in eqn (3), a shunting equation

is obtained (Yang and Meng, 2001)

dξi

dt
=−Aξi + (B − ξi)Se

i (t)

−(D + ξi)Si
i(t), (4)

where ξi is the neural activity (membrane poten-
tial) of the ith neuron, A, B and D are non-
negative constants representing the passive decay
rate, the upper and lower bounds of the neural
activity, respectively. Variables Se

i and Si
i are the

excitatory and inhibitory inputs to the neuron.
This shunting model was first proposed by Gross-
berg (1988) to understand the real-time adaptive
behavior of individuals to complex and dynamic
environmental contingencies, and has applications
in various areas (Yang and Meng, 2001).

In the shunting model in eqn (4), if the excitatory
and inhibitory inputs are lumped together and the
auto gain control terms are removed, then eqn (4)
can be written into a simpler form,

dxi

dt
= −Axi + Si(t) (5)

This is an additive equation (Grossberg, 1988),
where Si(t) represents the total input to the i-th
neuron from the external and lateral connections.
This additive model is widely applied to a lot of
areas such as vision, associative pattern learning
and pattern recognition (Grossberg, 1988).



3.2 Neural Network for Path Planning

The neural network architecture of the proposed
model is a discrete topographically organized
map, which is expressed in a 3D state space S,
where two represent the spatial position of the
robot base point in the 2D Cartesian workspace
and one represents the orientation of the robot
with respect to the base point, i.e., the state space
S is the configuration space C of the mobile robot.
The location of the ith neuron at the grid in S,
denoted by a vector pi ∈ R3, uniquely represents
a configuration in C or a location in W of the
robot. In the proposed model, the excitatory input
results from the target and its neighboring neu-
rons, while the inhibitory input results from the
obstacles only. The dynamics of the ith neuron in
the neural network is characterized by a shunting
equation,

dξi

dt
= −Aξi +

k∑

j=1

wij [ξj ]+ + Ii, (6)

where ξi is the neural activity of the ith neu-
ron, which has a continuous value (Yang and
Meng, 2001). The term

∑k
j=1 wij [ξj ]+ is the ex-

citatory input. The external input Ii to the ith
neuron is defined as Ii = E, if there is a target;
Ii = −E, if there is an obstacle; Ii = 0, otherwise,
where E � B is a very large positive constant.
Function [a]+ is a linear-above-threshold function
defined as [a]+ = max{a, 0}. The lateral connec-
tion weight, wij , are defined a function of the
robot orientation θ and the Euclidean distance,
dij = |pi − pj |, between positions pj and pi in
S, wij = f(dij), if the ith and jth neurons are
neighboring; wij = 0, otherwise, where function
f(dij) is a monotonically decreasing function, e.g.,
f(dij) = µ/dij , if 0 < dij < r0; f(dij) = 0,
otherwise, where µ and r0 are positive constants.
Therefore each neuron has only local lateral con-
nections in a small region [0, r0]. It is obvious that
the lateral neural connection weight is symmetric,
wij = wji. In the proposed model, the neighboring
neurons is defined as all neurons satisfying the
kinematic constraint in eqn (2) and whose dis-
tance to the ith neuron is less than r0. Parameter
k is the number of all the neighboring neurons of
the ith neuron. Therefore, due to the kinematic
constraint, the ith neuron has at most six neigh-
boring neurons, k ≤ 6 (see Fig. 2B).

The proposed neural network characterized by eqn
(6) guarantees that only the positive neural activ-
ity can propagate to the whole state space. The
negative activity stays locally only. Therefore, the
target globally influences the whole state space to
attract the robot, while the obstacles have only
local effect to avoid collisions. The activity prop-
agation is directionally selective, which is subject

to the kinematic constraint in eqn (2). The lo-
cations of the target and obstacles may vary with
time. The activity landscape of the neural network
dynamically changes due to the varying external
inputs from the targets and obstacles and the
internal activity propagation among neurons. The
robot path is planned from the dynamic activity
landscape by a steepest gradient ascent rule. For
a given present robot location in S (i.e., a location
in W or a configuration in C), denoted by pp,
the next robot location pn (also called “command
location”) is obtained by

pn ⇐ ξpn
= max{ξj , j = 1, 2, · · · , k}, (7)

where k is the number of neighboring neurons of
the ppth neuron, i.e., all the possible next loca-
tions of the present location pp that are subject
to the nonholonomic constraint. After the present
location reaches its next location, the next loca-
tion becomes a new present location. The current
robot location adaptively changes according to the
varying environment.

3.3 Neural Dynamics based Tracking Controller

By using the state-to-reference projection, the de-
sired robot path can be represented as a function
of the action reference parameter s, xd(s) and
yd(s). The measurable robot position is also rep-
resented by s as x(s) and y(s). Thus the tracking
error can be obtained as ex = x− xd, ey = y− yd

and eθ = θ− θd, which is also a function of s. The
velocity commands of a conventional controller is
defined as (Kang & et al., 1999)

u2 = (u1(a1e1 + a2e2 + a3e3)− β1) /β2, (8)

where

e1 =−ex sin θd + ey cos θd, (9)

e2 = sin eθ, (10)

e3 =
1
l
cos eθtanφ, (11)

β1 =−1
l
sin eθ tanφ tanφ, (12)

β2 =
1
l
cos eθ secφ secφ, (13)

where a1, a2 and a3 are control parameters.

In the proposed non-time based tracking control
design, since the oscillation results from the sud-
den change of tracking error eθ and tanφ, control
components from two additive models are used
to replace the eθ and tanφ that directly cause
the oscillations. Thus, the proposed novel neural
dynamics based controller is given as the same as



eqn (8) with a different control input e2, e3, β1

and β2, which are defined as,

e2 = sin(k1v1), (14)

e3 =
1
l
k2v2 cos(k1v1), (15)

β1 = −1
l
k2v

2
2 sin(k1v1), (16)

β2 =
cos(k1v1)
l cos2 φ

, (17)

dv1

dt
=−A1v1 + eθ (18)

dv2

dt
=−A2v2 + tan phi (19)

where k1 and k2 are positive parameters. The new
control variables v1 and v2 are characterized by
two additive equations. It can be easily proved
that the proposed non-time based control system
is stable. The tracking error is guaranteed to
converge to zero.

4. SIMULATION STUDIES

In this section, the neural network for real-time
path planning is applied to a dynamic environ-
ment with sudden changes. Then, the neural dy-
namics based controller is applied to track a sim-
ple discretized path. After that, the proposed path
planning and tracking control approach is applied
to a complicated house-like environment.

4.1 Path Planning with Sudden Changes

The proposed neural network for robot path plan-
ning can perform properly in an arbitrarily dy-
namic environment, even with sudden environ-
mental changes, such as suddenly adding or re-
moving obstacles or targets. A case with sudden
placement of obstacles in front of a nonholonomic
mobile robot is studied. The neural network has
50 × 30 × 24 neurons, and the model parameters
are chosen as: A = 10, µ = 1, r0 = 2 and E = 100.
The initial and target robot locations are at lo-
cations (5,5,6) and (40,25,0) in W, respectively.
First, the planned robot path without any obsta-
cles in W is shown in Fig. 3A. In the second case
under the same initial condition, when the robot
reaches (15,22,2) on the way toward the target, a
set of V-shaped obstacles shown in Fig. 3B with
dark sold squares are suddenly placed in front
of the robot. The real-time robot path is shown
in Fig. 3B, where the robot first has to move
away from the target, then passes around these
obstacles, and finally reaches the target without
any collisions. satisfying the kinematic constraint.
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Fig. 3. Real-time path planning of a mobile robot
with sudden environmental changes. A: the
planned path with no obstacles; B: the real-
time path with V-shaped obstacles suddenly
placed in front of the robot.

4.2 Tracking Control with a Simple Discretized
Path

To demonstrate the effectiveness of the proposed
neural dynamics based tracking controller, appli-
cation to a simple discretized path is conducted
in Fig. 4A. The desired robot path is shown in
Fig. 4, where the starting and target locations are
(2,2) and (25,25), respectively. The desired linear
and angular velocities are chosen as vd = 1 and
ud = 0, respectively. The model parameters are
chosen as: A1 = 10, k1 = 0.5, A2 = 10, k2 = 0.5,
a1 = −5, a2 = −9, a3 = −5 and l = 1. The
generated angular velocity command u2 using the
proposed controller is shown in Fig. 4B, while the
generated angular velocity u2 using a conventional
controller is shown in Fig. 4C. It is obvious that
the control command by the proposed controller
smooth, while the command by the conventional
controller suffers from sharp changes at the turn-
ing positions.

4.3 Planning and Tracking in a House-like
Environment

The proposed model is then applied to a com-
plex house-like environment, where there are sev-
eral dead-lock situations that the robot may be
trapped in. The neural network has 90 × 90 ×
24 neurons, and the parameters are chosen as:
A = 10, µ = 1, r0 = 2 and E = 100. The
parameters for tracking control are chosen as the
same as in previous case. In case that Door L is
opened, the planned robot path is shown in Fig.
5A, where the robot moves to the target along
the shortest path. When Door L is closed, the
planning path is shown in Fig. 5B, where the
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Fig. 4. Tracking control with a simple discretized
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tional non-time based controller;
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Fig. 5. Path planning and tracking control of a
mobile robot in a house-like environment.
A: the planned robot path when door L is
opened; B: the path when door L is closed;
C: the generated angular velocity in case A
at the initial phase.

robot has to travel a much longer path to reach
the target. Note there are no learning procedures.
The robot is capable of reaching the target along
the shortest path without any collisions, without
violating the kinematic constraint, and without
being trapped in any deadlock situations. Fig. 5C
shows the generated angular velocity command
when Door L is open during the initial period.

5. CONCLUSION

In this paper, a novel neural dynamics inspired
approach to real-time collision-free path planning
and tracking control of a nonholonomic mobile
robot is proposed. The developed approach is
capable of planning real-time collision-free path,
and generating real-time smooth velocity tracking
commands for a nonholonomic mobile robot in a
nonstationary environment. The mobile robot can
precisely travel along the planned robot path.
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