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Abstract: Application of optimization based techniques in con troland operational
optimization schemes of semi-batch batc h reaction processes allow the rigorous
inclusion of economic as w ell as safety aspects. For a restricted class of reaction
processes, the on-line optimization problem can be reduced to optimization on a
short prediction horizon requiring only crude process models. This paper extends
an earlier approach of Helbig et al. (1998) of simultaneous temperature control and
feed rate optimization in the framework of model predictive con trol (MPC). Based on
simple calorimetric process models, the given MPC formulation is readily applicable in
typical industrial multi-product /multi-purpose plants. The major capability of driving
the process along constraints is illustrated in a simulation study of an isothermal semi-
batc h reaction process with a single reaction.
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1. INTRODUCTION

Batch and semi-batch reaction processes are of
high importance in the manufacturing of fine
chemicals, pharmaceuticals, specialties, polymers
and other high value products. Industrial batc h
production ranges from flexible multi-product
plants for small-volume products up to large
dedicated-equipment plants for certain polymers.
Being intrinsically dynamic, batc hreaction pro-
cesses offer a wide application area for dynamic
optimization techniques (Bonvin et al., 2001).

How ever, the nmber of industrial applications of
rigorous model based optimization in batch reac-
tor control and operation is still very limited. The
typical requirement to pro vide a process model
capable of predicting process dynamics overthe
en tire batc h is a major reason for this obseration.
Especially in multi-product/multi-purpose plants
the deriv ationof detailed ph ysico-c hemicaleac-
tion models for each of the products can not be
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afforded. Furthermore, only simple measurements
like temperatures and pressures rather than com-
ponent concentrations are available on-line, defin-
ing a typical industrial “minimal process kno wl-
edge situation”.

Within this work, an on-line optimization scheme
specifically tailored to this situation is presented,
which treats simultaneous temperature con trol
and on-line feed rate optimization for semi-batch
single reaction processes in the framework of
Model Predictive Control (MPC).

2. PRINCIPLE OF OPTIMIZING MPC
SCHEME

The basic principle of calorimetric MPC schemes
for the optimization of semi-batch reaction pro-
cesses is to use available degrees of freedom on the
process (i.e. the feed rate) in order to reduce the
batc h time while similtaneously solving a classi-
cal temperature control problem. For a restricted
class of reactions this approach leads to optimal
operation of batch processes without the necessity



to accurately predict process behavior to the end
of the batch. The underlying transformation of an
endpoint-optimization problem (”minimize batch
time”) into a local optimization problem naturally
transforms the optimization task into a problem,
interpreted by Helbig et al. (2000) as a specific
form of so called direct optimization schemes for
operational optimization of general transient pro-
cesses.

The transformation of global into local optimiza-
tion problems is obviously not possible in all cases.
Specifically, the transformation of batch endpoint
constraints into local MPC constraints is generally
infeasible. An industrial relevant process class,
however, exists, for which the overall transfor-
mation is straightforward. This class comprises
isothermal semi-batch reaction processes with sin-
gle reactions and without endpoint constraints.
The task is to drive this single reaction to a certain
degree of reactant conversions which defines the
end of the batch.

As already shown in a case study of a two-phase
polymerization reactor (Helbig et al., 1998), sim-
ple process models based on the principles of reac-
tion calorimetry (Schuler and Schmidt, 1992) are
sufficient in order to solve the problem. Calori-
metric state estimation techniques can be applied
in order to permanently adapt crude models to
match current process dynamics and thus allowing
at least short horizon predictions, even in cases of
large structural and parametric uncertainties.

Design of an optimizing MPC scheme consists of
three crucial elements: First, an appropriate cost
function has to be chosen which drives the process
along different active constraints. For the above
type of reaction process, this can be achieved by
extending the classical MPC controller objective
function for temperature control with an addi-
tional term maximizing the feed rate. Second, a
suitable calorimetric estimator has to be derived
in order to infer unknown inputs, parameters and
states from available measurements. Input estima-
tion in (linear) energy balances is the preferred
structure, leading to equations like

dT

in which the unknown input ) g may be estimated
on the basis of simple trend models:

dQr
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Finally, prediction models for the estimated vari-
ables (e.g. @gr) have to be formulated. The ap-
plication of the simple estimation model may be
restricted by controllability issues in cases where
the estimated variable represents important pro-
cess variables depending on the manipulated vari-

ables. Therefore a specific prediction model differ-
ing from the estimation model is often inevitable.

The example below contains several types of trend
models and uncertainty predictions for an appli-
cation case, in which the prediction model covers
both reaction and cooling system dynamics.

3. BENCHMARK SEMI-BATCH REACTION
PROCESS

The benchmark control and optimization problem
described in the sequel has been derived at Bayer
AG, Leverkusen. For secrecy reasons no real prod-
uct, plant, and production data may be revealed.
Therefore, an ”anonymous” semi-batch reaction
process model is presented which contains control
relevant aspects of a number of existing produc-
tion processes using a similar type of equipment.
Major characteristics are the inclusion of a cooling
system model and a safety related path constraint
into the optimization problem. Figure 1 shows a
schematic of the reactor with the main instrumen-
tation. A full model description of the benchmark
process along with detailed information about the
expected uncertainties and ranges for parameter
variations is given elsewhere (Cruse et al., 2001).

3.1 Process description

The benchmark process describes a simple reac-
tion system A + B — C + D where A and B
are the reactants, C' is the desired product and
D is a by-product. The exothermic liquid-phase
reaction is carried out within a solvent S and
requires a catalytic component cat. The reactor
is initially filled with a fixed amount of A4, S, and
cat at ambient temperature and pressure. After
the initial reactor content has been heated to the
required reaction temperature, feeding of a B-S
mixture starts and the reaction phase begins. For
this control study, the end of the batch is defined
by a specified conversion of B.

The reactor is coupled to a jacket in which a
fixed amount of cooling medium is recirculated.
Temperature control of the reactor content can
be achieved by manipulating the temperature of
the recirculating medium. For this purpose, either
hot or cold medium may be inserted into the
loop through equal percentage control valves. A
similar amount to that inserted is automatically
withdrawn from the recycle loop.

An additional safety scenario is included, which
covers a cooling system breakdown by constrain-
ing the maximum temperature reached by an adi-
abatic conversion of the reactor content (Helbig et
al., 1998).



Fig. 1. Reactor schematic.

3.2 Control and optimization task

In this benchmark problem three operational
phases can be distinguished: (1) the heating
phase, (2) the reactant feeding phase, and (3) a
final reaction phase lasting until the conversion is
reached. Phases (2) and (3) together are referred
to as reaction phase. The reactor is initially filled
with 8100 kg of component A, 19700 kg solvent
and 35 kg catalyst. Temperatures at the beginning
of phase (1) are assumed to be ambient temper-
ature, i.e 25°C for the reactor temperature T,
the jacket inlet temperature Ty;, and the jacket
outlet temperature 7y ,.

The control and optimization system utilizes the
split range variable C.,, and the feed rate M t as
manipulated variables. The first task is to heat the
initial reactor content from ambient temperature
to the required reaction temperature of 70 °C and
to tightly keep temperature at this value during
the subsequent reaction phase. Feeding may only
start after the reaction temperature has been
reached. A total amount of 5000 kg has to be fed
during the reaction phase. At the beginning of the
reactant feeding phase the feed rate is constrained
by a linear increase of the feed rate starting from
100 kg/h to 1000 kg/h within half an hour. The
batch ends when B has been converted up to a
remaining amount of 50 kg.

A suitable feeding strategy has to be determined
which allows tight temperature control during
the reaction and which keeps the adiabatic end
temperature 7% below 85 °C (path constraint).
The optimization task is to minimize the duration
of the reaction phase.

3.3 Nominal optimal solution

Figure 2 shows results obtained from dynamic
optimization of the full model using the software

package DYNOPT (1999), jointly developed by
Lehrstuhl fiir Prozesstechnik and Bayer AG.

In order to illustrate how changes of the op-
erational region of a manipulated variable can
influence the sequence of active constraints and
thus the structure of the solution, two cases with
different upper limits of the allowable feed rate
have been treated. In Case I, only 1000 kg/h are
allowed. As can be seen from the left part of
Figure 2, the capacity of the cooling system is
not limiting the duration of the reaction phase in
this case. The active constraint during reaction
switches from feed rate to adiabatic maximum
temperature. In Case II, the maximum feed rate
is 2000 kg/h. This changes the solution structure,
since the lower cooling constraint becomes active
shortly after the beginning of the feeding phase.
In case II the optimal feed rate is no longer deter-
mined by its constraints as proposed by Bonvin
et al., (2001). This problem often arises in multi-
product/multi-purpose plants due to limitations
in the utility systems even if the structure of the
reaction system does not change and no conflict-
ing influences of the feed on the reaction system
is present. Therefore, from our perspective on-
line optimization is the method of choice in most
industrial applications.

3.4 Benchmark problem

An on-line control system has to be designed for
cases I and II which is capable of

e quickly heating up the reactor content with-
out temperature overshoot,

e keeping temperature deviations from set-
point smaller than 1 °C during reaction, and

e minimizing reaction time by adding the feed
as quickly as possible, obeying the con-
straints on manipulated variables and T,*".

The controller may use the following on-line mea-
surements only: Reactor temperature T (T101),
jacket inlet temperature Ty ; (T102), jacket outlet
temperature Ty, (T103), temperatures of cold
(T304) and hot (T303) medium, current valve
positions (G302) and (G301), and the current feed
rate (F201).

With respect to the available process knowledge,
three different scenarios should be treated. First,
a nominal predictive controller should be designed
which may exploit the full model (1). Second,
robustness tests should be carried out introduc-
ing both model plant mismatch and measurement
errors (2). Finally, a controller should be designed
assuming reaction kinetics to be unknown. The
latter scenario defines a typical ”minimum knowl-
edge” situation (3).
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4. MPC SIMULATION STUDY

In the sequel, design of an optimizing calorimet-
ric predictive controller coupled to an Extended
Kalman Filter (EKF) is discussed. The design is
intended to solve the nominal benchmark prob-
lem as well as scenarios with varying degrees of
process knowledge. The study solely focuses on
the reaction phase, since a temperature setpoint
trajectory is utilized for the initial heating phase.

4.1 EKF model

Calorimetric state estimation and prediction model
update is based on the following model applied in
an Extended Kalman Filter (EKF) with bounded
outputs according to Valliere and Bonvin, (1989):

Mass and component balances:

dMp .
= \/i
dMs Qg
- MW, - 3. 4
at  AHp A 36, ()
dMp o QR g

Energy balance for the reactor content:

dT .
MRCp,RTtR = ([QR + (Oé() + Aa) MR/MR70
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Energy balance of jacket content:
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Energy balance for the cooling/heating utility:
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. 2. Nominal optimal solution: Manipulated variables and 7T%7**. Left: Case I, Right: Case II.
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The uncertainties in the jacket heat transfer are
handled by estimating a drifting parameter Aq.
This corresponds to the assumption that the co-
efficient for the initially filled reactor is known
rather well. The complex terms in Eqn. (8) arise
due to the consideration of the valve behavior de-
scribed by equal percentage valves. Uncertainties
in these valve flows lead to a non-zero error term
AQC, which is assumed to be constant over the
prediction horizon (Eqn. 12).



4.2 MPC model

The optimization task is to minimize the dura-
tion of the reaction phase which is equal to the
minimization of the reactant feeding phase. The
following type of cost function may be applied:

N N
b= (651 Z(TRI — Tj?it)z + as Z(Cconi - 06071471)2
i=1 =1
N . .
tas Z(Mfz - Mfi—l)g —fr. (14)
i=1

It comprises four terms representing the temper-
ature control task, penalties on controller moves,
and a free customizable fourth term. In this appli-
cation the feed rate depending fourth term is eval-
uated continuously f; = —au ftt+th M¢dt. Here
tp, = N - At is the prediction horizon with At
being the sampling interval used for control and
N the number of prediction steps.

In the most streamlined version, the prediction
model for the MPC comprises all model equations
of the EKF model. If, however, the estimated vari-
able represents an important process variable with
high dependency on the manipulated variables
(i.e. the heat of reaction), a specific prediction
model structure Qp = fo(pg,...) may be pro-
posed for prediction. The initial value of the pre-
diction should match the current estimate, which
can be achieved by updating some parameter pg
or assuming a constant error term over time.

In cases with only parametric uncertainties in the
kinetic model (benchmark scenario 2), the trend
model structure is used with the algebraic reaction
kinetic model given by

fo=-Vr*xAHrKgyg
exp ( —FEAp > (Mcat - 1000>
Rges (Tr + 273.15) MW,.utVr
My - 1000 Mp-1000\ 1
( MW aVg > ( MWpgVg ) 60’
with the volume of the reactor content

L (15)
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In this approach, the full kinetic model structure
is used in order to predict the future values of the
heat of reactions, starting from the current EKF
estimate.

For scenario 3, a different approach has to be
chosen. Since the reaction is isothermal, the ma-
jor prediction aspect with respect to the heat of
reaction covers the dependency on the feed com-
ponent B. Assuming the reaction to be locally first

order with respect to B, the following alternative
(algebraic) trend model can be formulated:

Qr=ko Mg with kg = Qrurr/Mp. (16)

In this case, prediction of Q R starts at the current
EKF estimate, too.

In order to handle the safety constraint the MPC
model also contains an equation to predict the
adiabatic maximum temperature 7,5**, which is
constrained over the reaction phase.

Numerical calculations have been carried out ap-
plying the recently completed on-line version of
the DYNOPT package. Within DYNOPT-online,
f7 can be freely customized and may be extended
e.g. by soft constraints on certain variables.

4.3 Simulation results

For all simulation studies a sampling interval At of
2 minutes and a prediction horizon of 24 minutes
(N = 12) has been chosen. The weighting factors
as and ag, penalizing control moves, have been
set to zero. For the heating phase, a smooth
setpoint temperature trajectory from 25 °C to
70 °C has been applied such that the required
reaction temperature is reached after 1.5 h. At
that point, the reaction phase starts.

The results of a robustness test of the MPC are
depicted in Figures 3, where a 10 % error in the
reaction kinetic parameters has been introduced.
Results are comparable to those in the nominal
case. Similar results can be obtained if reaction
kinetics are assumed to be unknown and Eqn. (16)
is applied for prediction.

In any case, the quality of the calorimetric estima-
tion is crucial for the obtainable control results.
Since errors in the heat of reaction are integrated
in the mass balances, prediction of T,%** is also
subject to unavoidable integral errors (see Fig-
ure 4). As the constraint on T/%* is active for
a long time, feed optimization results will suffer
significantly from erroneous predictions of this
interfered process variable.

5. CONCLUSIONS

It has been shown that the proposed optimizing
adaptive calorimetric MPC scheme is capable of
solving the combined temperature control and
feed rate optimization problem of the benchmark
semi-batch reaction process. The same solution
structure with respect to active constraints as
compared to the nominal optimal solution has
been derived by the proposed model predictive
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controller. The switching structure of active con-
straints as a reaction to variations of the allowed
operational range of the manipulated variables
can easily be handled by the on-line optimizing
model predictive controller, which is of particular
interest in multi-purpose/multi-product plants.

The given controller formulation also covers the
solution for scenarios 2 and 3 of the benchmark
problem with increasing model uncertainties. Due
to lack a of space, results with respect to these
scenarios have been restricted to a robustness test
with parametric errors in the kinetic model. This
case has been selected since it matches with an
application case of the proposed MPC scheme at
Bayer AG, Leverkusen. The calorimetric MPC for
arealistic industrial reactor has been implemented
and tested in simulation and at the real plant.
Results from field tests and details of a flexible
implementation concept will be the subject of a
forthcoming communication.
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