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Abstract: Fault detection and isolation is becoming one of the most important aspects in
vehicle control system design. In order to achieve this FDI schemes, particular vehicle
subsystems integrated with a controller have been proposed.
In this paper a suitable framework is presented that utilizes a hierarchical FDI scheme in
association with a propagation digraph, representing the propagation aspects of faults, and
allows to reduce the computational effort. An example of application to a brake-by-wire
system is described. Copyright c©2002 IFAC
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1. INTRODUCTION

Failure analysis and diagnosis of large-scale systems
have received considerable attention in recent years
(Guan and Graham, 1994; Koscielny, 1995; Scat-
tolini, 2000). Fundamental issues facing the design
of a diagnostic system include what knowledge to
represent, the representation scheme and the infer-
ence strategy that perform the actual diagnosis. These
systems have evolved from the previous ones based
on heuristic knowledge of symptom-fault associations
to the more recent ones based on structure, behav-
ior and functionality of the device and subsystem to
be diagnosed (Kokawa et al., 1983; Narayanan and
Viswanadham, 1987; Padalkar et al., 1991).

In the application of knowledge based methodolo-
gies to large-scale systems, two basic model repre-
sentations can be encountered: the signed directed
digraph and the propagation digraph. While in the
signed directed digraph (Kramer and Jr., 1987) a qual-
itative model is defined by analysis of the causal re-
lationships between variables, in the propagation di-
graph (Kokawa et al., 1983; Narayanan and Viswanad-

ham, 1987) the failure or fault propagations from sub-
systems to other subsystems is described by a digraph.

A fault detection system for on-line application to
large scale plants must satisfy certain requirements
(Padalkar et al., 1991). First, it must provide guar-
anteed response times, completing the diagnosis in a
deterministic amount of time. Second, it must be able
to reason about time, because much information can
be deducted from time events. Third, it must use as
much as possible all the information available from
improving and speeding the diagnosis. The fundamen-
tal issues of how to model the system and how to
develop a diagnostic procedure arise in this contest.

Moreover, the following questions arise in developing
diagnostic systems:

• how to interpret various fault symptoms to for-
mulate the final diagnosis;

• how to deal with the occurrence at different time
instants of different symptoms for a same fault;

• how to ensure the proper diagnostic reasoning for
different set of available measuring signals;

• how to distinguish between single/multiple faults;
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• how to use redundant information to verify the
diagnosis.

In this paper, a method that makes use of fault prop-
agation digraphs to describe the propagative nature of
the faults is proposed. In this way, it is possible to
model the system at any desired level of granularity
depending on the level of details that is desired, and
on the applications.

In contrast to the conventional methods as described in
Gertler (1998), Patton et al. (1989) and Frank (1990),
this paper presents a new framework for hierarchical
fault detection and isolation (FDI) that combine qual-
itative models with quantitative models. The idea is to
use a model propagation digraph together with model-
based FDI to identify and localize the origin of the
fault with a reduced computational effort by allowing
only a limited number of fault detection units (FDUs)
to run on-line while other FDU are available under
request whenever a failure is detected. Moreover, the
propagation digraph may allow the detection and iso-
lation of other type of faults for which the available
FDI doesn’t guarantee isolation.

The paper is organized as follows. In the next sec-
tion the modelling procedure is presented; in Sec-
tion 3 the failure identification process is described.
Section 4 deals with the proposed hierarchical FDI
scheme while applied to an automotive electric brake
system.

2. MODEL FORMULATION

In this framework, some terminologies are introduced.
In the following sections, a failure will indicate a
malfunction due to a fault while a failure source repre-
sents the starting subsystem or sub-device from which
failures have propagated. A diagnostic test consists of
a residual generator plus a residual evaluation which
outputs a result indicating the normal or abnormal
operating condition of the tested device or subsystem
(Pisu et al., 2000).

System failures occur in two stages: failure sources
and failure propagations. So, a process for failure
analysis must first try to locate the failure sources, and
then determine the cause of the failure. The framework
given in this section for model-based failure analysis
can be summarized as in Fig. 1 and is divided in two
phases: a failure source location phase and a failure
cause identification phase. At each phase correspond
a failure model and a failure analysis process.

The framework is structurally divided in two com-
ponents, one representing the knowledge about fault
propagation, and the other one representing the hier-
archical model-based FDI for a certain set of faults
(sensor faults, and/or actuators faults, and/or parame-
ter, etc.). The fault propagation model may take into
account for propagations of faults that are not consid-
ered in the hierarchical FDI.
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Fig. 1. A framework for model-based failure analysis.

The failure analysis is divided in two parts, the first
is the failure source location process that utilizes the
model constituted by the hierarchical level-structured
fault propagation digraph, and the second is failure
cause identification process which utilizes a hierarchi-
cal model-based FDI (Pisu et al., 2001). The source
location process operates on individual structures of
the hierarchical fault propagation model. It backtracks
along all feasible fault propagation paths in a structure
starting from the elements that are indicated to be
faulty by the FDUs and locates the set of elements
which may be the sources of failure. This backtracking
is subject to probability constraints imposed by the
failure relations between elements and temporal con-
straint imposed by the failure relations and detection
time of the FDUs.

The plant devices, instrumentation elements, diagnos-
tic tests and fault propagation can be modelled by a
digraph composed of nodes and arcs (Guan and Gra-
ham, 1994; Kokawa et al., 1983; Scattolini, 2000).

Specifically, a node can represent:

i) a device or a failure mode of a device;
ii) a connecting element or dummy node necessary

to properly model the fault propagation;
iii) a fault detection unit (FDU) as described in Fig. 2

(Pisu et al., 2001);
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Fig. 2. Fault Detection unit.

It must be noticed that, whenever nodes are used to
modelling failures, multiple nodes are necessary to
describe a device and its possible faults. An example
is represented in Fig. 3 where a sensor is represented
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Fig. 3. Fault propagation digraph for a sensor.

by three nodes: a dummy node and two nodes repre-
senting different faults.

It is assumed that a fault detection unit is connected
to only one node. This hypothesis is not restrictive
because any other case can be treated by a proper use
of dummy nodes (Fig. 4).

System 1 System 2 System 1 System 2

Dummy node
FDU

FDU

Fig. 4. Equivalence in digraph representation.

We also assume that the set of the FDU consists of
two parts, one corresponding to the FDU available on-
line and the second to the FDU that are available on
request for further testing and fault location whenever
a failure is detected.

In general, we can represent the set of nodes V of a
system S, excluding the diagnostic tests, by

V = {v1, . . . , vn}

A fault propagation relation R on V can be defined
such that viRvj means that a fault in node vi can
propagate to node vj . This fault propagation relation
can be now used to specify a fault propagation digraph
G for S

G = (V, E)

where E is the edge set defined by

E = {eij = (vi, vj)| viRvj , i = 1..n, j = 1..n}

A column vector D associated to the FDU can be
defined as follows

D = col(di)

with di = 1 if the node vi is connected to a FDU and
di = 0 otherwise. We also define a set D(1) of nodes
connected to FDUs running online and a set D(2) of
nodes connected to FDUs available under request to
the failure analysis process.

At each direct edge eij in the graph G a weight
wij = (Pij , t

l
ij , t

u
ij) is associated, where Pij =

P (vi, vj), 0 < Pij ≤ 1 is the probability that a
failure in node vi propagates directly to node vj , and
tlij , t

u
ij are respectively the lower and upper bound of

the failure propagation time between nodes vi and vj
when i 6= j. When i = j, tlij and, tuij represent the

lower and upper bound of the failure propagation time
between nodes vi and the fault detection unit di.

To the digraph G it is possible to associate the so
called adjacency matrix A given by

A = [aij ]

where aij = 1 if eij ∈ E and aij = 0 otherwise.
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Fig. 5. A digraph example.

An example of adjacency matrix for the graph re-
ported in Fig. 5 is the following

A =





















0 0 1 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 1 0 0 0





















(1)

From the adjacency matrix A, it is possible to com-
pute (Narayanan and Viswanadham, 1987; Guan and
Graham, 1994) the reachability matrix P defined as

P = [ pij ] = (I + A)
k
= (I + A)

k−1
6= (I + A)

k−2

(2)
where k ∈ Z+, I is an identity matrix, and the
operators are Boolean.

The reachability matrix corresponding to the graph of
Fig. 5 is

P =





















1 0 1 0 1 0 0
0 1 0 0 1 1 0
0 0 1 0 1 0 0
0 0 1 1 1 0 0
0 0 0 0 1 0 0
0 1 0 0 1 1 0
0 1 1 1 1 1 1





















(3)

From the matrix P it is possible to define the reacha-
bility set or descendant set of a given node vi as

R(vi) = {vj ∈ V | pij 6= 0} (4)

and the ancestor set or antecedent set as

A(vi) = {vj ∈ V | pji 6= 0} (5)

On the basis of this information, four additional ma-
trices for fault location are calculated

a) Shortest time matrix Te = [tekm
] obtained by

applying the Warshall-Floyd method (Floyd, 1962)
to the matrix Tl = [tlij ]. The element tekm

is the
minimum failure propagation time corresponding
to the shortest path from vk to the FDU linked at
the node vm.



b) Biggest time matrix Tb = [tbkm
] obtained from

the matrix Tu = [tuij ] where tbkm
is the maximum

failure propagation time between node vk and the
FDU linked at the node vm along the shortest path
with probability 1.

c) Shortest time matrix Tf = [tfkl
] obtained by

applying the Warshall-Floyd method to a matrix T
′
l

obtained from Tl by replacing all the tlij s.t. Pij 6=
1 with∞.

d) Failure propagation probability matrix Tg = [gkl]
where gkl =

∏

eij∈qE(k,l) Pij and qE(k, l) is the
shortest path from vk to vl.

Using the matrix P, the digraph G can be partitioned
into classes V1, . . . , Vm as

V1 = {vi ∈ G|R(vi) ∩A(vi) = A(vi)};

Vj = {vi ∈ G− V1 − · · · − Vj−1| (R(vi)− V1 − · · ·

−Vj−1) ∩ (A(vi)− V1 − · · · − Vj−1)

= (A(vi)− V1 − · · · − Vj−1)}, j = 2..m (6)

where m is such that G− V1 − · · · − Vm = ∅.

This procedure is called level-structuring (Narayanan
and Viswanadham, 1987) and the resulting digraph is
called level-structured digraph.

The classes so obtained satisfy the following proper-
ties

1)
⋃m

i=1 Vi = V

2) Vi ∩ Vj = ∅ for i 6= j

3) For vi, vj ∈ G either pij = pji = 1 (vi and vj
are in a loop) or pij = pji = 0 (vi and vj are
disconnected).

4) Edges leaving vertices in a class Vi can go only to
vertices in classes Vj such that i ≤ j.

An example of level-structured digraph is shown in
Fig. 6. Now, a graph with a single node S forms the
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Fig. 6. Level-structuring digraph.

first level, and the level-structured digraph G forms
the second level of the hierarchical fault propagation
model. Each vi ∈ G is then decomposed into sub-
systems, and the corresponding level-structured di-
graph are developed. This set of digraphs {Gi} forms
the third level of the hierarchy. The hierarchical fault
propagation model may therefore be defined as

H = {Li}, i = 1, . . . , n

where Li denotes the ith level in the hierarchy and

Li = {Gij}, j = 1, . . . ,m
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Fig. 7. A hierarchical fault propagation model for a
braking and steering systems.

Each Gij is a level-structured digraph (Vij , Eij) that
corresponds to a node v in the (i-1)th level. An exam-
ple of hierarchical fault propagation model is shown
in Fig. 7.

The number of levels in the hierarchy depends on
how finely the actual system being modelled can be
subdivided recursively into distinct subsystems that
are analyzable in terms of fault propagation.

The propagation of faults within S may now be char-
acterized as follows. For each digraph Gij at each
level Li of the hierarchical fault propagation model,
a failure occurring at node vi ∈ Gij at time t0 will
propagate to the nodes {vj}, vj ∈ Gij , by time t1
only if each node vj satisfies the constraints

• pij = 1.
• There exists at least one path qE from vi to vj

in Gij such that
∏

elm∈qE

Plm ≥ Pthreshold where

Pthreshold is a heuristically estimated threshold
probability and the product is taken over all
edges in qE .

• In the set of paths satisfying the previous con-
ditions, there exists a path qE that satisfies the
constraint

∑

elm∈qE
tllm ≤ t1 − t0.

• Among the paths satisfying the previous con-
straints, there is at least one path qE such that
for all nodes vk ∈ qE and for all vp in the set of
normal diagnosed nodes at time t1, tk < ts, with
tk =

∑

elm∈qE(k,j) t
l
lm and ts = minp{tbkp

}.

3. THE FAILURE IDENTIFICATION PROCESS

In order to determine a procedure to identify a fault
in the system, some assumptions on the FDUs of the
hierarchical model-based FDI are necessary:



• The FDU are false alarm free.
• Every kind of single fault that is included in the

propagation digraph can be detected by some
active FDU, i.e. there exists a technical tool
indicating if the node is faulty or not.

• In the set of activable FDUs for a given non-
decomposable node, there exists at least one that
allows to isolate a single fault in this node within
a desired amount of time Tδ . This means that all
the nodes for which this condition is not satisfied
have at least one FDU running on-line in their
reachable set able to isolate the fault within Tδ
sec.

3.1 The failure location procedure for a level- structured
tree

A hierarchical level-structured tree is a hierarchi-
cal level-structured digraph where, after removing all
FDU and dummy nodes, each level appears to be a
set of different trees having one root and one level of
leaves. An example of this type is shown in Fig. 8.

level 1

level 2

level 3

class 1

class 2

class 1

class 2

level 4

class 2

class 1

S2S1

Fig. 8. A hierarchical level-structured tree.

In the case of level-structured tree, a more efficient
algorithm that allows the failure source location faster
than an algorithm for a generic structure can be de-
termined. The reason is supported by the fact that,
in many cases, it is possible to find an, eventually
approximated, hierarchical structure for the system
under study or for some of the subsystems of interest
that form the system itself. In this cases, to have a
dedicated algorithm may result in a faster location of
the fault and reduction of the computational effort than
a general algorithm. The algorithm presented is valid
only for single fault in a single tree and for a specific
level i.

Let define
D

(1)
Li

the set of node in D(1) that are
abnormal at level i,

D
(2)
Li

the set of node in D(2) that are
available at level i,

D̄
(1)
Li

the set of node in D(1) that are
normal at level i,

∆i the set of dummy nodes at level i,
ΩLi

the set of nodes at level i that can be excluded
to be faulty from the FDUs in D(1)

Li
,

Ci the set of candidate nodes at level i,
φ1(v) the set of nodes in D̄(1)

Li
reachable

from the node v with probability 1,
φ2(v) the set of nodes in D(2)

Li
reachable

from the node v with probability 1,
t0 the starting time fault location for the

actual tree,
tk the time at which the diagnostic

test dk switches to abnormal.

A first selection of candidates for the failure origin
is constituted by the set Ci =

⋂

k A(vk) − ∆i −

ΩLi
, vk ∈ D

(1)
Li

. If the graph is as S1 (Fig. 8) then
the reduction of this set of candidates is obtained with
the following algorithm

1. If |Ci| = 0 then activate multiple fault diagnosis.
2. If |Ci| = 1 then if decomposable return Ci else

run the FDU corresponding to the min
l
{tftl

} with

vl ∈ φ2(vt) that allows isolation. If diagnosis
is abnormal then return Ci as failure source else
return Ci = ∅.

3. Calculate T = {v ∈ Ci|class(v) = 1}, {v̄} =
Ci − T .

4. From all vt ∈ T eliminate the nodes s.t. tbtk
<

tftj
where vk ∈ φ1(vt) and vj ∈ D

(1)
Li

. Let Γ =

{set of eliminated nodes}. Set D̄(1)
Li

= D̄
(1)
Li
∩

[

⋃

j R(vj)− Γ
]

, vj ∈ T .
5. From all vt ∈ T eliminate the nodes s.t.

maxk{tetk
+ t0 − tk} ≥ minj{tbtj

} with vk ∈

D
(1)
Li

, and vj ∈ φ1(vt).
6. For all vt ∈ T that are not decomposable, if possi-

ble, run the FDU corresponding to the minl{tftl
}

with vl ∈ φ2(vt) that allows isolation. If the
diagnosis is abnormal then Ci = {vt} else re-
calculate ΩLi

and T = T − {vt} − (T ∩ ΩLi
).

7. If |T | = 0 then Ci = {v̄}, go to step 2.
8. If |T | ≥ 1 and v̄ is not decomposable, then run the

FDU in φ2(v̄) corresponding to the shortest time
that allows isolation. If v̄ is normal then return
Ci = T , else Ci = {v̄} and go to step 2.
Otherwise v̄ is decomposable Ci = T ∪ {v̄} and
exit.

For a graph as S2 (Fig. 8), it is necessary to change in
step 3 the set T = {v ∈ Ci|class(v) = 1} with the
set T = {v ∈ Ci|class(v) = 2}.

4. AN EXAMPLE: THE ELECTRIC BRAKE
SYSTEM

In Fig. 9 an example of level-structured tree for an
electric brake system is presented. The picture is a
detailed view of level 3 and 4 of Fig. 7. Level 3 and
level 4 contain graphs similar to S2 in Fig. 8. The
FDUs in level 3 are only for detection while in level 4
they perform isolation.
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Fig. 9. Level-structuring digraph for brake system.

The arcs without label have weight (1, 0 sec, 0 sec)
while the other weights are given by w11 = w33 =
w44 = w66 = (1, 0.2 sec, 0.32 sec), w22 = w55 =

(1, 0.04 sec, 0.2 sec), wlf
11 = · · · = wrr

11 = (1, 0.004

sec, 0.04 sec), wlf
22 = · · · = wrr

22 = (1, 0.04 sec, 0.16
sec), wbrk

11 = wbrk
22 = (1, 0.04 sec, 0.24 sec).

In level 4, the FDU2s in the systems LF, RF, LR,
RR are available on request, while all the others are
running on-line and it is desired to isolate the fault
within Tδ = 0.4 sec from its detection.

A step fault in the caliper force sensor of the LF wheel
is injected at t0 = 2 sec. After 80 msec, FDU2 in
level 3 turns abnormal and the algorithm is activated.
By applying the algorithm to the tree in level 3, the set
of candidates attained is C3 = {LF, RF, BRK +
P}. Then the algorithm steps to level 4 at t0 =
2.088 sec. A priority is assigned to the BRK system
with respect to the others because a fault in this unit is
more critical than a fault in a wheel system. Because
no fault is detected, the algorithm is applied then to
the LF subsystem (the wheel subsystems have same
priority). The candidate nodes in the LF subsystem are
all the nodes not dummies, i.e. Clf = { DC motor,
Position sensor, Current sensor, Fcal sensor }. From
FDU1lf , because the upper-bound in w

lf
11 is equal to

the lower-bound in wlf
22, at step 5 the set of candidates

is reduced to Clf = {Fcallf }. At step 6, by activating
the FDU2lf the fault is isolated after at most 0.16 sec
in the caliper force sensor.

5. CONCLUSION

In this paper, a hierarchical model-based FDI scheme
using digraphs has been presented. By combining
model-based methodologies and qualitative methods,
a reduction of the computational effort is attained.

Future research will be conducted on the analysis of
multiple faults and to develop algorithms for more
general digraph structures.
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