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Abstract: The rising complexity of modern automotive engines with an increasing number
of actuators and sensors to minimise emissions and fuel consumption and to maximise
engine driveability require a detailed supervision for fault detection and on-board
diagnosis. The European Community Directive 98/69/EC requires on-board diagnosis for
spark ignition engines and will require it for diesel engines as of January 2003, mainly to
prevent excessive emissions. Beside this regulation it is also in the interest of the
automobile manufactures to establish capable diagnosis systems for maintenance, repair
and the benefit of their customers. This paper will describe applications of neural
networks for modelling complex fluid- and thermodynamics with unknown physical
model structure. Reference models, which describe the fault free process, are set up and
identified with the special neural network LOLIMOT (Local-Linear-Model-Tree). Fault
detection algorithms, which employ the method of parity equations, were successfully
implemented and tested in real time with a 2 litre diesel engine and a Rapid Control
Prototyping System. Measurements of online fault detection are shown for several built-in
faults in the intake system of this diesel engine. Copyright © 2002 IFAC
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1. INTRODUCTION

This paper focuses on neural network applications
for model based fault detection with parity equations
applied on a modern DI diesel engine. For
automotive mass production applications suitable
models have to be found, which permit a statement
about the faultless or faulty system state with the
strained information of only a few sensors. Starting
from physical considerations or a detailed physical
model simplified substitution models can be derived
and their parameters then have to be obtained by
identification methods.
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But physical models of combustion engines are
characterised by complex non-linear fluid- and
thermodynamics so that even simplified physical
models are often to complex for implementation in
engine control units. Another drawback of physical
models is that the may rest upon unmeasured signals
or even simplified physical model structures are not
known at all. Therefore neural networks have proven
to be a powerful tool to model strong non-linearities
with unknown physical model structure. By this way
black box modelling with neural networks comprises
both automatic model structure generation and
identification of its parameters. Another favourably
usage of neural networks is the hybrid modelling of
processes with only partly known physical structure.
There the combination of modelling the dominant
characteristics physically and modelling non-linear
phenomena and secondary effects with neural
networks results in an overall good performance of
the hybrid model. Several neural network models of
the turbo charged diesel engine have been identified
and were successfully implemented in real time
model based fault detection algorithms on a dSPACE
Rapid Control Prototyping System (Schwarte et al.,
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2001). The test engine is an Opel 2litre, 4 cylinder,
16 valve tu rbo charged DI Diesel engine with a
power of 74 kW and a torque of 205Nm. The engine
employs exhaust gas recirculation and a variable
swirl of the inlet gas for emission reduction. The
concept for model based fault detection and
diagnosis of the complete engine is shown in Fig.1.
The engine is partitioned in three major subsystems:
Induction system, injection, combustion and engine
transmission system as well the exhaust gas system.
Fig.1 shows the information flow. The actuators are
driven by the electronic control unit and act on the
different components of the combustion engine.
There a selection of some state variables is
measured. For each major subsystem, fault detection
methods are developed to detect faults in the shown
components and indicate them with symptoms.
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Fig. 2. Air path of the intake system.

In a further step symptoms
are processed with
diagnosis methods to
characterise faults
according to their type, size
and location. Further on in
this paper the fault
detection in the intake
system will be addressed.

2. INTAKE SYSTEM

The intake system of the
considered Opel DTI
Engine is representative for
a modern turbo charged
passenger car diesel
engine. Fig. 2 shows the air
path of the diesel engine.
According to the flow
direction of the fresh air
the components air filter,
air mass flow sensor,

compressor, intercooler and inlet manifold are flown
through. Between air mass flow sensor and
compressor the blow-by is lead back by a small
vacuum. Recirculated exhaust gas is added to the
fresh air by the exhaust gas recirculation (EGR)
valve in the inlet manifold. Each cylinder is filled by
a swirl port and a filling port. By throttling the filling
port of each cylinder with the swirl flaps actuator a
variable swirl can be adjusted. Further components of
the intake system are the pneumatic membrane
actuators to control the swirl flaps and the EGR valve
as well as the electro-pneumatic converters which
convert a pulse width modulated (PWM) signal of
the electronic engine control unit to the control
pressure for the pneumatic actuators. By cutting the
intake system from its neighboring subsystems,
namely environment, engine block and exhaust gas
system, input and output variables emerge according
to Fig. 3. Only a few input and output variables are
measured and can be used for fault detection.
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Fig. 3. Fault diagnosis structure of the intake system.

Electr.
Control
Unit
(ECU)

Injection
System

EGR-
Valve

Turbine
Actuator

Induction
Pipe

Air Com-
pressor

Charge
Air Cooler

Combus-
tion

Engine
Mechanics

Exhaust
Gas Recir-
culation

Exhaust
Gas
Turbine
Exhaust
Pipe

Ansaugsystem

Detection
Methods
Injection
Combustion
Engine-Trans-
mission

siΘ

fm

ETCu

en

oilT

wT
cM

atT
atp

airm

p

T2,i

Sensors
SignalsComponents Symptoms

fm

siΘ

EGRu

Control
Signals

A1S
Detection
Methods
Induction Sys-
tem

O2ν

Diagnosis
Methods

(Classifi-
cation

Fault

•Size
•Location

Detection
Methods
Exhaust Sys-
tem

3

EGRu

ETCu

SE1

SE2

or

Inference
with fault

trees)

SC1

A2S

•
•

•
•

SC2

•
•

AmS

CnS

EpS

Fig. 1. Concept of unitised model-based fault detection of the complete
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3. REQUIREMENTS FOR MODEL BASED
FAULT DETECTION

For practical applications the model based fault
detection methods have to be developed with respect
to following aspects:
1. Detection of small faults.
2. Robustness.
3. Hardware requirements.
4. Application effort.
5. Transparency and interpretability.
6. Validity in a wide operating range.

Detection of small faults and robustness are very
contradictory requirements and often the
compromise has to be in favour of robustness. In
automotive applications the hardware requires fault
detection algorithms with restricted computational
effort. The application effort should also be small
and without (many) iteration loops. Transparency
and interpretability are important for the transfer of
developed methods to applications in automotive
control units. Neural networks often have the
disadvantage of bad transparency and
interpretability. Therefore the approach in this paper
is to use neural networks for identification in the first
step and to generate look-up tables for real time fault
detection in the second step. The validity of fault
detection methods in the operating range is often
narrowed by conditions like steady state operation,
certain engine speed or load, etc. because process
models can gain significant accuracy by limiting
their validity range and therefore enhance detection
of small faults.

4. MODELING AND IDENTIFICATION

4.1 Modelling of non-linear engine pumping

The engine pumping, describing the air mass flow
into the engine, was modelled with a hybrid physical
and neural network model. It is a mean value model
of one working cycle neglecting the periodic
working principle. The physical model part models
the engine pumping corresponding to an ideal
positive-displacement pump and describes the so-
called theoretical air mass flow into the engine:
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All other non-linear induction phenomena are
combined and described with the operating point
dependent coefficient volumetric efficiency
(Heywood, J. B. 1988). This coefficient is the ratio
of real air mass flow and theoretical air mass flow:
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The non-linear phenomena like charge heating,
backflow, flow friction, ram effect, etc. are very hard
to model physically and are therefore modelled and
identified with a neural network in dependency of

engine speed and boost air density. The modelled air
mass flow is as follows:
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4.2 Modelling air mass flow oscillation

The air mass flow oscillation is stimulated by the
periodic the suck in of each cylinder. In the time
domain the frequencies of the air mass flow
oscillation are proportional to the engine speed. But
in the angle domain these frequencies are constant.
The main (angle-)frequency of the air mass flow
oscillation has a constant 180°CA (crank angle)
period for four cylinder two-stroke engines.
Measurements have shown that an approximation
with a mean value and one harmonic describes the
real mass flow sufficiently. Therefore, a signal model
was set up with operating point dependent amplitude
and phase of the mass flow oscillation.
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Fig.4 shows the air mass flow for an exemplary
operation point with a one harmonic approximation.
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Fig.4. Example of air mass oscillation with its
characteristics at 1200min-1

4.3 Modelling boost pressure oscillation

Like with the air mass flow oscillation the boost
pressure oscillation is also stimulated by the periodic
induction of each cylinder and its signal model is
similar to the one before:
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4.4 Identification of reference models with neural
networks

In this paper neural networks are employed for
modelling parts of the intake systems with little
knowledge of the inner physical model structure. The
special neural network LOLIMOT, which was
developed by Oliver Nelles at Institute of Automatic
Control (Nelles, O., 1999, 2001), uses a structure of
local linear models. The local linear models are
identified with an orthogonal divided input space.
The validity of each model is 100% in its centre and
decrease towards its neighbour models, so that the
sum of model validities at each point is 100%. By
this way there is a smooth transition between the
local models and the overall model is steady
differentiable. The approach with local linear models
leads to fast NN training properties. LOLIMOT
comprises both automatic model structure generation
and the identification of model parameters. The
model structure is generated by the LOLIMOT
algorithm in an iterative way adapting to the variable
complexity, respectively non-linearity, of the
identified system. Fig.5 shows as an example the
input space and the local linear model structure of
the neural network which models the volumetric
efficiency of the engine pumping. The ‘x’ mark the
centre the different local model. The lines separate
the local models by their dominant validity.
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For the fault free description of the intake system 5
static reference models were identified, which
describe the volumetric efficiency, the amplitude of
air mass flow oscillation, the phase of air mass flow
oscillation, the amplitude of boost pressure
oscillation and the phase of boost pressure
oscillation. The reference models were identified for
a closed EGR valve and opened swirl flaps actuator
with a quasi stationary identification cycle, Fig.6.
The identification cycle should preferable stimulate
only very low frequencies and should evenly
distribute data points over the complete input space.
The distribution of data points is shown in Fig.7.
However, high boost pressure cannot be achieved at
low engine speed and therefore the input space

region with low engine speed and medium to high
boost density is empty. Fig.8 shows the identified
reference model for the volumetric efficiency
compared with the data points.
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 Fig.8. Identification result; reference model of
volumetric efficiency compared with data points

LOLIMOT identifies the model with a continues
mathematical function. However in the online
application look-up tables are employed for the
reference models in order to reduce computational
effort and to be compatible to the general
representation of non-linear models in automotive
applications. This approach provides a great
advantage opposite to the general grating
measurement regarding flexibility, complete
measurement and the effort to measure exactly



certain operating points.
With the only once
identified neural network
any desired grating of the
look-up table in the
electronic engine control
can be applied afterwards.
Fig.9 shows the identified
reference model for the
amplitude of the air mass
flow oscillation. At an
engine speed of about
2000min-1 there is the
highest amplitude at the
resonance frequency of the
air path pipe. Fig.10 then
shows the corresponding
identification result and the
generated reference model
of the phase of the air mass
flow oscillation. The phase is mainly a linear
function of the engine speed which is reasonable. It
was proceeded likewise with the identification of the
boost pressure oscillation. The two reference models
for amplitude and phase of the boost pressure
oscillation are similar to the air mass flow oscillation
and are not shown here.
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5. PARITY EQUATIONS AND RESIDUALS

Based on the five identified reference models one is
now able to use the analytical redundancy between
the model outputs and the measured values to set up
five independent parity equations. Therefore five
residuals can be calculated as follows:
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6. REAL TIME FAULT DETECTION

The signal processing and the model based fault
detection algorithms are implemented on a Rapid
Control Prototyping System with MATLAB/-
SIMULINK according to Fig.11. The measured
signals are crank angle synchronously preprocessed
for a better signal to noise ratio. Then firing cycle
synchronous algorithms calculate the characteristic
values. These values are compared to the output of
the reference models and residuals are calculated.
The residuals are further processed and the
symptoms result. Finally the symptoms indicate
faults by deviating from zero. The results of real time
fault detection shall be presented in Fig.12 for an
exemplary operating point. Several faults were
temporarily built in at the intake system. The fault
detection thresholds are marked by dotted lines. The
reference models, volumetric efficiency, amplitude
air mass flow oscillation, amplitude boost pressure
oscillation, show the expected behaviour. In the fault
free case these residuals are almost zero. The

Fig. 11. Implementation of real time model based fault detection on a dSPACE
Rapid Control Prototyping System with MATLAB/SIMULINK
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reference models phase air flow and phase boost
pressure have wider range in the fault free case of
approximately 4°CA. Therefore, the first three
symptoms are best suited for fault detection. The first
fault example in Fig.12 shows the case of undesired
closed filling ports. The residuals amplitude boost
pressure oscillation and amplitude air mass flow
oscillation clearly trespass the thresholds and with
the corresponding symptoms this fault is clearly
detected without position sensor. The second fault
example is an undesired opened EGR valve. The
residual volumetric efficiency responses intensively
and it is obvious that smaller EGR faults are detected
as well. Additionally, the residuals amplitude boost
pressure oscillation and amplitude air flow
oscillation show a strong deflection, too. The third
example shows different size leakages in the air path
between intercooler and engine. The bigger the
leakage diameter, the stronger is the deflection of the
residual volumetric efficiency. The leakages with
4mm, 5mm and 7mm in diameter are well detected.
As a further fault example the crank case vent pipe
was removed. This is equivalent to a leakage
between air mass flow sensor and compressor.
Additional air which is not measured, is sucked into
the air path. With the symptom volumetric efficiency
this fault is clearly detected as well. Note that the
symptom volumetric efficiency responses opposite to
the leakage between intercooler and engine. The last
fault example presented depicts a short-time
restriction between intercooler and engine. This fault
is detected by the symptoms amplitude boost
pressure oscillation and amplitude air mass flow
oscillation. The demonstrated faults were detected
very fast in just a few tenth part of a second. Fig.14
depicts the fault-symptom-correlation in a summary.

Fig.12. Residuals in dependency of faults (online),
2000min-1, 130Nm, p2,I =1.5bar, air flow 165kg/h
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Fig.14. Fault-symptom-table of the intake system

For each fault it is listed how the described
symptoms respond. In doing so it is differentiated
between intense positive, positive, negative and no
response. It results a symptom pattern for each fault,
so that all faults can be diagnosed.

6. CONCLUSIONS

The results in this paper show that the application of
neural networks for model based fault detection with
parity equations offers great advantages. The
identification of non-linear models is faster, more
flexible and covers more data points than the usual
identification with grating measurements. The
advantage will even be bigger if one is forced to
identify non-linear models with more dimensions.
The special neural network LOLIMOT can also
easily be extended to dynamic non-linear models. In
final applications look-up tables can be generated
with any desired grating form the only once
identified continues mathematical model functions.
This approach provides great flexibility and sustains
the compatibility to the usual non-linear model
representation in automotive applications.
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