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Abstract: In iterative schemes of identification and control one of the particular and important
choices to make is the choice for a model uncertainty structure, capturing the uncertainty
concerning the estimated plant model. This is typically done in some norm-bounded form, in
order to guarantee robust stability and/or robust performance when redesigning the controller.
Structures that are used in the recent literature encompass e.g. gap metric uncertainty, coprime
factor uncertainty, and the Vinnicombe gap metric uncertainty. In this paper we study the
effect of these choices when our aim is to maximize the (re)tuning freedom for a present
controller (in terms of a norm-bounded perturbation) under conditions of robust stability.
Particular attention will be given to the representation of plant uncertainty and controller
tuning freedom in terms of Youla parameters. In the problem formulation considered here the
so-called double Youla parametrization provides a norm-bounded set of robustly stabilizing
controllers that is larger than corresponding sets that are achieved by using any of the other
uncertainty structures.
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1. PROBLEM SET-UP

We consider linear time-invariant finite dimensional
systems and controllers in RH∞ , in a feedback con-
figuration depicted in figure 1, denoted by H(G 0;C),
where G0 is the plant to be (modelled and) controlled,
and C a present and known controller to be redesigned.

The closed-loop dynamics of H(G0;C) are described
by the transfer matrix

T (G0;C) =

�
G0

I

�
(I+CG0)

�1[C I];

1 This work is part of the research program of the ‘Stichting voor
Fundamenteel Onderzoek der Materie (FOM)’, which is financially
supported by the ‘Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO)’.
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Fig. 1. Feedback interconnection H(G0;C).

which maps the vector of variables col(r1;r2) into
col(y;u). The closed-loop system is stable if and only
if T (G0;C) 2 RH∞ .
The problem field that we consider can be formulated
as follows:

Consider an (unknown) plant G0 con-
trolled by a known controller C, redesign
the controller so as to achieve a better
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control performance for the controlled
plant G0.

There are several different aspects that can be distin-
guished in this problem, as e.g.

� One can construct an identified (uncertainty)
model of the plant G0 on the basis of experi-
mental data, e.g. composed of a nominal model
and some norm-bounded model or parameter un-
certainty. See e.g. (Ninness and Goodwin, 1995;
Hakvoort and Van den Hof, 1997; De Vries and
Van den Hof, 1995; Gevers et. al., 1999).

� The redesigning of the controller can be per-
formed on the basis of a single model (nominal
design possibly extended with robustness veri-
fications), a (norm-bounded) uncertainty model
(robust design), or on no model at all (as e.g.
in iterative feedback tuning (Hjalmarsson et. al.,
1994)).

If in the controller redesign a (norm-bounded) uncer-
tainty model is taken into account, then the worst-case
performance of the newly designed control system can
be optimized. This approach is e.g. followed in (de
Callafon and Van den Hof, 1997) where the control
design step is a robust control design optimizing the
worst-case performance cost. If the identified uncer-
tainty set contains the underlying real plant, guaran-
teed performance bounds will hold for the controlled
real plant also. In this approach the control design
utilizes all (uncertain) information on the plant that
is available. The resulting control design algorithm
becomes relatively complex (µ-synthesis in the work
of (de Callafon and Van den Hof, 1997)).
When in the controller redesign only a nominal model
is taken into account for the design itself, and an un-
certainty model for the plant is used a posteriori to
verify the robustness of this design, there is a need
for robustness tests concerning stability (and possibly
performance).
In this contribution we focus on the latter situation,
assuming that the controller C has to be redesigned
(retuned) into Cnew by some (not specified) design
method, and that the aim is to construct a norm-
bounded area around C that characterizes the tuning
freedom for Cnew under conditions of robust stability,
i.e. under the condition that Cnew stabilizes all models
in the identified uncertainty set. The size of the norm-
bounded set of controllers is typically dependent on
the uncertainty structure that is chosen to represent the
plant identification uncertainty. In this paper different
structures will be analysed and compared. In particu-
lar a gap metric uncertainty structure will be applied
and will be shown to lead to results that are more
conservative than the results that are obtained when
employing a so-called double Youla representation of
plant uncertainty and controller retuning freedom. In a
second stage similar results will be derived for uncer-
tainty sets in terms of the Vinnicombe gap metric and
the so-called Λ-gap.

2. PRELIMINARIES

A coprime factor framework will be used to represent
plants and controllers, employing both right coprime
and left coprime factorizations:

G(s) = N(s)D�1(s) = D̃�1(s)Ñ(s)

C(s) = Nc(s)D
�1
c (s) = D̃�1

c (s)Ñc(s) (1)

where (N;D) and (Nc;Dc) are right coprime factor-
izations (rcf) and (Ñ;D̃) and (Ñc; D̃c) are left coprime
factorizations (lcf) over RH∞ (Vidyasagar, 1985). The
coprime factorizations are normalized (nrcf ), (nlcf )
if they additionally satisfy N̄�N̄+D̄�D̄ = I and ¯̃N ¯̃N�+
¯̃D ¯̃D� = I, where (�)� denotes complex conjugate trans-
pose. The notation (�) will be used to denote normal-
ized factorizations. Let G and C have coprime factor-
izations as in (1) and let Λ; Λ̃ 2 RH∞ be defined as

Λ = ¯̃NcN̄ + ¯̃DcD̄ Λ̃ = ¯̃NN̄c +
¯̃DD̄c; (2)

then H(G;C) is stable iff Λ�1 2 RH∞ which is equiv-
alent to the condition Λ̃�1 2 RH∞ (Vidyasagar, 1985).

3. ROBUST STABILITY RESULTS FOR
DOUBLE-YOULA REPRESENTATIONS

Uncertainty on a plant G0 can be described in very
many different ways. In a norm-bounded formulation,
there are options for additive, multiplicative, coprime-
factor, gap-metric uncertainties, all having their par-
ticular robust stability tests. See e.g. (Callafon et.
al., 1996) for an overview in a rather uniform (coprime
factor) framework.
When considering robust performance tests on norm-
bounded uncertainty sets, it has been motivated in
(de Callafon and Van den Hof, 1997) that for general
classes of performance measures, norm-bounded un-
certainty in a dual Youla parametrization framework
has particular advantages. In this parametrization, a
norm-bounded plant uncertainty set is considered of
the form:

GY (Gx;C;Q;Qc;γG) :=�
G∆ = (N̄x + D̄c∆R)(D̄x� N̄c∆R)

�1 j

Q�1
c ∆RQ




∞ � γG

	
with Gx a nominal model, C the present controller
stabilizing Gx, and Q;Qc stable and stably invertible
weighting functions. In terms of stability, the dual-
Youla parametrization has the basic property that an
element in GY (Gx;C;Q;Qc;γG) is stabilized by C if
and only if the corresponding ∆R is stable.
Similar to characterizing plant uncertainty, a retuning
or adaptation of the controller can be represented as a
Youla-type “perturbation” on the present controller C.
This results in the so-called double Youla parametriza-
tion, indicated in Figure 2, where

Cnew :=C∆ = (N̄c + D̄x∆C)(D̄c� N̄x∆C)
�1
:

The following stability results apply to this situation
(Tay et. al., 1989; Schrama et. al., 1992).
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Fig. 2. Double Youla parametrization.

Proposition 1. Let Gx and C have normalized coprime
factorizations as described above, and let H(Gx;C) be
stable. Denote

G∆ = (N̄x + D̄c∆R)(D̄x� N̄c∆R)
�1 (3)

C∆ = (N̄c + D̄x∆C)(D̄c� N̄x∆C)
�1
: (4)

Then for ∆R;∆C 2 RH∞
(a) H(G∆;C∆) is stable if and only if for some unimod-
ular 2 Q;Qc 2 RH∞ , H(Q�1

c ∆RQ;Q�1∆CQc) is stable;
(b) H(G∆;C∆) is stable if there exist some unimodular
Q;Qc 2 RH∞ such that

Q�1∆CQc




∞ �


Q�1

c ∆RQ




∞ < 1: (5)

2

The unimodular matrices Q and Qc can be interpreted
to reflect the freedom in choosing the coprime fac-
torizations of Gx and C. Based on this result the next
proposition can be formulated.

Proposition 2. Given a nominal model Gx and a
nominal controller C, with nrcf’s as described be-
fore, such that H(Gx;C) 2 RH∞ : Define a set of
plants GY (Gx;C;Q;Qc;γG) and a set of controllers
CY (Gx;C;Q;Qc;γC) as

GY (Gx;C;Q;Qc;γG) :=�
G∆ = (N̄x + D̄c∆R)(D̄x� N̄c∆R)

�1 j

Q�1
c ∆RQ




∞ � γG

	
CY (Gx;C;Q;Qc;γC) :=�

C∆ = (N̄c + D̄x∆C)(D̄c� N̄x∆C)
�1 j

Q�1∆CQc




∞ < γC

	
:

Then all plants in GY (Gx;C;Q;Qc;γG) are stabilized
by all controllers contained in the set CY (Gx;C;Q;Qc;γC)
if and only if γG � γC � 1: 2

Proof 1. The result is direct by applying a small gain
argument and employing Proposition 1.

This Proposition serves as a means to specify the
allowable area for retuning the controller C so as to
guarantee robust stability with all models in the plant
uncertainty set. Since the result is based on a small

2 A 2 RH∞ is unimodular if A�1
2 RH∞.

gain criterion, part a) of Proposition 1 can be used to
show that the resulting set of controllers is equal to the
exclusive set of all controllers stabilizing the entire set
GY (Gx;C;Q;Qc;γG).

4. GAP METRIC RESULTS

When considering the gap metric as a measure for
bounding plant uncertainty a similar analysis can be
given as presented in the previous section. The gap
metric distance between two systems Gx, G∆ is defined
by

δ(Gx;G∆) = maxf
�!
δ (Gx;G∆);

�!
δ G∆;Gx)g

where the directed gap is:

�!
δ (Gx;G∆) = inf

Qδ;Q�1
δ 2H∞






�

N̄x

D̄x

�
�

�
N̄∆
D̄∆

�
Qδ






∞

(6)

where (N̄x; D̄x) and (N̄∆; D̄∆) are nrcf’s of Gx and G∆.
The stability result that is applicable to our problem
set up is the following.

Proposition 3. (Georgiou and Smith, 1990) Let H(G x;C)
be stable. Then H(G∆;C∆) is stable if

δ(Gx;G∆)+δ(C;C∆)< kT (Gx;C)k�1
∞ : (7)

This sufficient condition for stability leads to the fol-
lowing formulation in terms of stabilizing sets of con-
trollers.

Corollary 1. (Georgiou and Smith, 1990) Given a
nominal model Gx and a nominal controller C such
that H(Gx;C) 2 RH∞ : The set Gδ(Gx;δG) defined as

Gδ(Gx;δG) := fG∆j δ(Gx;G∆)� δGg

is stabilized by all controllers contained in the set
Cδ(C;δC) defined as

Cδ(C;δC) := fC∆j δ(C;C∆)< δCg

if δC � kT (Gx;C)k�1
∞ �δG. 2

In this proposition a sufficient condition for the re-
tuning range (or the allowed “perturbation” from the
present controller) is specified that is allowed under
guarantee of robust stability. Unlike for proposition 2,
Cδ(C;δC) with δC equal to the above mentioned upper
bound, does not contain all controllers stabilizing the
entire set Gδ(Gx;δG).



5. COMPARISON OF THE TWO UNCERTAINTY
STRUCTURES

Theorem 1. Given a set of plants Gδ(Gx;δG) and a
set of controllers Cδ(C;δC) satisfying the gap stability
condition of Corollary 1. Then for the sets of Proposi-
tion 2 with Q = Qc = I, it holds that

a) GY (Gx;C; I; I; γ̄G)� Gδ(Gx;δG), with
γ̄G = δGkT (Gx;C)k∞ (1�δGkT (Gx;C)k∞)

�1

b) CY (Gx;C; I; I; γ̄C)� Cδ(C;δC), with
γ̄C = δCkT (Gx;C)k∞ (1�δCkT (Gx;C)k∞)

�1

c) γ̄G � γ̄C � 1, i.e. the two sets satisfy the stability
condition of Proposition 2. 2

Proof. A proof can be found in (Douma, Van den Hof
and Bosgra, 2001).

The result of this theorem implies that even when
embedding the gap uncertainty sets for plant and con-
troller in (more conservative) sets in terms of Youla
parametrizations, a simultaneous stabilization result
remains valid. In other words: the related robust sta-
bility test for the Youla-structured uncertainty is less
conservative than the test for the gap metric.

In practice, the uncertainty set in terms of the Youla
parametrization would be not be chosen as to enclose
the set of the gap uncertainty but as to enclose the set
of unfalsified plants. The direct consequence of the
theorem for a controller-tuning problem is formulated
in the next corollary.

Corollary 2. Given a set of (unfalsified) plants G, a
gap uncertainty set Gδ(Gx; δ̆G) and a Youla uncertainty
set GY (Gx;C; I; I; γ̆G), where δ̆G; γ̆G are the smallest
values of δG;γG such that G � Gδ(Gx;δG) and G

� GY (Gx;C; I; I;γG). Then the largest stabilizing con-
troller sets resulting from Proposition 2 and Corollary
1, satisfy and

Cδ(C;kT (Gx;C)k�1
∞ � δ̆G)� CY (Gx;C; I; I; γ̆�1

G ). 2

Apparently, when describing plant uncertainty in ei-
ther a gap metric bound or a norm bound in a dual-
Youla representation, the latter format allows for a
larger set of controllers that guarantee robust stability.
The resulting set of controllers guaranteed to stabilize
the set of unfalsified plants would still be larger when
the freedom of applying weighting functions would be
employed (cf. Proposition 1).

One of the principal differences in the two uncertainty
structures is that a gap-metric distance between two
plants is controller independent. A Youla formulation
of the “distance” between two plants is taken under
the presence of (and therefore dependent on) a partic-
ular controller. In the latter situation the closed-loop
properties of the two plants can therefore be taken into
account more particularly.

The formulation of the corollary technically allows
that the sets are equal; in the next section a counter-
example of this is shown.

6. EXAMPLE

An example, taken from (Schrama et. al., 1992), is
considered in which robust stability is guaranteed by
the condition of Proposition 2, but not by the gap-
metric condition of Corollary 1. The systems of con-
cern have the following transfer functions:

Gx =
�s+1

4s3+0:4s2+4s

C = 17s2
�2:3s+10

s2+3:3s+11

G∆ = 0:2s7
+3s6

+5:4s5
+7:8s4

�22s3
+5:2s2

�21s+3:2
10s7+31s6+150s5+123s4+218s3+87s2+69s+7:1

C∆ = 30s7
+87s6

+131s5
+148s4

+130s3
+63s2

+41s+9:3
s7+8:3s6+38s5+83s4+107s3+97s2+62s+13

The Bode diagrams of these systems have been de-
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Fig. 3. Bode diagrams of the nominal and perturbed
plants and controllers. a: Magnitudes of Gx

(solid), G∆ (dashed) and Gx �G∆ (dotted); b:
Magnitudes of C (solid), C∆ (dashed) and C�C∆
(dotted); c: Phases, see a; d: Phases, see b.

picted in Fig. 3. The Figures 3.a and c display that
Gx (solid) and G∆ (dashed) are strikingly different.
The difference Gx�G∆ (dotted) is quite large: its fre-
quency response magnitude is at least 40% of jGx(iω)j
over all frequencies, and it is even larger than 60% at
those frequencies where jGx(iω)C(iω)j � 1. The con-
troller variation seems to be moderate, but jC(iω)�
C∆(iω)j is larger than 15% of jC(iω)j over all fre-
quencies, and it is up to 70% at the frequencies where
jGxCj � 1.
G∆ and C∆ are modelled as perturbations of the nor-
malized coprime factors of Gx, C. The correspond-
ing plant and controller perturbations ∆R and ∆C are
shown in Fig. 4. The H∞-norms of these perturbations
are k∆Rk∞ = 0:968 and k∆Ck∞ = 0:764. The product
of these norms is 0:734, so that even larger plant and
controller perturbations are allowed in view of the



robust stability test of Proposition 2.
For the robust stability test based on the gap-metric
condition of Corollary 1 we have the following num-
bers: δ(Gx;G∆) = 0:917; δ(C;C∆) = 0:286;
kT (Gx;C)k�1

∞ = 5:73 �10�2.
Clearly δ(Gx;G∆) + δ(C;C∆) is much larger than
kT (Gx;C)k�1

∞ . Hence from (7) it cannot be con-
cluded that H(G∆;C∆) is robustly stable. Moreover, as
δ(Gx;G∆)> kT (Gx;C)k�1

∞ and
δ(C;C∆) > kT (Gx;C)k�1

∞ , the gap-metric condition
fails even to guarantee stability of H(G∆;C) or of
H(Gx;C∆). Finally, the small value of kT (Gx;C)k�1

∞
indicates that H(Gx;C) has poor robustness properties
in gap metric sense, while H(Gx;C) is robustly stable
against rather large perturbations as shown in Fig. 3.
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Fig. 4. Plant perturbation ∆R (solid) and controller
perturbation ∆C (dashed).

7. EXTENSION TO ν-GAP AND Λ-GAP

The analysis as presented in this paper so far can
readily be extended to other uncertainty structures as
well, as e.g. the ν-gap and the Λ-gap. The Vinnicombe
or ν-gap metric is defined as (Vinnicombe, 1993):

δν(Gx;G∆) =

8>>>>>>>>>><
>>>>>>>>>>:

�






h
� ¯̃Dx

¯̃Nx

i� N̄∆
D̄∆

�




∞
;

if det(
h

¯̃N�

x
¯̃D�

x

i� N̄∆
D̄∆

�
) 6= 0 8ω

and

W (det

�h
¯̃N�

x
¯̃D�

x

i� N̄∆
D̄∆

��
) = 0

� 1, otherwise,
(8)

where W (g) denotes the winding number about the
origin of g(s) as s follows the standard Nyquist D-
contour.

The Λ-gap
�!
δ Λ(Gx;G∆) between two plants Gx and

G∆ is defined as ((Bongers, 1991; Bongers, 1994;
Callafon et. al., 1996))

�!
δ Λ(Gx;G∆) = inf

QΛ;Q�1
Λ 2RH∞






�

N̄x

D̄x

�
Λ�1�

�
N̄∆
D̄∆

�
QΛ






∞

(9)
with (N̄x; D̄x) and (N̄∆; D̄∆) nrcf’s of Gx and G∆, and
Λ as defined in (2).
The robust stability results -known from the literature-

that can be exploited for our purpose of specifying
a norm-bounded area around C under robust stabil-
ity guarantees read as follows (Vinnicombe, 1993;
Bongers, 1994).

Proposition 4. Let H(Gx;C) be stable. Then H(G∆;C∆)
is stable if
(a) δν(G;G∆)+δν(C;C∆)< kT (Gx;C)k�1

∞ (ν-gap con-
dition) or
(b)

�!
δ Λ(Gx;G∆) +

�!
δ Λ(C;C∆) < 1 (Λ-gap condi-

tion). 2

These sufficient conditions for stability lead to the
following formulation in terms of stabilizing sets of
controllers.

Corollary 3. Given a nominal model Gx and a nom-
inal controller C such that H(Gx;C) 2 RH∞ : The set
Gν(Gx;δν;G) defined as

Gν(Gx;δν;G) := fG∆j δν(Gx;G∆)� δν;Gg

is stabilized by all controllers contained in the set
Cν(C;δν;C) defined as

Cν(C;δν;C) := fC∆j δν(C;C∆)< δν;Cg

if δν;C � kT (Gx;C)k�1
∞ �δν;G. 2

Corollary 4. Given a nominal model Gx and a nom-
inal controller C such that H(Gx;C) 2 RH∞ : The set
GΛ(Gx;δΛ;G) defined as

GΛ(Gx;δΛ;G) :=
n

G∆j
�!
δ Λ(Gx;G∆)� δΛ;G

o

is stabilized by all controllers contained in the set
CΛ(C;δΛ;C) defined as

CΛ(C;δΛ;C) :=
n

C∆j
�!
δ Λ(C;C∆)< δΛ;C

o

if δΛ;C � 1�δΛ;G. 2

Note that Cν(C;δν;C) and CΛ(C;δΛ;C) do not contain
all controllers stabilizing the entire set Gν(Gx;δν;G)
and GΛ(Gx;δΛ;G), respectively. The use of the neces-
sary and sufficient ν-gap condition δν;G �kT (Gx;C∆)k

�1
∞

would result in a characterization of the exclusive set
of all controllers stabilizing Gν(Gx;δν;G). This condi-
tion, however, does not allow for an explicit norm-
bounded tuning range around a present controller
which is sought for here.

Based on these robust stability results one can now
consider the same problem as is considered in the
formulation of Theorem 1.

Theorem 2. Given a set of plants Gν(Gx;δν;G) and
a set of controllers Cν(C;δν;C) satisfying the ν-gap
stability condition of Corollary 3. Then for the sets of
Proposition 2 with Q = Qc = I, it holds that

a) GY (Gx;C; I; I; γ̄ν;G)� Gν(Gx;δν;G), with γ̄ν;G

= δν;GkT (Gx;C)k∞ (1�δν;GkT (Gx;C)k∞)
�1



b) CY (Gx;C; I; I; γ̄ν;C)� Cν(C;δν;C), with γ̄ν;C

= δν;CkT (Gx;C)k∞ (1�δν;CkT (Gx;C)k∞)
�1

c) γ̄ν;G � γ̄ν;C � 1, i.e. the two sets satisfy the stability
condition of Proposition 2. 2

Theorem 3. Given a set of plants GΛ(Gx;δΛ;G) and
a set of controllers CΛ(C;δΛ;C) satisfying the Λ-gap
stability condition of Corollary 4. Then for the sets of
Proposition 2 with Q = Λ�1 and Qc = Λ̃�1, with Λ; Λ̃
as defined in (2), it holds that

a) GY (Gx;C;Λ�1
; Λ̃�1

; γ̄Λ;G) � GΛ(Gx;δΛ;G), with
γ̄Λ;G = δΛ;G (1�δΛ;G)

�1

b) CY (Gx;C;Λ�1
; Λ̃�1

; γ̄Λ;C) � CΛ(C;δΛ;C), with
γ̄Λ;C = δΛ;C (1�δΛ;C)

�1

c) γ̄Λ;G � γ̄Λ;C � 1, i.e. the two sets satisfy the stabil-
ity condition of Proposition 2. 2

Proof. Proofs can be found in (Douma, Van den Hof
and Bosgra, 2001).

These theorems show that, like the gap-metric un-
certainty structure, also the ν-gap and Λ-gap uncer-
tainty structures lead to controller sets that in the con-
sidered problem formulation are more conservative
than the sets that are obtained by a double Youla-
parametrization.

8. CONCLUDING REMARKS

We have used the double Youla parametrization for
purpose of specifying the maximum allowable tun-
ing range for a new controller to deviate from the
present controller while retaining robust stability. It is
demonstrated that the result obtained when using this
uncertainty structure is less conservative than when
using the gap metric. An example has been provided
to illustrate these results. The results imply that model
uncertainty characterized in terms of a dual Youla-
parametrization not only is advantageous from a per-
formance point of view, but also for the situation
where attention is restricted to robust stability aspects.
Related results are provided for stability conditions in
terms of the ν-gap and the Λ-gap.
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