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Abstract: This paper proposes a new robust control design procedure based on a model
and an uncertainty region deduced from classical PE identification. The key step in the
procedure is a quality assessment procedure for the pair “model-uncertainty region”
taking into account the prescribed performance level.
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1. INTRODUCTION

This paper is part of the wide-spread effort
to connect time-domain prediction error (PE)
identification and robustness theory. This paper
builds specifically on some of our earlier works.
In (Bombois et al., 1999; Bombois, 2000), we
have shown that PE identification with full-order
model structures delivers both a model Gi,0q
for control design and an uncertainty region D
containing the true system at a certain proba-
bility level. This uncertainty region is a set of
parametrized transfer functions whose (real) pa-
rameter vector is constrained to lie in an ellipsoid.
In (Bombois et al., 2001a), we have then devel-
oped robustness analysis tools that are adapted
to the uncertainty set D and that verifies whether
a given controller (typically designed from G04)
stabilizes and achieves sufficient performance with
all systems in the uncertainty set D.

The results of (Bombois et al., 2001a) pertain to
the validation of a specific controller with respect
to the systems in the identified uncertainty region.
A controller (designed from the identified model)

may be validated with respect to an uncertainty
region D; delivered by a PE identification under
certain experimental conditions and not validated
with respect to another uncertainty region Dy ob-
tained under other experimental conditions. Con-
sequently, it is important to be able to assess the
quality of the pair {Gmoq D} delivered by a PE
identification experiment with respect to robust
control design.

First steps in this direction have been achieved
in (Bombois et al., 2000b) (see also (Bombois,
2000)). Indeed, we proposed in that paper a
quality assessment procedure that was based on
a robust stability test. A pair {Gmoqs D} was
termed tuned for robust control design if the set
of Gmod-based controllers stabilizing all systems in
D was large enough. The approach in (Bombois et
al., 20000) has some drawbacks. It is indeed only
based on a robust stability test, without taking
into account the performance specifications that
we want to achieve. In the considered set of Gnoq-
based controllers, there are indeed controllers that
are not relevant because they do not achieve the



desired performance with G,,0q4 and will therefore
never result from a control design step based on
the identified model G,,04-

In (Bombois, 2000; Gevers et al., 20015), we have
gathered these results into a robust control design
procedure where the objective was to design a
controller that achieved a level of performance
Ag with the unknown true system Gy. In that
procedure, a PE identification experiment was
first performed on G yielding a pair {Gmoa D}-
The quality of this pair was then assessed for
robust stability using the results of (Bombois et
al., 20005); and, if the quality was judged sat-
isfactory, a controller was designed from G4
using a performance criterion A,,,4 slightly better
(i-e. slightly more demanding) than Aq. Using the
resuits of (Bombois et al., 2001a), we then verified
if the designed controller achieved the prescribed
level of performance (i.e. Ag) with all systems in
D (and therefore also with the true system Gp).

In the present paper, we propose a much sim-
pler and uniform robust control design procedure
whose key step is an improved quality assessment
procedure of the identified pair {G.q D}. The
improvement is in the fact that the prescribed
performance criterion (and not just the robust
stability) is now taken into account in the quality
assessment, in contrast to the results of (Bombois
et al., 2000b).

The new robust control design procedure.
As stated earlier, the key step of our new robust
control design procedure is an improved method
to check whether the identified pair {Gn0q D} is
tuned for robust control design. This verification
is based on the analysis of the behaviour of a
set of controllers C(Gpoq) over all systems in the
uncertainty region D. This set C(Gp04) is defined
as the set of all controllers achieving a perfor-
mance level A, 4 with the identified model G,.04-
This performance level A,,0q (used for control de-
sign with the nominal model G,;04) is, as usually
done in model-based control, chosen slightly bet-
ter than the prescribed performance level Ag. By
definition, the controllers in C(Gmoq) are therefore
those that can result from a controller design step
based on the model G,,4; they are thus the only
ones that are relevant in order to establish the
quality of the pair {Gm.q4 D}. We then state that
an identified pair {Gmo¢ D} is tuned for “robust
control design” if all controllers in the set C(Gmoa)
which achieve the performance level A,,.q with
Gmod, achieve the prescribed performance Ay with
all systems in D.

Determination of the robust controller C. In
the case where the identified pair has been termed
tuned for robust control design, all controllers
in C(Gmoa) are appropriate robust controllers for
the true system Gg since they are guaranteed to
achieve the prescribed performance level (i.e. Ag)
with all systems in D, and thus in particular with
Gy. The choice of a particular controller within
that class can then be made on the basis of addi-
tional considerations such as lowest complexity.

New experiment design. Conversely, in the
case where the quality of {Gmoq D} is not judged
satisfactory (the robustness test fails), we pro-
pose some guidelines (based on the results of the
robustness test) in order to perform a new PE
identification experiment providing a new pair
“model-uncertainty region” that is likely to be
better tuned for robust control design.

2. UNCERTAINTY REGION DELIVERED BY
PREDICTION ERROR IDENTIFICATION

In this section, we recall our previous results
concerning the uncertainty region D delivered by
PE identification assuming that full-order model
structures are used (Ljung, 1999). See (Bombois
et al., 1999; Bombois, 2000) for more details.

Proposition 2.1. Consider G = G(z, &), the true
system. A PE identification experiment (with a
full order model structure) performed on Gy de-
livers an identified model G(z,4) and an uncer-
tainty region D containing the true system Gy at
a prescribed probability level .. This uncertainty
region is centered at G(z,6) and can be described
by the following generic form:

e+ Znd

D= {G<z,<s) |G(2,8) = 775

and § € U} (1)

where U = {§ | (6 — 8)TR(6 - §) < x*}; 6 € R*!
is a real parameter vector, 4 is the estimated
parameter vector defining the identified model, R
is a symmetric positive definite matrix € R***
that is equal to the inverse of the covariance
matrix of 8, x* is determined by the desired
probability level a, Zy(z) and Zp(z) are row
vectors of size k of known transfer functions and
e(z) is a known transfer function.

3. PROBLEM STATEMENT

In this section, we give a precise meaning to the
concept that the pair {Gmoeq D} is tuned for ro-
bust control design. As stated in the introduction,
this involves the determination of a class C{Gnoa)
of G0q-based controllers that are relevant for the
control design problem.



3.1 Performance criterion

Throughout this paper we restrict attention to
performance specifications that can be expressed
in the following very general framework (see e.g.
(Zames, 1981; Glover and Doyle, 1988)):

[C G} is stable (2)
and
| F(G,C) [leo< 1 3)

where
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Here W;;(z) are frequency weighting functions.
Note that in practice the performance specifica-
tions are more often expressed as follows:
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However the performance criterion (3) is gen-
erally used for control design purposes instead
of the four conditions (5) (see e.g. (Zhou et
al., 1995; Glover and Doyle, 1988)) since it leads
to an attractive computational algorithm. Condi-
tions (5) will nevertheless be used for validation
purposes. Note that specifications (3) imply (5),
but the converse does not hold.

We consider the situation where the designer is
faced with the task of constructing a controller
C that achieves a performance level Ag defined
by the specifications (2) and (3) (or in fact (2)
and (5)) on the unknown system Gg (with some
a-priori specified probability level a). For this, we
propose the following procedure which combines
PE identification and validation theory with ro-
bust control design and analysis theory.

3.2 Identification, control design and validation
procedure

The procedure consists of four steps.

Step 1. Perform an identification experiment on
the unknown system Ggy. According to Proposi-
tion 2.1, this delivers an uncertainty region D con-
taining the true system at the chosen probability

level o and a model G(z,8) at the center of D.
Select a model Gmoq € D for control design; for
simplicity we shall here take Gpmoa = G(z,9).

Step 2. Determine the set C(Gmoa) Of Gmod-
based controllers that are relevant for our control
design problem. These are the controllers that
achieve with the nominal model G,,,q a perfor-
mance level A4 that is slightly better than the
prescribed performance Ag on the true system Gy.
The relevant controller class is typically defined as
follows:

C(Gmod) = {C | [C Gmod) stable and
| 2FGmotsO) <1} ©

with v < 1 (e.g. v = 0.9). This set C(Gmod) can
be precisely parametrized as a function of a free
parameter Q(z) € Hoo such that || Q(2) ||e< 1
(see Section 4).

Step 3. Check whether all controllers in C{Gmod)
achieve the prescribed performance with all sys-
tems in D, i.e. whether VC € C(Gmoq) and VG €
D, the conditions (2) and (5) hold.

If this is the case, the controller class C(Gmod)
is called validated for robust stability and robust
performance, and we say that the pair {Gnoq D}
is tuned for robust control design.

Step 4. If the controller C(Gmoq) is validated,
then any controller C' € C(Gmoa) is guaranteed,
with probability a, to achieve the prescribed per-
formance Ag with the true system Gy and the
design procedure is finished. If the controller class
is not validated (i.e. the pair {Gmoqa D} is not
sufficiently tuned for control design), we propose
guidelines for the design of a new identification
experiment providing a new pair {G 04 D} that is
likely to be better tuned for robust control design
(see Section 7).

Important comments. Our 4-step identification
and control design procedure follows an entirely
logical thread from an engineering point of view.
Given that the true system is unknown, one first
identifies a nominal model G,,,q and a model
uncertainty set D around it. One then determines
the class C(Gmod) of controllers that achieves a
certain level of performance that has been chosen
slightly better than is required. One then checks
whether these controllers achieved the required
performance with all systems in D, and hence
with the true system. The choice of a particular
controller within that class can then be made
on the basis of additional considerations, such



as lowest complexity: see Section 7. Finally, we
observe that if the identification experiment has
delivered a pair {Gn0q D} that is tuned for robust
control, then this is a one-shot design procedure.
If not, then our method offers guidelines for an
iterative design, i.e. the results of the validation
analysis of step 3 indicate how to design a new
identification experiment that is better tuned for
robust control design.

4. PARAMETRIZATION OF THE SET OF
RELEVANT CONTROLLERS

The key of the whale procedure is Step 3, which
contains two validation tests, one for robust sta-
bility and one for robust performance. These tests
will be performed by solving a robustness analysis
problem with two sources of uncertainty: a plant
uncertainty region (i.e. D) and a controller uncer-
tainty region (i.e. C(Gmod)). We show in the next
sections that the set of closed-loop connections
made up of the controllers in C(Gmoq) and the
systems in D can be recast into a LF'T framework
and that particular robustness analysis tools can
be developed for that particular LFT represen-
tation. A first step in this direction is achieved
in the present section: we show that the systems
in D and the controllers in C(Gp.q) can both
be expressed as linear fractional transformations
(LFT’s) of some parameter

Proposition 4.1. ((Bombois et al., 2001a)). The un-

certainty region D defined by (1) can be rewrit-
ten in the LFT framework using a real vector
$€ kal:

D = {G(z) | G(2) = Fu(G, ¢) with s
¢ € R¥! and such that ||¢||2 < 1}

where F,(.,.) denotes the classical upper LFT (see
{Zhou et al., 1995)) and G is a known matrix of
adequate dimension which dependson e, Zn, Zp,
6, R and x2.

As for the controllers in C(Gy,04) defined in (6), it
was shown in (Glover and Doyle, 1988) that they
can also be expressed in an LFT framework.

Proposition 4.2. ((Glover and Doyle, 1988)). The
relevant controller set C(Gmoq) defined in (6) can
be rewritten in an LFT framework using a stable
transfer function Q(z):

C(Gmoa) = {C(2) | C(2) = Fi(K, Q) with

Q(2) € Hy and such that || Q |lco< 1} @)

where F(.,.) denotes the classical lower LFT (see
(Zhou et al., 1995)) and K is a matrix of adequate
dimension which depend on G4, F(.,.), and «.

5. LFT FRAMEWORK OF THE
CLOSED-LOOPS

In the previous section, we have given expressions
for D and for C(Gmod), both in an LFT frame-
work. We will now consider the loops made up of
one controller in C(Gp,04) and one plant in D and
show that it is straightforward to express these
loops in the same LFT framework. The closed-
loop connection is entirely described by the four
closed-loop transfer functions between the two
inputs and the two outputs of [C G]:

A<T11(G,C) Tu(G,C))
"\ Tu(G,C) T(G,0C)

(2)- (2 ) ()

1+4CG 1+ CG

Expression (9) gives the closed-loop relations of
the particular loop [C G]. The following propo-
sition gives us the LFT representation of the set
of all closed-loop connections (9) made up of any
controller C' € C(Gmoa) and any system G € D.

Proposition 5.1. Consider the uncertainty region
D defined in (1) and (7) and the set C{Gmoa) of
relevant controllers defined in (6) and (8). The set
of all closed-loop connections (9) made up of the
controllers C € C(Gmoq) and the systems G € D
can be rewritten in the following set of relations
constrained by || A [|o< 1t

q=A(2)p

((£)>:G@<<i)> (10)

where the uncertainty part A(2) is a matrix of size
(k + 1) x 2 given by

A(z) & (g Q((’z)) (11)

with ¢ as in (7) and Q(2) as in (8); and the fixed
part H(z) of the LFT is a partitioned matrix made
up of four stable elements M, Hy,, Hy; and Hy,y
which depend on G and K.

6. ROBUSTNESS ANALYSIS PROBLEM
CORRESPONDING TO THE VALIDATION
TESTS

Based on the previous results, we show in this
section how we can perform the two tests involved
in the third step of our robust control design
procedure (see Section 3). Recall that these tests



consist of verifying that the loops [C G] made up
of C € C(Gmoa) and G € D are all stable and
that they all achieve the prescribed performance
level (5).

The LFT representation of these loops given in
Proposition 5.1 allows one to perform the first test
(the robust stability test) by using the following
classical robust stability result (see e.g. (Zhou et
al., 1995))

Proposition 6.1. Consider the uncertainty region
D defined in (1) and (7) and the set C{Gmoq)
of relevant controllers defined in (6) and (8). All
controllers in C(Gmoq) stabilize all systems in D
if and only if

pa(M(e“) <1 Vw (12)

where M(z) is defined in (10) and where pa is
the structured singular value of the structured
parameter A (see (Zhou et al., 1995)).

According to the previous proposition, we can
thus verify whether all controllers in C(Gmod)
stabilize all systems in D by computing the struc-
tured singular value pa(M(e’~)) at each fre-
quency and verifying that these values are all
smaller than one. In the full version of this paper
{Bomboais et al., 20015), we show that the compu-
tation of pa at each frequency boils down to an
LMI-based optimization problem.

The second test of Step 3 (the robust performance
test) can be performed using the methodology
presented in the following proposition whose proof
is straightforward.

Proposition 6.2. Consider the uncertainty region
D defined in (1) and (7) and the set C(Gmod)
of relevant controllers defined in (6) and (8).
Define the worst case performance related to the
closed-loop transfer function T;;(G,C) (i,7 =
1..2) (see (9)) at the frequency w as:

ch(w, D, C(Gmod)s n]) é ,
. Jw Jw
Gmea}'(D | T:5(G(e™), C(e™) | - (13)
Ce C(Gmod)

Then all controllers in C(G4) achieve the pre-
scribed performance constraints (5) with all sys-
tems in D if and only if:

Jwe(w, D, C(Gmod), Tij) <| Wii(ef@) |71 Vw(14)

for the four closed-loop transfer functions T;;
(1,7 = 1..2) (see (9)).

According to the previous proposition, the ro-
bust performance test involves the computa-
tion at each w of the worst case performance
Jwe(w, D,C(Gmod), Tij) related to each closed-
loop transfer function. The LFT representation of
the loops [C G] given in Proposition 5.1 allows one
to rewrite this worst case performance in a such a
way that an LMI-based optimization problem can
be developed for its computation. This is shown
in the the full version of this paper (Bombois et
al., 2001b).

7. DETERMINATION OF A ROBUST
CONTROLLER OR NEW EXPERIMENT
DESIGN

In the previous sections, we have shown how to
perform the validation tests involved in the third
step of our robust control design procedure (see
Section 3). Now, in order to illustrate the fourth
step of this procedure, let us distinguish two cases.
The first case is where the pair {Gnoq4 D} passes
both the robust stability and the robust perfor-
mance validation tests. The second case is where
the pair does not satisfy one (or both) validation
test(s).

In the first case, the pair {Gmos D} is termed
validated for robust control design. We then
know that any controller in the set C(Gpmoa) of
relevant G,.q-based controllers defined in (6)
will achieve the prescribed performance specifi-
cations (2) and (5) with all systems in D and
thus in particular with the unknown true system
Go. In the second case, the pair {Gmoq D} is not
tuned for robust control design and a new PE
identification experiment has to be performed on
the true system in order to get a better identi-
fied pair model-uncertainty region. A nice prop-
erty of our procedure is that guidelines can be
drawn for the design of this new PE identification
experiment. Indeed, the frequency regions where
the frequency functions pa and Jwe exceed the
admissible constraints are in fact the frequency
regions where the uncertainty distribution is too
large with respect to the desired control objective.
The new experiment should be designed in order
to reduce the uncertainty distribution in those
frequency regions. It should therefore be designed
such that the input signal has a larger power
spectrum in those particular regions. Indeed, the
uncertainty distribution in a particular frequency
range is asymptotically inversely proportional to
the spectrum of the input signal in open-loop iden-
tification (Ljung, 1999) and inversely proportional
to the spectrum of the portion of the input signal
that is due to the reference signal in closed-loop
identification (Gevers et al., 2001a ).



Following the idea presented in the previous para-
graph, our new procedure paves the way for a
new research subject. Given a set of performance
specifications, it consists of determining the ex-
perimental conditions (e.g. the input signal) such
that a PE identification experiment under these
experimental conditions delivers an uncertainty
region D and a model G,,,q4 that are tuned for
robust control design.

8. CONCLUSIONS

In this paper, we have proposed a new robust
control design procedure based on an uncertainty
region and a model delivered by PE identification.
The key step of this procedure is the quality as-
sessment of the pair “model-uncertainty region”.
This pair is termed tuned for robust control de-
sign if the controllers in the relevant controller
set C(Gmoq) stabilize and achieve the prescribed
performance with all systems in D. If it is the
case, then any controller in C(Gmod) is an ap-
propriate robust controller for the true system.
Conversely, if the pair “model-uncertainty region”
is not judged satisfactory, guidelines can be drawn
in order to design a new PE identification exper-
iment delivering a pair that is better tuned for
robust control design.

In this paper, we assess the quality of the pair
{Gmoa D} with respect to the relevant controller
set C(Gmod). This could seem very demanding
since, in fact, we only need one controller in that
set to achieve the prescribed performance. How-
ever, it is in our opinion that we could not term a
pair {Gnoa D} tuned for robust control design
if the prescribed performance level is achieved
by one controller C; in C(Gmod) and not by the
other controllers that achieve the same level of
performance with Gp,oq and that can be obtained
from C) via a modification of the parameter Q.

Finally, the results developed in this paper for the
uncertainty region D deduced from an identifica-
tion step with a full-order model structure can
be easily extended to the case of an uncertainty
region £ deduced from an identification step us-
ing a restricted complexity model structure (see
(Bombois et al., 2000a)). Note also that a simula-
tion example of our method can be found in the
full version of this paper (Bombois et al., 20015).
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