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1. INTRODUCTION

In the work Hoang et al. (2001), stability of the
reduced-order adaptive filter (ROAF) is studied for
time-invariant system based on eigenvalue decompo-
sition approach (EVD) from which one sees that de-
tectability is necessary and sufficient condition for en-
suring a stability of the filter whose gain is constructed
on the basis of all unstable and neutral modes of the
system.

This EVD approach, however, is difficult to apply
to time-varying systems. At the same time, Cohn
and Todling (1996) has proposed the Partial Singular
Value Decomposition Filter (PSF) in which the sys-
tem dynamics is approximated by its leading SVD
(Singular Value Decomposition) part. The main con-
clusion drawn from the twin-experiment on the data
assimilation for the two-dimensional, linear shallow-
water model in Cohn and Todling (1996) is that the
PSF must account for all modes with singular values
larger or equal to 1 for otherwise the PSF diverges.
The theoretical question arising here is whether this
conclusion has a global character, i.e. is it valid for
all dynamical systems ? In the present paper it will be
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shown that involving all unstable and neutral singular
modes (supposing they are all observable) in the con-
struction of the projection subspace is sufficient (not
necessary) for the convergence of the filter.

2. PARTIAL SINGULAR VALUE
DECOMPOSITION FILTER

Suppose that the system is described by

x�t� �� � �x�t� �w�t�� (1)

and we are given the observations

z�t � �� � Hx�t� �� � v�t � ��� (2)

In (1)(2), ��H are known (nxn) and (pxn) matrices,
w�t�� v�t� represent the model and observation errors
which are assumed to be white with zero mean and
covariance Q�t�� R�t� respectively.

When the dimension of the system state x�t� is very
high (order of ��� � ��� for typical meteorological
and oceanographic numerical models), there is no pos-
sibility to apply directly a standard Kalman filter (KF)
to generate the estimate for x�t�. The main idea un-
derlying the approach in Cohn and Todling (1996) is
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to utilize a partial SVD of the tangent linear dynamics
(i.e., � for linear system (1)) between consecutive
observation times : the tangent linear propagator is
approximated by a leading part of its SVD. Introduce
the following class of filters

�x�t � �� � ��x�t� �K��t � ��� (3)

where � is the innovation vector, K is the gain matrix.
Let � � UDV T be the SVD of �, where U �
	U�� U�
� V � 	V�� V�
, D � diag	D�� D�
 U�� V�
are of dimensions (nx�), U�� V� are [nx�n � ��]
matrices, and D�� D� are (�x�) and [(n � ��x�n �
��] matrices respectively; D� � diag 	��� ���� ��
 is
composed from the first � leading singular values of �
(and the columns of U� and V� are the corresponding
right and left singular vectors of �). Write

� � �� � ��� (4)

where �� �� U�D�V
T
� � �� �� U�D�V

T
� . The PSF

in Cohn and Todling (1996) is in fact a Kalman-like
filter in which the leading part �� is proposed to be
used instead of � in the Algebraic Riccati equation
(ARE).

3. REDUCED-ORDER ADAPTIVE FILTER

Consider the filter (3) and let the gainK be parametrized
by some vector �. In Hoang et al. (1997) an optimal
AF is determined which is aimed at minimizing the
mean prediction error

J���� � E	����
� min
�

	���� � �T �
 (5)

The optimal parameters � are updated on-line by ap-
plying stochastic optimization algorithms.

To reduce the number of adjusted parameters in the
gain, let K be assumed to be of the form (cf., Hoang
et al., 1997)

K � PrKe (6)

where Pr is an a priori known (nxne) matrix and Ke

is an (nexp) matrix whose parameters are estimated
by minimization of the objective function (5). Usually
ne �� n.

3.1. PSF as a reduced-order filter
If we replace � by �� and assume that the initial error
covariance matrix (ECM) for the system state P ��� as
well as the ECM of the model error w�t� belong to
R	U�
, then the forecast ECM derived from the ARE
belongs to R	U�
 too. This fact allows us to represent
the gain of the PSF in the form (7) with Pr � U�. The
method developed in Hoang et al. (2001) is then very
helpful for studyng the question on stability of the PSF
and its adaptive version in next sections.

4. STABILITY OF THE PSF

4.1 A simplified case

Let �i��� be the ith largest singular value of �.
The vector and matrix norms are defined as kxk �
	
Pn

i�� x
�
i 

���� k�k � 	���AAT �
���

Consider filter (3) and the SVD (4). Let � be a non-
negative integer number such that for some fixed � �
��� ��,

�����t� � �

jjBjj� B � KeH (7)

Introduce

rank 	He
 � ��He � HU�� (8)

Theorem 4.1. Consider system (1)(2) and let � be a
nonnegative integer satisfying constraint (7). Consider
filter (3) and let Pr � U�. Then under condition (8)
there exists a reduced gain Ke ensuring the exponen-
tial stability in the filter.

Proof .

Introduce the gain Ke in the reduced space Ke � H�
e

where H�
e is the Moore-Penrose pseudoinverse of He

(Albert, 1972).

Due to condition (8),

KeHe � H�
e He � I� � � �� � (9)

We show now that K � PrKe subject to Pr � U�

will ensure the exponential stability of the filter. Let
us look in detail the transition matrix of the filter
L � A� � A���A�L��L� where A �� I �KH�

L� �� A�� � �I � U�KeH���� L� �� A�� � �I �
U�KeH��� and ����� are defined in (4).

(i) For K defined above, L� � � : L� � 	U� �
U�KeHU�
D�V

T
� � � since KeHU� � I� .

(ii) ConsiderU TL��t�V � D�t� �
UT
� L�V� UT

� L�V�
UT
� L�V� UT

� L�V�

where D� �
� �
� D�

. We have jjL�jj � jj D�jjjj D�jj.
Let us look at jj D�jj � jj D���jj. Introduce the ma-
trix D��� �� KeHU � 	KeHU��KeHU�
 �
	I�KeHU�
. It can be shown that jj	I�KeHU�
jj �
jj D���jj � jjKeHU jj � jjKeHjj since U is orthonor-
mal. Hence jjL�jj � jj D�jjjj D�jj� jjBjj���� where
B is defined in (7). The requirement jjBjj���� � � for
some fixed � � ��� �� then is automatically satisfied if
we impose constraint (7). (End of proof)

Comment 4.1. Let 	 denote the observational index of
�H���, i.e. 	 is the minimal integer such that rank
	O�
 = rank 	O�
� n for all integer 
� 
 � 	, O� :=
	HT � �H��T � ���� �H���T 
T . Let n be the dimension
of the space range 	O�
. Let H be the �nxn�-matrix



whose rows are the n linearly independent rows of
O�. Then for the existence of a stable filter, condition
(8) may be replaced by

rank 	 He
 � �� He �� HU� (10)

4.2. General case.

4.2.1. Condition (7) imposes the constraint on the
maximum singular value among those which do not
participate in construction of the projection subspace.
Introduce now

U� or V� � R	HT 
 (11)

Lemma 4.1. Consider system (1)(2) and let � be a
nonnegative integer satisfying constraint (8). Consider
filter (3) and let Pr � HT �Ke � 	HHT 
� or
K � H�. Then under condition (11) the filter is
exponentially stable.

Proof.

(i) U� � R	HT 
: jjI �KHjj � � and jjL�jj � jj	I �
KH
U�D�V

T ���jj � jjD�jj � �.

(ii)V� � R	HT 
: V T
� 	I�KH
 � � and for� � ���

�� one has ��	I � KH
 � � hence �	I � KH
 �
��	I �KH
 and jj��	I �KH
jj � �. (End of proof)

Remark. Requirement (11) is relatively strong for H.
Consider O� defined in Comment 4.1. Suppose that
there exists a positive number 	� such that

U� or V� � R	OT
��
 (12)

Let 		 be a minimum integer number for which the
above relationship holds. For convenience introduce
the notation H �� O�� . Consider the filter

�x�t � �� � ��x�t� �� 	�� (13)

where

x�t � �� 	� � �x�t � 	� � K ��t� �� 	�,
��t � �� 	� �� z�t� �� 	�� H�x�t� 	��

z�t � �� 	� ��
	zT �t� �� 	�� zT �t� �� 	�� ���� zT�t � ��
T

� Hx�t� �� 	� � v�t� ��

Then the observation system is written as z � Hx

Corollary 4.1. Consider system (1)(2) and let condi-
tion (12) hold. Consider filter (34) subject to the gain
K � H�. Then the filter is exponentially stable.

4.2.2. Next we will present the general result stating
that there exists a stable PSF if all the left or the right
unstable and neutral singular modes of the system are
observable.

Definition 4.1 (Strejic, 1981). System state x�t� is
observable if it can be determined by future values of

the system output z�T �� T � t and if T � t is finite.

In what follows let in (1)(2) w�t� � �� v�t� � �.

Assumption 4.1. Any system state x � R	U�
 or x �
R	V�
 is observable.

Lemma 4.2. Assumption 4.1 is equivalent to (12).

Proof. The proof is given for x � R	U�
 only.

�a� (12) holds: Consider the system of equations z �
Hx�. This system has solution since w�t� � �� v�t� �
�. Let x � U�y be a system state for some y �� �.
From (12) it follows x � R	 HT 
. Theorem 3.1 (b) of
Albert (1972) says that in this case the system z �
Hx� has a unique solution and this solution is defined
by �x � H�z. Since x is a solution of z � Hx�, i.e.
z � Hx, one concludes that x can be defined exactly
as x � �x or x is observable.
�b� Let x � R	U�
 be observable. Again consider the
system z � Hx�. As this system has solution, all its
solutions can be written as �xy � H�z���y�� ��y� ��

	I � H� H
y, 	y � Rn. Suppose for instant that (12)
does not hold. It means that there exists y� �� � such
that x � H�z � ��y��. The relation H��y�� � �
implies that one cannot obtain any information on
the component ��y�� from z hence it is impossible to
define x from the system z � Hx�. The last fact is
contrary to observability of x. Thus observability of x
implies x � H�z or x � R	 HT 
. (End of proof) .

Results of lemmas 4.1-4.2 prove

Theorem 4.2. Consider system (1)(2) and suppose that
all the unstable and neutral left or right singular modes
of the system dynamics are observable. Then there
exists an exponentially stable filter.

Comment 4.2. From Theorem 4.2 it is reasonable
to introduce the definition of s-detectability for the
system as observability of all the left or the right
unstable and neutral singular modes of the system
dynamics.

Comment 4.3. As seen from proofs of Theorems 4.1-
4.2, stability of a filter based on SVD approach does
not depend on time-invariant character of the system
dynamics. This constitutes one of major advantages
of the SVD approach in comparison with the EVD
approach in Hoang et al. (2001).

5. NUMERICAL EXAMPLES

5.1 Example 1

Let � be 2x2 matrix, all elements of � are zero except
��� � a � � (a may be time-varying). Evidently the

SVD of � has U � I�, V T �
� �
� �

, D � diag 	a� �
.



Let H � ��� ��T . Let us take Pr � u��Ke � H�
e �

�. It is easy to check then that conditions (7)(8) are
satisfied (rank 	He
 � �� ���t� � � � �p

�
, � �

��� ��) hence the filter in Theorem 4.1 is exponentially
stable. Mention that for constant a, � has two stable
eigenvalues (they are 0) and even the open-loop filter
is stable. It means that in general it is not necessary to
construct the projection subspace from all the unstable
and neutral singular modes to ensure the stability of
the PSF.

5.2 Example 2

Let � be 2x2 matrix, � � UDV T with U � I,

D � diag 	��� ��
, V T � �p
�

� �
�� �

.

�a� Let H � ��� ��. Suppose that �� � �� �� � �, i.e.
only the first singular mode is unstable.

�a��� First we show that involving all the left unstable
and neutral modes in construction of the projection
subspace is unsufficient for ensuring the stability of
the PSF. Let Pr � u� � ��� ��T . One can check
that u� is observable. The gain in the reduced space
is scalar and is denoted by Ke � ke. Since

� � �p
�

�� ��
��� ��

I �KH � I � PrKeH �
�� ke �ke

� �
L � 	I �KH
� �

�p
�

��� ke��� � ke�� ��� ke��� � ke��
��� ��

the eigenvalues of L �� �p
�
L satisfy the equation

a�� � b� � c � � where a � �� b � �	��� ke��� �
�� � ke���
� c � ������� � ke� and they are given

by �� � 
�b�
p
��

� , �� � 
�b�
p
��

� , � � b� � �ac.
If two eigenvalues ��� �� of L are stable, then it is
necessary j����j � �. We have ���� �

����
� � ac

� �
������ � ke�. The requirement j����j � � leads to
� � �

	�	�
� ke � � � �

	�	�
. For (very) large �� this

constraint is equivalent to ke � �. Let us look at L

for ke � �. Then L � 	�p
�

� ��
�� �

and L has two

eigenvalues �� �
p
��� and 0. Thus two eigenvalues

of L are stable only if �� � �p
�
. For constant ��H�K

the filter is time-invariant system and it is stable if and
only if all eigenvalues of L are stable. We conclude
then that the filter with the gain K � u�ke is stable
iff �� � �p

�
(at least after a finite time instant t).

Evidently if �p
�
� �� � � there does not exist ke

ensuring the stability of the PSF.

�a��� Looking at V one sees that the right unstable
v� belongs to R	HT 
 hence one can design a sta-
ble filter by projecting the correction onto subspace

R	Pr
� Pr � v� with K � H�. No constraint like
�� �

�p
�

is needed for ensuring a stability of the filter.

�b� Another way to remove the constraint �� � �p
�

using the left singular vector u� is to follow Corollary
4.1. Since u� is observable ( H is nonsingular), one
can design a stable filter (13) on the basis of the obser-
vation system z � Hx. Since H � 	HT � �H��T 
T

is nonsingular, the gain K � H� � H�� �

�



�� � ��p
�

��

��� � ��p
�

�
, L � � and

x�t� � Lx�t � �� � Kz�t��

Kz�t� � �



�� � ��p
�

z�t� � z�t � ��

��� � ��p
�

z�t� � z�t� ��

from which one obtains

�x�t� �� � �x�t� � 	 	�p
�
z�t�� z�t � ��� 	�p

�
z�t�
T .

For noisy free system, x�t� �� � �x�t�,

x�t� �� �

��p
�
	x��t� � x��t�


��p
�
	x��t�� x��t�


.

For H � ��� �� one finds z�t� � x��t� � x��t� hence
	�p
�
z�t� � 	�p

�
	x��t� � x��t�
 � x��t � �� and z�t �

��� 	�p
�
z�t� � x��t� ��. Thus the filter yields �x�t�

�� � x�t���. The reason by which filter in Corollary
4.1 produces exactly the system state for noisy-free
system is that both u�, u� are observable and H with
minimal rank satisfying the condition u� � R	 HT 
 is
nonsingular. The system z�t� � Hx�t� hence allows
to define exactly x�t�.

5.3. Example 3

��t� has �� � �� � � for all t but �� � a � �,
�� � � for odd t and �� � a , �� � � for
even t. It is clear that the eigenvalues of ��t� are
stable. The open loop filter has the fundamental matrix
L�t � �� � � �� L�t����L�� �� t � �� L�t� t� � I which
is equal to : (1) if � �� t � � � � is odd then all
the elements of L�t � �� � � are equal to 0 except its
(1,2)-element which is equal to a�; (2) for even �, all
the elements of L�t � �� � � are zero except its (1,1)-
element equal to a�. Thus the open-loop estimator
is unstable. The filter in Hoang et al. (2001) is thus
applicable only for time-invariant systems.
On the other hand, the system dynamics has only
one unstable singular mode u� � u��t� (u��t� �
��� ��T for odd t and u��t� � ��� ��T for even t). Let
H � ��� ��. Evidently the unstable singular mode is
observable. The closed-loop estimator in Theorem 4.1
subject to � � � has the transition matrix L��� � �
(from �� � � it follows D � � and hence L� � �.
Hence the filter is stable.



6. TWIN EXPERIMENT ON ESTIMATION OF
PERIODIC DEPENDENCIES

6.1 Numerical model

6.1.1. Continuous model. In this section the exper-
iment on estimation of periodic dependencies which
arises in all domaines of scientific research Bellman
(1965) is presented. Let the function f�t� have the
form

f�t� �
mX

i��

�icos�	it� (14)

The parameters m, �i and 	i are usually unknown and
the problem is to estimate these parameters using the
set of obsevations f�tj �� j � �� ���� N . Following the
approach in Bellman (1965), the observations z�t� �
f�t� are presented in the form

z�t� � f�t� �
mX

i��

ui�t� (15)

where ui�t� - solution of the equations

u��i �t� � 	�i ui�t� � �� ui��� � �i� u
�
i��� � �(16)

In the present experiment we assume that m is known
and m � �.

6.1.2. Discreteized model. Applying the scheme
u���t� 
 u�t���u�t�
t��u�t��
t�


��t� , u��t� 
 u�t��u�t�
t�

t

and representing the discretized version of system
(16) in the state space form x�t� � �x�� ���� x��T �
	u��t�� u��t��t�� u��t�� u��t��t�� u��t�� u��t��t�
T
yields the following discrete-time system

x�t� �� � Ax�t� (17)

where we use the formalism 	t � �
 � 	t
 � �t. The
matrix A � block diag 	A�� A�� A�
 with Ai is (2x2)
matrix. The elements of Ai are a�� � �� � ��t	i�

�,
a�� � ��� a�� � � and a�� � �. Thus in the
state space form the system state x�t� � R�. The
true values of the parameters are (Bellman, 1965):
�� � �� �� � ���� �� � ���; 	� � ����� 	� �
����� 	� � ����. The parameter �t � ����. First (16)
is integrated subject to true values ��i� 	i�. The zero
mean uncorrelated Gaussian noise is added at each
model time step to the components x�� x�� x� with
corresponding variances 0.0025, 0.0001, 0.0001. The
obtained thus values of x�t� are used as the ”true”
state. The noisy observations zto are assumed to be
available at the moments to, zto � f�to� � x��to� �
x��to� � x��to� � v�to� where to is defined as 	to �
�
 � 	to
 � ���t and v�to� is zero mean uncorrelated
Gaussian sequence with the variance R � ������. The
observation matrix H thus is H � ��� �� �� �� ����.

6.2 Experiments

Assume that we are given a-priori �	� � ���� �	� �
���� �	� � ���. The parameters 	i are supposed to
be known precisely. Thus the transition matrix A

between two model time steps as well as � � A�	

between two assimilation (observation) instants can be
computed exactly and one can apply the ”true” KF
(between two assimilation instants we have x�to �
�� � �x�to�� 	to � �
 � 	to
 � ���t�� On the other
hand, the initial gain in the AF will be computed on
the basis of �� which is a leading part in the SVD of
�, i.e. � � �� � ��, �� � U�D�V

T
� , U�� V� consist

of the left and the right unstable singular modes of �
respectively.

Three filters will be applied in the experiment:

(i) ”True” Kalman filter (TKF): That is a standard KF
with all parameters and statistics well specified except
for the model error covariance Q. As this matrix is
unknown, the following procedure is applied to obtain
its best estimate: First we run the KF subject to differ-
ent Q � qI. The total variances of the filtered error,
obtained at to � ����, are compared for different q
varying from 0 to 100. It is found that filtered error
decreases as q increases and it is stabilized from about
q � ���. For simplicity in the KF we assign q � �.

(ii) Non-adaptive PSF (NAF): this filter has the time-
invariant gain K	 � MHT 	H MHT 
�, M � ���T

� .
Evidently the correction in the filter is an element of
the subspace R	U�
.

(iii) Adaptive filter (AF): In this filter the gain has
the form K � �K	, � � diag 	��� ���� ��
 which
are adjusted to minimize the prediction error. The
initial values of �i� i � �� ���� � are equal to 1 which
correspond to NAF.

6.3 Numerical results

The computation reveals that� has 3 unstable singular
modes. The matrix �� has therefore the rank 3.

Fig. 1 shows variances of forecast errors produced
by three filters. As expected, the TKF produces the
best estimate. In comparison with the NAF, the AF
allows to reduce significantly the estimation error and
at the end of the assimilation period its performance is
comparable with that of the TKF. As seen from Table
1, at to � ���, the AF is capable of reducing the
estimation error in the NAF from 0.752 to 0.366 or
equivalently the reduction of 51 % of this error. The
reduction attained 97% at the end of the assimilation
period to � ����. Regarding the AF at two different
time instants to � ��� and to � ���� on notes also
the reduction of 93 % of the estimation error resulting
initially at to � ���. It is worthy of mentioning that
if in the KF one put Q � � as done in the AF, then
at to � ���� the variance of the filtered error is 9.3.
Moreover the KF is explosed after some iterations if
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���
���

���

���
���

���

���
���

���
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NAF
AF

TKF

Fig. 1. Performances of three filters NAF, AF and TKF in terms of
forecast error variances (mobile averages over 50 assimilation
instants) for the system state.

its gain is updated using the approximation � 
 ��

in the RDE as it does in the AF. Thus the KF is really
the best filter only under ideal conditions, i.e. when
there are given exactly all system parameters and error
statistics. Otherwise it may produce a poor estimate or
even diverges.

Table 1

Total error variances of filtered estimates

to NAF AF TKF

200 0.752 0.366 0.004

1000 0.694 0.023 0.013

7. CONCLUSION

We presented in this work some theoretical results on
the (exponential) stability of the PSF. The modifica-
tions of the structure of the gain for adaptation purpose
can be made following the EVD approach in Hoang et
al. (2001). In contrast to the EVD approach, where
using all the unstable and neutral eigenmodes of the
transition matrix is necessary and sufficient for the
existence of a stable filter (of course, for time-invariant
system), the design of a stable PSF requires much
more careful examination of observability of either the
left or the right unstable (and neutral) singular modes
in the SVD structure.
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