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Abstract: A causal diagnosis solution relying on experts’ knowledge concentrates on
the different malfunctions that may disturb the data acquisition process and tells
the engine test bench tuning engineer which malfunction has occurred or which
malfunctions are most likely suspected. The use of fuzzy sets and possibility theory
provides better feedback and knowledge representation. The general architecture of
the system is described, and a prototype of the fault-diagnosis part of this sytem
is presented. It concerns the implementation of an (off-line) automatic knowledge

formalization system and the implementation of the (on-line) possibilistic causal

diagnosis process. Copyright © 2002 IFAC
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1. INTRODUCTION

This paper presents a prototype implementation
part of a long term research and development
project, which aims at improving the calibration
of car engine ECUs (ECU: Electronic Control
Unit), on engine dyno test benches, by detecting
malfunctions when they occur. This project is
named BEST, standing for Bench Expert System
Tool. Here, the implementation process of BEST
only is presented. See (Boverie et al., 2002) for
more details on the general approach to diagnosis
developed for BEST.

The engine dyno context, the needs and ex-
pected benefits (regarding diagnosis expert sys-
tem BEST) are explained below (Section 2).
Section 3 gives BEST’s general architecture and
concentrates on the fault-diagnosis part, which is
implemented in a prototype. Section 4 presents
the representation framework of the knowledge

on malfunctions (faults) and the automatic for-
malization system developed in order to collect
knowledge and use it very fast in the diagnosis
process. Section 5 presents the approach first
outlined in (Dubois et al., 1999) and implemented
on a prototype. Finally some perspectives are
given in conclusion.

2. THE ENGINE DYNO

In one century, diesel and gasoline cars have gone
from the carburettor to the electronic injection
(ECU-controlled). More and more complex strate-
gies have been implemented to answer to increas-
ing constraints (pollutant regulations, vehicle be-
havior, new engine configuration: direct injection,
diesel common rail, Variable Valve Timing, Elec-
tric Controlled Throttle...) and an increasing
number of variables must be taken into account.
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Fig. 1. The calibration process

For each new engine or new version, the control
strategy parameters have to be calibrated in order
to fit the requirements. This is done through a
large amount of testing and tuning. These tests
can be done on the engine dyno bench, on the
chassis dyno or directly on vehicles. During all
these processes, data acquisitions are made, and
then used to define calibrations.

2.1 The calibration process

Figure 2.1 shows the calibration process on an
engine dyno. The calibration of the ECU is per-
formed thanks to a calibration tool. Basically,
the ECU gets measurements from engine sensors
(e.g., Mass Air Flow, Engine Speed . .. ), computes
other intermediate variables and finally tells the
engine which amount of fuel should be injected
and what the spark advance should be. The data
used for the calibration process are recorded by
the calibration tool. They are provided by engine
sensors and ECU but also by the engine dyno
sensors, as well as additionnal devices. That is
the System. In the following, System stands for
the engine, the engine dyno, all sensor sets and
additionnal devices.

2.2 Data acquisition

Before doing any acquisition, the global confor-
mity of the system has to be checked. It must
be in accordance with the specification and the
methodology. This global check includes physical
verification (sensors, fuel consumption measure-
ments, gas analysis...), but also system configu-
ration (i.e. inhibited system functions). As sensors
become more numerous and the strategies more
complex, this global check requires more time
and so the tuning engineer has less time for the
testing itself and its methodology. The result of
this situation is that test duration is increasing,
and the reliability is degraded.

Then, while performing the tests, an on-line veri-
fication must be done to garantee the acquisition
validity. Again the tuning engineer can check the
validity of measurements manually while running.
He checks single-parameter raw thresholds, coher-
ence of some parameters with standard values, as
well as coherence between several parameters. He

also compares mesurements with those of previous
tests. Nevertheless, today it is nearly impossible
for the engineers to ensure the global coherence
on-line (real time). Most of the time, when there is
a problem, it is discovered during post processing
data treatment. Quite often the test has to be
performed again.

This paper describes the need for a(n expert)
system, which takes into account all of these issues
linked with global system conformity.

2.3 Needs and expected benefits

Today, 10 to 20% of the manual tests must be
reworked due to bad acquisitions, bad software
configuration... Most of the time malfunctions
are due to dyno bench environmental problems
(gaz analysis, fuel balance...). So wrong acqui-
sitions should be detected right away and the
malfunction that occured should be identified as
soon as possible in order to correct it quickly and
make sound acquisitions again.

Some common and simple malfunctions are al-
ready easily identified by engineers. Yet others
require time-consumming searches for their origin
and symptoms whenever they occur. Indeed, engi-
neers cannot keep in mind all the information and
past experiences. Moreover they cannot watch in
real time all the (numerous) measured channels.

In order to cope with such checkings, an expert
system, BEST, has been considered and a proto-
type has been developed. BEST has to perform
global coherence checking, in the same way as for
manual tests. It should be able to detect and iden-
tify malfunctions as soon as they appear: That is
on-line detection.

3. GENERAL STRUCTURE

BEST represents a huge amount of work and
investment. It gathers several functionnalities di-
vided into different modules for step by step de-
velopment and validation. This Section presents
the general architecture of BEST and the part
for which a prototype has been developed. Some
of the ideas underlying this architecture can be
found in other approaches to industrial diagnosis

(e.g., (Cordier et al., 2000)).

3.1 Project’s architecture

Figure 3.1 presents the different modules:

¢ FORM, which enables the experts to formalize
their knowledge, using fuzzy rules.

e ESO, which Extracts, Sorts and Organizes the
rules w.r.t bench/engine environment specificities.
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Fig. 2. The architecture of BEST

e AI which is the Artificial Intelligence part
performing the diagnosis by using the extracted
rules and the measurements made on the engine.

Each module, contains the 3 following submod-
ules: OK (diagnosis based on models of normal be-
haviour), KO (diagnosis based on models of mal-
functions) and MASTER (the supervision rules).
In the AI module, OK and KO diagnosis are
aggregated in DIAG. BEST_AI_OK tells which
models of normal behaviour are not reached and
BEST_AI_KO tells which malfunctions have been
identified. The use of two different diagnosis is
safer in regard to incompleteness and possible
inconsistency of some models. Besides, both di-
agnosis (OK and KO) can give some feedback
explaining why a model of normal behaviour was
not reached and why a malfunction was selected.
They may also ask for other specific measure-
ments in order to improve their diagnosis. Finally,
MASTER decides wheather the test may con-
tinue, should use another computation for some
variables, or should stop. This decision is taken
according to the supervision rules, the specificity
of the test (telling which variables are necessary
in this test), the two diagnosis (pointing at the
source faulty variables) and a dependency graph
(which gives the induced faulty variables).

3.2 Implementation

A prototype has been developed for the whole KO
part of the BEST project. The main expectation
is to have a demonstrative application which can
detect and identify malfunctions as soon as they
appear on engine dyno test benches. Recording
and formalizing the available knowledge is a key

step of this project and a preliminary standard
form has been defined to describe the malfunc-
tions (Boverie et al., 2001).

The entire prototype was developed under Win-
dows NT in Visual C++ with MFC library for
the user interface model. It implements the docu-
ment/view architecture using MDI (Multiple Doc-
ument Interface) template: the application can
have two or more documents open for editing at
once. Moreover, the database was designed under
Access and was used through the DAO (Data Ac-
cess Objects) application programming interface.

The solution implemented is based on the gener-
ation from a knowledge database of a fuzzy rule
file consistent with test specificities and environ-
ment. This file is then used by another tool to
perform the diagnosis on engine dyno computers.
So, the prototype is made of two standalone appli-
cations: one for off-line formalization and selection
of knowledge (Section 4) and the other for on-line
diagnosis (Section 5).

4. OFF-LINE TOOL

The main interface is made of two parts:

e A FORM part which concerns the database
management, and consists of a workspace with a
search engine (Section 4.1).

e An ESO part which concerns the files manage-
ment. By default, the workspace shows a list of
all malfunctions already created in database, each
one is detailed as a tree of symptoms (Section 4.2).

4.1 FORM part

First of all, it is a tool for the enlargement of
the knowledge database to obtain more consistent
rules. The user has to populate database with
engine experts’ knowledge about the malfunctions
and their effects. It is generally a laborious and
repetitive work. For each malfunction identified,
the following three tasks have to be done:

o Give the malfunction definition: the user has to
enter a unique definition with four characteristics:
a group, a type, an identification and the nature
of default (some choices are proposed for each).

o Give the malfunction structure: according to the
algorithm, the user has to describe the malfunc-
tion with symptoms built with two level connec-
tions (AND/OR logical operators with a level of
confidence and weighting).

e Give the symptom details with four elements:
an attribute definition (mathematical function for
the observed anomaly), a possibility level (prob-
ability to observe the attribute within a defined



range), some conditions (operations having an in-
fluence on the way the attribute can appear), and
an environment (bench and engine specificities).

It is important to notice that a symptom is de-
scribed for a specific environment. So, a malfunc-
tion can have the same symptom several times just
because of different environments.

4.2 ESO part

The purpose of ESO is to Extract, Sort and
Organize the rules depending on the environ-
ment of the engine dyno test bench. The proto-
type implements ESO as a functionality of the
BEST_FORM_KO module.

It consists of files that are used to give knowledge
to the Al core which performs the malfunctions di-
agnosis by itself. When a new ESO file is created,
the user has to parameter its environment. Only
malfunctions of the workspace having compatible
symptoms with this environment are automati-
cally added into the file (through a serialization
mechanism). For the incoherent symptoms, the
user can choose to modify their environment in
order to make them compatible or to remove
them. The generated files are very efficient but
unreadable (of course, they can be easily modified
with the tool).

T B=

 Fle ¥ew Help
hMedalnmi+s-% | Y eaBEmER4E .
:‘ EHE Knowledge Database =

- Bench Equipment Measurement devices C0 analyser Dut of order

=-E] Bench Equi it Oth Engi d Out of ord
=, ench Equipment Other sensor Engine speed sersor Out of order |
=R O Group
ikl
[<Ergre nvomans |
1 ¢ Type envionment >

[
&[] Bensh Exuipmer
#-E Bench Equipment Other sensor Torque sensar Wrong calbration

e} Bench Equipment Pressure sensor Manifold pressure Unplugged -

Fleady | MM | 4

Fig. 3. Main screen

5. ON-LINE TOOL

This Section describes the basis of the methodol-
ogy on which relies the diagnosis process of the
prototype. It first defines some notations (Sec-
tion 5.1) for the malfunctions, attributes, causal
fuzzy rules (formalized knowledge) and observa-
tions (also possibly fuzzy). Then, the diagno-
sis is developed on the idea of consistency (Sec-
tion 5.2) and finally it is refined with abduction
(Section 5.3). A toy example is carried out at
each step. A prototype implementation of this
diagnosis process is then presented (Section 5.4).

Table 1. Fuzzy Causal Knowledge

Malfunction Inlet Temperature Exhaust Gas Back Pressure
H H
1 1
m
E 0
50 300 Tec 100 Pea
M H
1 1
m
2 o ; 0 .
50 300 c -100 Pa
M H
1 1
m
3 0 0
Tec Ppa

-100

5.1 Notations

Let M be the set of all (known) possible mal-
functions and A be the set of the n observable
attributes: {X;, -+, X,}. Let m € M and
i € {1, ---, n}, then 7 denotes the possibil-
ity distribution (Zadeh, 1978), giving the (more
or less) plausible values for attribute X; when
malfunction m (alone) is present. Let U; be the
domain of X;, so mk, : Ui — [0, 1]. Ki, will be
the fuzzy set corresponding to possibility distri-
bution ¢ . It represents what is known about the
effects of malfunction m on attribute X;. ICEn is
also called effect, or symptom, of m on X;.

For instance, let M = {my, ma, mz}, X1 =T (the
inlet temperature) and Xy = P (the exhaust gas
back pressure). Table 1 summerizes the knowledge
concerning the effects of these 3 malfunctions on
those two attributes:

e my gives a high inlet temperature and a positive
exhaust gas back pressure.

® ms gives a high inlet temperature and a negative
exhaust gas back pressure.

e m3 (has no effect on inlet temperature and) gives
a negative exhaust gas back pressure.

The observations may also be imprecise (or un-
certain). up, : Uy — [0, 1] is the possibility dis-
tribution, which gives the (more or less) plausible
values for the observed value of attribute X;. O
denotes the fuzzy set corresponding to possibil-
ity distribution pe,. It expresses the imprecision
(or uncertainty) of the observations (coming from
sensors). In other words, it represents the possible
actual values for attribute X;.

In the toy example, the imprecisions of the obser-
vations are represented with crisp sets (Table 2).

K and O; both express imprecision, when they
contain more than one element. Yet, they give
information of two highly different types:

e imprecision for O; can be “controlled”: Chang-
ing the sensors would give more precise (but may
be more expensive) or less precise observations.



Table 2. Using the consistency index

Table 3. Using abduction

Malfunction Inlet Temperature Exhaust Gas Back Pressure

Malfunction Inlet Temperature Exhaust Gas Back Pressure
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e imprecision on K¢ , on the contrary, cannot be
reduced (or changed) that easily: It depends on
the available knowledge about the System only.

Note that when attribute X; is not yet observed,
its value is not known, and it could be any value
of Uy: Yu € U;, po,(u) = 1. Similarly, when
malfunction m has no known effect on attribute
X;, all values are allowed: Yu € U;, 78 (u) = 1.

In fact, for the knowledge representation, the ex-
perts are very often more comfortable in express-
ing their confidence in some values they consider
highly possible or, on the contrary, totaly impos-
sible. So, for continuous attributes, the experts
only need to tell what they know best (values of
possibility 0 and 1) and mt is then computed to
follow the given information and to be continuous
and piecewise linear (see Table 1). For discrete at-
tributes, we can have different levels of possibility
(e.g., from 0 to 1 by step of 0.1 units).

5.2 A consistency-based index

A consistency-based index has been defined: picopns :
M — [0, 1], which enables to discard observation-
inconsistent malfunctions (picons(m) close to 0).

The possibility distribution attached to O; (\KZ,
is defined by: u —— min(uo,(u), 7 (u)) and
tells how much the observations and the knowl-
edge on malfunction m are consistent. The ele-
ments of highest possibility in this intersection
give the consistency degree between O; and K, :
sup, ey, min(po, (u), 7, (u)). The consistency de-
gree for any malfunction m with the observations
is then given according to those of @; and K, (for
each attribute):

Heons(m) = min sup min(po, (u), mh (u).(1)
=1 weU;

So the toy example leads to Table 2. Here, m;
is discarded by picons as the measured exhaust gas
back pressure is incompatible with the presence of

Hyel Hrel
1 — 1
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m 0.47|
2 0 - 0 -
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Hrel Hrel
1 - = 1
1t 0.83
m
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-100

my. Yet, my and mgs are both absolutely consistent
with the observations. Should one of them be a
better explanation of the observed symptoms?

In case of too incomplete knowledge, picons might
not be sufficient in order to select a small enough
number of malfunctions. So, a second index is
required in order to refine pcons and bring a
better conclusion: find, among the undiscarded
malfunctions, which one is most relevant to the
observations.

5.3 An abduction-based index

A malfunction is more relevant to the observations
when its effects have been observed for sure. That
is: @; C K! (for crisp sets). In order to single out
most relevant malfunctions, fuzzy inclusion of O;

in X!, has to be defined.

Inclusion can be defined by implication (for crisp
sets, A C B is equivalent to Ve, 2 € A = z €
B). So, several fuzzy implications (—) have been
checked for this purpose. Thus a second index is
defined to evaluate the relevance of a malfunction:

n

pret (m) = min inf po, (u) = m, (u).  (2)

The worst implication degree tells the extent to
which the malfunction is relevant to the observa-
tions. So pire; selects the most relevant malfunc-
tions (prer close to 1).

Dienes’ strong implication (¢ —p b = max(l —
a, b)) was chosen because it is the most dicrim-
inating and it keeps the following natural crisp
property: if O; C K! , then O; " K! # 0. That is:
Hcons Z Hrel -

This index has abductive caracteristics as it se-
lects m from the knowledge of the effects of m
and the observation of the effects of m.

The toy example then leads to Table 3 in order
to classify equally-consistent malfunctions (here
mg and ms). So mg is the best explanation, as
it has the highest confidence level concerning the
presence of its symptoms (0.83 vs. 0.47 for ma).



Note that the use of p,¢; is linked to the fact that
observations are imprecise (indeed, frei = Heons
in case of precise observations). Yet, a totally
precise observation is feasible only for discrete
attributes. In case of continuous attributes (e.g.,
temperature, pressure), the observations given by
sensors always have an imprecision (even if it can
be made very small with high precision sensors).

As a conclusion, the diagnosis is first based on
Licons 1N order to discard and rank the malfunc-
tions and then on p,¢ in case of twin first mal-
functions (as in the toy example). See (Boverie
et al., 2002) for a more complete discussion on
the use of fuzzy sets in this diagnosis process and
the extension to multiple-fault diagnosis (not yet
implemented).

5.4 Prototype implementation

The first prototype developed (Boverie et al.,
2001) has been adapted to interface with the off-
line formalisation tool through the new ESO files
format (a deserialization mechanism extracts all
the causal fuzzy rules into memory). It has no
impact on the Al core algorithm which has only
minor changes. However, some improvements have
been implemented to make the application more
useful. There are now two modes:

e An efficient diagnosis mode, which consists of a
small icon sitting in the system tray of Windows
NT taskbar. While performing on engine dyno
test, the prototype becomes active and works
without human intervention. When an event oc-
curs, i.e. detection of the possible presence of a
malfunction, a popup window is automatically
opened and gives some information and advice
on malfunctions and symptoms involved in the
problem.

e A degrade debug mode, which displays a bar-
graphs window and a console window where each
event (attribute calculus, intermediate results,
false alarms, . ..) is logged and can be saved on a
text file.

6. CONCLUSION

This project has lead to progress in the diagnosis
based on expert knowledge. It gives a complete
base for the diagnosis, from the computer-assisted
recording and formalization of information on
malfunctions to the detection of their presence.

The diagnosis prototype (which was first de-
veloped and has now been improved) already
showed the efficiency of the fuzzy causal diag-
nosis methodology. Further improvements should
enable the detection of multiple malfunctions and

“cascading” malfunctions (Boverie et al., 2002),
in connection with the formalization tool.

The formalization tool, which has been more
recently implemented, enables to define (single)
malfunctions and symptoms, using convenient
windows and a subset of the human natural
language (subset of English). The diagnosis pro-
totype can then use this knowledge, directly from
the database. Yet, some necessary functionalities
should be implemented in the future in order to
reach an industrialisation process: administrative
tasks (user’s rights on data, validation procedure),
network capabilities to allow concurrent access to
the database, and rollback on the database.

Moreover, the OK part is under study. The goal
is to develop a complete prototype of BEST,
including the master supervision rules. Indeed,
these rules are a key step towards a controlled
automatic calibration of the ECUs, an idea which
is rising in the automotive community.
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