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Abstract: A Fault Tolerant Control System (FTCS) model subject to random faults and
saturation in actuators is developed. Actuators are assumed to have non-linear saturation
characteristics, they operate linearly within their limits and saturate to fixed levels if any
limit is exceeded. This paper derives sufficient conditions for the exponential stability in the
mean square for a FTCS with saturated actuators using Lyapunov’s second method. Sufficient
conditions involve the solution of Riccati-like matrix equations. An algorithm to investigate
the stability of the FTCS is constructed. Stability of other control models driven by actuators
with saturation can be established as interesting special cases of this work. Theoretical results
are illustrated by a numerical example.

Keywords: Fault Tolerant Control Systems, Actuator Saturation, Exponential Stability.

1. INTRODUCTION

Modern technological systems, such as aircraft, space sta-
tions and nuclear power plants, rely on sophisticated con-
trol functions to meet increased performance requirements.
For these safety-critical systems Fault Tolerant Control Sys-
tems (FTCS) have been developed to improve reliability,
maintainability and survivability. The objective of FTCS is
to achieve acceptable performance not only during normal
system operation but also when there are malfunctions in
sensors, actuators, or plants. In general, the task of FTCS can
be decomposed into two functions: the first is to detect the
existence of faults and to identify the fault-induced changes
using a Fault Detection and Identification (FDI) algorithm
and the second is to reconfigure the control law by certain
reconfiguration mechanism. Since faults are random in na-
ture and FDI decision is based on statistical tests, FTCS
can be represented by stochastic differential equations. The
stochastic description of FTCS can be viewed as a general
hybrid system. Fundamentally, FTCS should be concerned

with practical control systems in real environment.Therefore,
several substantial results on the stability of FTCS have been
developed in an attempt to deal with issues arising in practical
applications. The stochastic stability of FTCS was studied
by Srichander and Walker (1993), the effect of detection-
delays and false alarms was considered by Mariton (1989).
More recently, stochastic stability with multiple faults was
treated in Mahmoud et al (2001a), stability of FTCS sub-
ject to environment noises was developed in Mahmoud et
al (2001b). Closely related to FTCS, another major class
of hybrid systems is Jump Linear Systems (JLS). Research
in JLS is classified into two categories: The first concerns
with deriving necessary and/or sufficient conditions for the
existence of an optimal quadratic regulator (Boukas, 1993;
Wonham, 1971). The second category deals with the proper-
ties of JLS such as stability, controllability and observability
(Feng et al, 1992; Ji and Chezick, 1990).

A vital problem which usually arises in a practical control
system is actuator saturation. Valves are examples of actu-
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ators with saturation used in process control. A valve has a
range of operation limited by being fully opened and fully
closed. Unfortunately, the physical limitation of actuator sat-
uration is usually unavoidable. If such behavior is not taken
into account, an integral wind-up may be induced which
leads to a large overshoot in system response, a limit cycle
or an unstable closed-loop system (Glattfelder 1983). The
consequences of actuator saturation are more serious when
the system encounters sudden changes such as faults.

Special interest was devoted to the problem of feedback
control with nonlinear saturating actuator for deterministic
systems. The stability analysis of a continuous system with
saturating actuators was studied for SISO systems employing
the Popov’s criteria (Glattfelder, 1983; Krikelis, 1980). The
tracking problem was considered by Krikelis and Barakas
(1984). The problem was treated in time domain by Chen and
Wang (1986, 1988). The combined problem of actuator sat-
uration with state-delays was reported by Chen et al (1988),
and with parameter uncertainties by Niculescu (1996).

Despite the urgent need to consider this crucial issue, to our
knowledge, the problem of nonlinear saturation for FTCS has
not been addressed. Very recently, constrained quadratic state
feedback control of discrete-time JLS was discussed by Costa
et al (1999). In this work, actuators are forced to operate only
in the linear region to avoid saturation. However, the affect of
actuator saturation on system stability was not considered.
Therefore, the current work mainly elaborates how actuator
saturation affect stability of FTCS.

In this paper, a FTCS model subject to random faults and sat-
uration in actuators is developed. Actuators have non-linear
characteristics, they operate linearly within their upper and
lower limits and may saturate to fixed levels if any limit is ex-
ceeded. In particular, this work defines and derives sufficient
conditions for the exponential stability in the mean square of
FTCS with saturated actuators. The derivations will be com-
pleted employing Lyapunov’s second method. Sufficient con-
ditions involve the solution of Riccati-like matrix equations.
Moreover, stochastic stability of JLS driven by saturated ac-
tuators can be established as an interesting special case of
this work. Stability of FTCS without saturating actuators is
compared with the stability of FTCS with saturation.

2. MATHEMATICAL FORMULATION

2.1 Dynamical Model

A general Fault Tolerant Control System with Saturated
Actuators (FTCSSA) is shown in Figure 1. The FTCSSA
subject to random faults in actuators is described by

�x�t� � A�t�x�t� � B���t��Sat�u�x�t����t�� t��

Sat�u�x�t����t�� t�� � Sat��K���t��x�t��
(1)

where x�t� � �n is the system state, u�x�t����t�� t� � �m

is the input, ��t� is the failure process, and ��t� is the FDI

process. ��t� and ��t� are homogeneous Markov processes
with finite state spaces S � f	� 
� ���� sg and R � f	� 
� ���� rg,
respectively. The transition probability for the actuator failure
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Fig. 1: General schematic diagram for FTCSSA.

process, ��t�� is defined as

pkj��t� � �kj�t� o��t� �k �� j� (2)

where �kj represents the actuator failure rate. Given that
��t� � k � S� the conditional transition probability of the FDI
process, ��t�� is defined as

pkij��t� � qkij�t� o��t� �i �� j� (3)

where qk
ij

is the rate that the FDI process will decide that the
next state is j leaving the state i, given that the actuator failure
process is in the state k (Mahmoud et al 2001,b; Srichander
and Walker, 1993).

In the sequel, we will use the following notations: B���t�� �

Bk when ��t� � k � S and Sat�u�x�t����t�� t�� � Sat�ui� when
��t� � i � R. Also denote x�t� � x� ��t� � �� ��t� � � and the
initial conditions x�to� � xo� ��to� � �o� ��to� � �o.

2.2 Actuator With Saturation

Figure 2 shows the characteristic diagram of actuators with
saturation. The actuator, described by a static non-linear
function which saturates at uH and uL, is defined as

Sat�u�x�t����t�� t���

��
�
uH u�x�t����t�� t� � uH

�K���t��x�t�� u�x�t����t�� t� � �uL� uH �

uL u�x�t����t�� t� � uL

(4)

In which the operation of the Sat�u�x�t����t�� t�� is linear for
all u�x�t����t�� t� � �uL� uH �. uL and uH are the upper and the
lower limits of the actuator, respectively. In view of Figure 2
and the axioms of the norm function, we have

k Sat�u�x�t����t�� t�� �
	



u�x�t����t�� t� k�

	



k u�x�t����t�� t� k

(5)

The system (1) in the linear region, u�x�t����t�� t� � �uL� uH �,

u Sat�u�

uH

uL

Fig. 2: Characteristics of actuator with saturation.



is assumed to satisfy both the growth and the uniform Lip-
schitz conditions. Under these conditions, the joint process
fx�t�� ��t����t�g is a Markov process. It is assumed that per-
fect state information is available for feedback.

3. EXPONENTIAL STABILITY OF FTCSSA

Without loss of generality, we assume that the equilibrium
solution, x � �, is the solution whose stability properties
are being tested. At this equilibrium solution, the exponential
stability in the mean square of FTCSSA (1) is defined as

Definition 1. The equilibrium solution, x � �� of the FTC-
SSA (1) is said to be exponentially stable in the mean square,
if for any �o � S and �o � R� there exist ���o��o� � �

and some positive constants a � � and b � �, such that
when kxo � x��o��o� to�k � �, the following inequality holds
�t � to�

Efjjx�t
xo� to�jj

g � ajjxojj


 expf�b�t � to�g

Sufficient conditions for the exponential stability in the mean
square are stated in the following Theorem

Theorem 1. The equilibrium solution, x � �� of the FTCSSA
(1) is exponentially stable in the mean square � t � �, if there
exists a stochastic Lyapunov function V �x� ���� for some
constants k	 � �� k
 � �� and k� � �, such that
(a) k	 k x k


� V �x� ���� � k
 k x k



(b) �V �x� ���� � �k� k x k



The proof of this theorem employs the supermartingale prop-
erties of a stochastic Lyapunov function V �x� ����. Similar
theorem has been derived in Mahmoud et al (2001a), there-
fore, proof will not be detailed here to avoid repetition. In
Theorem 1, �V �x� ���� is the weak infinitesimal operator of
the FTCSSA (1). For a quadratic stochastic Lyapunov func-
tion

V �x� ���� � xT P �����x (6)

where P ����� is positive symmetric matrices � � � k � S and
� � i � R, the weak infinitesimal operator is

�V �x� ���� � xTAT Pkix� xT PkiAx� xT f
X
j�S
j ��k

�kj

�
Pji � Pki

�
gx

�xT f
X
j�R
j ��i

qkij

�
Pkj � Pki

�
gx� xT PkiBk�Sat�ui��

	



ui �

	



ui�

��Sat�ui��
	



ui �

	



ui�

TBT
k
Pkix

(7)

Define

�Aki � A�
	



BkKi �

	



I
X
j�S
j ��k

�kj �
	



I
X
j�R
j ��i

qkij (8)

Under the state feedback ui � �Kix, the weak infinitesimal
operator is rewritten as

�V �x� ���� � xT f �AT
ki
Pki � Pki

�Aki �
X
j�S
j ��k

�kjPji �
X
j�R
j ��i

qkij Pkjgx

�xT PkiBk�Sat�ui��
	



ui� � �Sat�ui��

	



ui�

TBT
k
Pkix

(9)

For the selected Lyapunov function (6), we have

	min�P ������ k x k� V �x� ���� � 	max�P ������ k x k (10)

Note that (10) satisfies the boundeness condition in Theorem
2 in Mahmoud et al (2001b). As per Theorem 1, The FTC-
SSA is exponentially stable in the mean square if the weak
infinitesimal operator (9) satisfies the smoothness condition
in Theorem 2. Therefore, the exponential stability of FTC-
SSA can be defined as follows

Definition 2. The FTCSSA (1) is said to be exponentially
stable in the mean square under the linear feedback control
law ui�t� � �Kix�t�, if there exist positive-definite symmetric
matrices Pki such that the following matrix inequality holds

xT f �AT
ki
Pki � Pki

�Aki �
X
j�S
j ��k

�kjPji �
X
j�R
j ��i

qkij Pkjgx�

xT PkiBk�Sat�ui��
	



ui� � �Sat�ui� �

	



ui�

TBT
k
Pkix � �� k x k


�Aki is defined in (8).

4. A TESTABLE SUFFICIENT CONDITION FOR
EXPONENTIAL STABILITY OF FTCSSA

In this section, an easy-to-test sufficient condition will be
derived. This condition involves the solution of Riccati-like
matrix equation. In the literature, several algorithms are avail-
able to solve Riccati matrix equation. These algorithms are
easily extended to solve the matrix equation which results
from this work.

The following theorem states sufficient condition for the
exponential stability of the FTCSSA in terms of Riccati-like
matrix equations.

Theorem 2. If the Riccati-like matrix equations

�AT
kiPki�Pki

�Aki �
X
j�S

j ��k

�kjPji �
X
j�R

j ��i

qkij Pkj�PkiBkR
��
ki

BT
k Pki�Qki� �

(11)

have positive-definite solutions, Pki� for given positive-
definite weighting matrices Qki and Rki� Then, the FTCSSA
(1) is exponentially stable in the mean square under the
control law

uki�t� � �R�	
ki

BT
k
Pkix�t� (12)



if

	min�Qki��

�
	max�Pki�

�

	min�Rki�

k Bk k

� � (13)

where

�Aki � A�
	



I
X
j�S
j ��k

�kj �
	



I
X
j�R
j ��i

qkij (14)

Proof: The weak infinitesimal operator of the FTCSSA (1) is
given in (7). If we define �Aki as in (14), under the control law
(12), the weak infinitesimal operator becomes:

�V �x� ���� � xT �AT
ki
Pkix� xT Pki

�Akix

�xT PkiBkR
�	
ki

BT
k
Pkix� xT f

X
j�S
j ��k

�kjPjigx� xT f
X
j�R
j ��i

qkijPkjgx

�xT PkiBk �Sat�ui��
	



ui� � �Sat�ui��

	



ui�

TBT
k
Pkix (15)

Since

xT PkiBk�Sat�ui��
	



ui� � �Sat�ui��

	



ui�

TBT
k
Pkix � R	

(16)

Then

xT PkiBk�Sat�ui��
	



ui� � �Sat�ui� �

	



ui�

TBT
k
Pkix �


xT PkiBk �Sat�ui��
	



ui� �k 
x

T PkiBk�Sat�ui��
	



ui� k

(17)

The axioms of norm and (5) yield

k 
xT PkiBk�Sat�ui��
	



ui� k�k x

T PkiBk kk R
�	
ki

BT
k
Pkix k

(18)

Then

�V �x� ���� � xT �AT
ki
Pkix� xT Pki

�Akix

�xTf
X
j�S
j ��k

�kjPjigx� xTf
X
j�R
j ��i

qkijPkjgx� xT PkiBkR
�	
ki

BT
k
Pki

�x k xT PkiBk kk R
�	
ki

BT
k
Pkix k

(19)

From (11), we have

�V �x� ���� ��xTQkix� k xT PkiBk k k R
�	
ki

BT
k
Pkix k

��xTQkix� k Pki k

k R�	

ki
k k Bk k k BT

k
k k x k


The definition of the induced Euclidean norm gives

�V �x� ���� � �

�
	min�Qki��

�
	max�Pki�

�

	min�Rki�

k Bk k


�
k x k


(20)

Define real constants 
ki


ki � 	min�Qki��

�
	max�Pki�

�

	min�Rki�

k Bk k
� � (21)

Hence, there exist some 
ki � �, such that

�V �x� ���� � �
ki k x k

� � (22)

The conditions of Theorem 1 are satisfied, therefore, the
FTCSSA is exponentially stable in the mean square. The
proof is completed.

Test algorithm

The exponential stability in the mean square of the FTCSSA
(1) can be tested as follows:

1) Select positive-definite matrices Qo
ki

and Ro
ki

.
2) Solve the matrix Riccati-like equations in Theorem 2.

If positive-definite solutions exist and satisfy condition
(13), then FTCSSA is exponentially stable in the mean
square. Otherwise, go to Step 3.

3) Increase Qki by some factor. Say Q	
ki

� 
Qo
ki

. Goto Step
2 and iterate.

4) If the algorithm did not succeed to give positive-definite
solutions, then stop. Declare that exponential stability of
FTCSSA cannot be judged.

5. REMARKS AND SPECIAL CASES

Remark 1: Under the assumption of perfect FDI perfor-
mance, i.e. instantaneous fault detection and perfect fault
isolation, both the failure process and the FDI process will
have identical state spaces. That is, the two random processes
��t� and ��t� can be replaced by a single process denoted
as r�t�� Similar to ��t� and ��t�� the process r�t� represents
a continuous time discrete state Markov process with values
in a finite set � � f	� 
� ����Ng with transition probability rate
matrix � � ��ij �i�j�	�N �

In this case, the transition probability for the jump process, r�t��
can be defined as

Pkj��t� � �kj�t� o��t� �k �� j� (23)

with
NP
j�	
j ��i

�ij � ��ii � �i.

With this assumption, the system when is driven by actuators
with saturation, can be modeled as

�x�t� � A�t�x�t� � B�r�t��us�x�t�� r�t�� t�

us�x�t�� r�t�� t� �

��
�

uH u�x�t�� r�t�� t� � uH

�K�r�t��x�t� uL � u�x�t�� r�t�� t� � uH

uL u�x�t�� r�t�� t� � uL

(24)

Following similar arguments, Corollary 1 states sufficient
condition for the exponentially stability of the system (24).

Corollary 1. The system with saturating actuators (24) is
exponentially stable in the mean square if there exist positive-
definite symmetric solutions, Pi� to the following Riccati-like
matrix equation



�ATi Pi � Pi
�Ai �

NX
j�	
j ��i

�ijPj � PiBiR
�	
i

BTi Pi �Qi � � (25)

and

	min�Qi��

�
	max�Pi�

�

	min�Ri�

k Bi k

� � (26)

� Qi � �, Ri � �. The linear control law is given as

ui � �R�	
i

BTi Pix�t� (27)

where

�Ai � A�
	



�iI (28)

The model of the system (24) is similar to the model of JLS.
Therefore, Corollary 1 can be used to examine the exponen-
tial stability of JLS driven by actuators with saturation.

Remark 2: If only part of the nonlinear saturation charac-
teristic is to be considered during the actual system opera-
tion, then less conservative results can be obtained. In this
case, the saturation will be restricted to the sector �a� 	�, with
� � a � 	 instead of the original sector ��� 	� as shown in
Figure 3. The axioms of norm function gives the following
inequality

k Sat�ui��
	



�	 � a�ui k�

	



�	� a� k ui k (29)

1

u Sat�u�

uH

uL

a

	�a



Fig. 3: Characteristics of actuator with saturation in a sector
[a,1].

Following similar arguments used to derive sufficient condi-
tions for the stability of FTCSSA (1) with saturation in the
sector ��� 	�, we obtain the following lemma

Lemma 1. The FTCSSA (1) with saturation non-linearities
in the sector �a� 	� is exponentially stable in the mean square
under the control law

uki�t� � �R�	
ki

BT
k
Pkix�t� (30)

where Pki are bounded positive-definite symmetric solutions
to the following Riccati-like matrix equation

�AT
ki
Pki � Pki

�Aki �
X
j�S
j ��k

�kjPji �
X
j�R
j ��i

qkij Pkj

��	 � a�PkiBkR
�	
ki

BT
k
Pki �Qki � �

(31)

� Qki � �, Rki � �, and �Aki is given in (14).

Proof: can be adopted similar to Theorem 2.

This result can be considered as a general form to examine
exponential stability of FTCS.

� If a � �, all actuator saturation is considered during
system operation, we obtain the results of Theorem 2.

� If a � 	, actuators are assumed to be linear without satu-
ration during system operation, we obtain the results of
Theorem 5 in Srichander and Walker 1993.

6. A NUMERICAL EXAMPLE

Consider a system with one possible actuator fault. The
system and other design parameters are given as follows:

A �

�
	 	

� �


	
� B	 �

�
	

�

	
� B
 �

�
���

�

	

Actuator failure rates are assumed to be

��jk� �

�
����� ����

���	 ����	

	

The FDI conditional transition rates are

�q	ij � �

�
������ �����


��� �
���

	
� �q
ij � �

�
�
�	� 
�	�

	��� �	���

	

The initial weighting matrices used are

Q		 � Q	
 � �I� Q
	 � Q

 � 	�I� I �

�
	 �

� 	

	
�

R		 � ���� R	
 � 	�
� R
	 � ���� R

 � 	�
�

The stochastic stability of the FTCSSA with possible actuator
fault is to be investigated. To illustrate the theoretical results
developed in this work, the example is solved for different
scenarios.

CASE 1: Actuator saturation and stability of FTCS

If the conditions of Theorem 2 are satisfied then the FTC-
SSA is exponentially stable in the mean square, otherwise,
stability cannot be judged. Three scenarios are considered:
FTCSSA with all non-linearities due to saturation; FTCSSA
with only part of non-linearities, that is, actuators operate
within the sector �a� 	�; and FTCS without actuator saturation.
positive-definite solutions of Riccati-like matrix equations
and associated constants 
ki for the three scenarios are sum-
marized in Table 1 and 2, respectively.

Sufficient conditions for the stability of FTCSSA necessitate
that the Riccati-like equations have positive-definite solutions
and the constants 
ki are positive for all k � S� i � R. Even
though Table 1 shows that symmetric positive-solutions exist
for the three scenarios, we still have to check the positiveness
of 
ki� Table 2 lists these constants. As can be seen, when all
saturation non-linearities are considered the FTCSSA is not
stable. On the other hand, both FTCSSA with the actuator
saturation in the sector ������ 	� and without any saturation are



Table 1. Positive-definite solutions of Pki.

a Pki

���

P�� �

�
���
� 	����
	���� 	����

	
P�� �

�
��
�
 	����
	���� 	����

	

P�� �

�
	��
� �����
����� ��
�


	
P�� �

�

����
 �����
����� ���	


	

���

P�� �

�

���� �����
����� 	�
��

	
P�� �

�
����� 	�	��
	�	�� 	��	�

	

P�� �

�
����	 �����
����� 
��	�

	
P�� �

�
	
���� ����

����
 �����

	

	��

P�� �

�

���	 �����

����� 	�
	�

	
P�� �

�
��		� 	����

	���� 	�
��

	

P�� �

�
����� 
����

���� 
����

	
P�� �

�
		�
�� ���		
���		 
����

	

Table 2. Constants 
ki, FTCSSA in the sector [a,1].

Sector [a,1] 
�� 
�� 
�� 
��
a � ��� �

���
� �

���� ����
��� ����	���
a � ��� ���
� 	����� ����� ��		�
a � 	�� ��� ��� 	��� 	���

stable. The state feedback control law gains which stabilize
the FTCSSA in the sector [0.75,1] are shown in Table 3.

Table 3. Controller gains for the FTCSSA.

KT
�� KT

�� KT
�� KT

���
���	��
	�
	��

	 �

�����
��	��

	 �
������

�����

	 �
���	��
	�����

	

7. CONCLUSION

The effect of actuator saturation due to physical limitations
on the stability of FTCS has been addressed. Sufficient con-
ditions for exponential stability in the mean square of FTC-
SSA have been derived. Two conditions have to be satisfied,
namely, the existence of positive-definite solutions, Pki, for
Riccati-like matrix equations and the existence of positive
constants 
ki. A test algorithm has been constructed. The
results revealed that a state feedback controller can be de-
signed to stabilize FTCS driven by actuators with saturation.
Other control models including JLS were developed as spe-
cial cases. The potential of the developed theory was verified
by a numerical example.
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