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Abstract: This paper focuses on the synthesis problem of delay- and its time -
derivative dependent robust and reliable stabilization for linear time-delay systems 
with norm-bounded parameter uncertainty in the state and delayed-state matrices and 
also with actuator failures among a pre-specified subset of actuators. An LMI (Linear 
Matrix Inequality) method is given for the delay and its time-derivative dependent 
memoryless state feedback synthesis problem to quadratically stabilize the given 
systems. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Dynamic systems with time-delay are common in 
chemical processes, electrical heater and long 
transmission lines in pneumatic, hydraulic, and 
rolling mill systems. Such time-delays can be a 
source of instability or may induce degradation on 
performance. The research on time -delay systems has 
attracted many researchers for long years. Some of 
the results have been successfully extended to 
systems including bounded uncertainty. Many 
research results have been given in the field of robust 
control (Xie and Souza, 1992; Wang et al., 1998; Cao 
et al., 1998). In practical application, actuators are 
very important in transforming the controller output 
to the plant. Actuator failures may be encountered 
sometimes. Furthermore, how to preserve the closed-
loop control system performance in the case of 
actuator failures will be more tough and more 
meaningful. It attracts more and more research 
interests in recent years (Veillette et al., 1992; Seo 
and Kim, 1996; Suyama, 2001). 
 

In this paper, attention is focused on the robust and 
reliable stabilization synthesis of linear uncertain 
systems with delayed state and actuator failures. It is 
assumed that perfect information of plant states is 
available for feedback. The synthesis problem 
addressed here is to design a delay-dependent 
memoryless state feedback control law such that the 
closed-loop system with actuator failures is 
quadratically stable. 
 
This paper is organized as follows: Section 2 will 
propose system formulation, concept of actuator 
failures, control objectives, some necessary lemma 
and definition. Section 3 will introduce the results on 
synthesizing the delay- and its derivative-dependent 
robust and reliable state feedback controller via LMI. 
Conclusion will be given shortly in section 4. 
 
Throughout this paper, let nR  be any real n -
dimensional linear vector space. The matrix I  
denotes an identity matrix with appropriate 
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dimensions. )0(0 <>W  denotes a positive definite 

(negative definite) symmetric matrix. 
 
 

2. SYSTEM AND DEFINITION 
 
Consider linear uncertain systems with delayed state 
described by the following differential equation: 
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where nRtx ∈)(  is the state vector, mRtu ∈)(  is the 

control input vector. )(tA , )(1 tA , )(tA∆  and )(1 tA∆  

are uncertain real-valued matrices with appropriate 
dimensions, A  and 1A  are known constant real-

valued matrices with appropriate dimensions, )(tτ  

denotes time-varying time-delay. 
 
Suppose the uncertain structures of the system (1) are 
given by, 
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The meomryless state feedback control law is 
considered in this paper: 
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In the following part, concepts of actuator failures are 
discussed. Actuators of a given system can be 
classified into two sets. One set is susceptible to 
failures, denoted by },,2,1{ mL⊆Ω  hereafter. 

Actuators in this set may occasionally fail. It is 
redundant in terms of the stabilization of the system, 
while it may be necessary for improving control 
system performance. The other set is robust to 
failures, denoted by Ω−=Ω },,2,1{ mL . For 

simplicity, assume that actuators in this set never fail, 
and some of them are required to stabilize a given 

system, whether or not set Ω  can be the minimum 
set. Introduce a decomposition 

 

ΩΩ += BBB                            (5) 

 
where ΩB  and ΩB  are formed from B  by zeroing 

out columns corresponding to Ω  and Ω  
respectively. 

 
Define set of actual actuator failures of the given 
system (1) as ω , which is a subset of Ω , that is, 

Ω⊆ω . Introduce a decomposition similar to (5), 
 

ωω BBB +=                            (6) 

 
where ωB  and ωB  are formed from B  by zeroing 

out columns corresponding to ω  and ω  respectively. 
Thus the following equalities can be easily got, 
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Consider actual actuator failure case, (1) and (4) may 
be rewritten respectively as, 
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Denote 

 

ωω KBtAtA −= )()(0 , ωω KBAA −=0 . 

 
Introduce some important Lemma and Definition: 
 
Lemma 1[Cao et al., 1998]: Let A , M , N , and F  
be real matrices of appropriate dimensions with 

constraint IFF ≤Τ . Then the following inequalities 
will be true. 
 
(a) For any matrix 0>Q  with appropriate 

dimensions and any scalar 0>β , we have 
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(b) For any matrix 0>P  with appropriate 

dimensions and any scalar 0>β  satisfying 

0>− ΤNPNIβ , we have 
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(c) For any matrix 0>P  with appropriate 
dimensions and any scalar 0>β  satisfying 

0>− ΤMMP β , we have 
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Lemma 2[Kim, 2001]: Let 

 

∫ ∫ −
=

)(

)(
)()(

tb

ta

t

t
ddssftw θ

θ
 

 
Then, the following is satisfied: 
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Lemma 3[Kim, 2001]: Let )()( tbta ≤ , then the 

following inequality is satisfied: 
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The following Definition can be regarded as an 
extension of existing definition in Khargonekar et al. 
(1990) to actuator failure case. 
 
Definition 1: The system (1) (with 0)( =tu ) is said 

to be quadratically stable with actuator failures if 
there exist a positive definite symmetric matrix P  
and a positive constant α  such that for any 
admissible uncertainty and actuator failures 
corresponding to any Ω⊆ω  the derivative of the 

Lyapunov function candidate )),(( ttxV  with respect 

to time t  satisfies 
2/)),(( xdtttxdV α−≤  for all 

pairs RRttx n ×∈)),(( . Closed-loop system of (1) 

and (4) is said to be quadratically stabilizable with 
actuator failures via linear state feedback if there 
exists a state feedback control such that the closed-
loop system is quadratically stable with actuator 
failures. 
 
Remark 1: If an uncertain system is quadratically 
stable with actuator failures, it is straightforward to 
verify that for any admissible uncertainty and actuator 
failures corresponding to any Ω⊆ω , the resulting 

realization of the uncertain system will be 
asymptotically stable. 
 
 

3. ROBUST AND RELIABLE STABILIZATION 
 
In this section, one method will be presented to 
design robust and reliable stabilization for ensuring 

that closed-loop system of (1) and (4) will be 
quadratically stable with actuator failures. 
 
Here the main stabilization result is given as the 
following theorem:  
 
Theorem 1: For actuator failures corresponding to 
any Ω⊆ω , there exist positive definite symmetric 
matrices P , 1P , 2P  satisfying the following matrix 

inequality (LMI) 
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where 
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for positive constants ε , 6,,2,1, L=iiβ . Then 

closed-loop system of (1) and (4) is quadratically 
stabilizable with actuator failures. Furthermore, if a 
solution to the LMI optimization problem exists, a 
suitable robust and reliable stabilization control law 
for the system (1) is given by 
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Proof: Consider actuator failures corresponding to 

Ω⊆ω , the linear uncertain system (1) with 
controller (4) may be represented in the form as 



     

system (8) with controller (9). The candidate 
Lyapunov function for closed-loop system of (8) and 
(9) is chosen as follows, 
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It is obvious that the following equality is true, 
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then there will be 
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By using Lemma 1 and Lemma 3, the derivative of 
the Lyapunov function (13) with respect to time t  
will be 
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From Lemma 1 and Lemma 2, there will be, 
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then, 
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Thus if there exist positive definite symmetric 
matrices P , 1P , 2P  for positive constants ε , 

6,,2,1, L=iiβ  and the following inequality (14) is 

satisfied, 
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there must be some positive constant c  such that 

0/ 2 <−≤ xcdtdV . From Definition 1, the closed-

loop system is quadratically stabilizable with actuator 
failures. 
 
From Lemma 1, (2), (3), (7) and some 
rearrangements, (10) implies (14) by pre-multiplying 

(14) and post-multiplying it with 1−P , and using 
Schur complement techniques. Thus we complete the 
proof.                                                                       



     

 
Remark 2: The LMI given in (10) is linear with 
respect to matrices S , 2,1, =iPi  and positive real 

constants 6,,2,1, L=iiβ . Through mature 

optimization method (Boyd et al., 1994), the desired 
parameters S , 2,1, =iPi  and 6,,2,1, L=iiβ  can be 

easily got, and the procedure does not require any 
parameter tuning. In other words, the robust and 
reliable stabilization problem can be reduced to the 
solvability of LMI. 
 
Algorithm: Step 1: Given matrices A , 1A , B , 1M , 

1N , 2M , 2N ,  time -delay constraints h , d , and set 

Ω  of actuator failures; 
 
Step 2: Decompose B  into ΩB  and ΩB  according to 

set Ω , calculate the associated dimensions n , m ; 
 
Step 3: Choose positive parameter ε ; 
 
Step 4: If (10) with constraints 6,,2,1,0 L=> iiβ , 

0>S , 2,1,0 => iPi  have feasible solutions, go to 

Step 5; Otherwise, tune parameter ε  and repeat Step 
4; 
 
Step 5: The desired memoryless state feedback 
controller will be got as (11) and (12). 
 
Remark 3: The results in this section can be easily 
extended to multi-delay case. 
 
 

4. CONCLUSIONS 
 
The robust and reliable stabilization synthesis 
problems are discussed for the linear time-delay 
systems including time -varying parameter 
uncertainties and actuator failures. Based on the 
notion of quadratic stabilization, sufficient conditions 
for the solvability of the robust and reliable 
stabilization problem are obtained to ensure the 
quadratic stabilization with actuator failures. Pre-
defined controller structure for the linear uncertain 
systems with delayed state is used to construct the 
desired delay- and its derivative-dependent robust and 
reliable memoryless state feedback controller. The 
controller gain matrix can be got via the solvability of 
LMI without the need of tuning parameters. 
 

ACKNOWLEDGEMENTS 
 
This research work is supported by National Natural 
Science Foundation of China (No. 60004001) and the 
Alexander von Humboldt Foundation of Germany. 
 
 

 
 

REFERENCES 
 
Boyd, S., L.Tl Ghaoui, E. Feron and V. Balakrishnan 

(1994). Linear Matrix Inequalities in Systems 
and Control Theory, SIAM, Philadelphia. 

Cao, Y., Y. Sun and C. Cheng (1998). Delay-
dependent Robust Stabilization of Uncertain 
Systems with Multiple State Delays. IEEE Trans. 
Auto. Contr., 43(11), pp. 1608-1612. 

Khargonekar, P.P., I.R. Petersen and K. Zhou (1990). 
Robust Stabilization of Uncertain Linear 
Systems: Quadratic Stabilizability and ∞H  
Control Theory. IEEE Trans. Auto. Contr., 35(3), 
pp. 356-361. 

Kim, J.H. (2001). Delay and Its Time-Derivative 
Dependent Robust Stability of Time-Delayed 
Linear Systems with Uncertainty. IEEE Trans. 
Auto. Contr., 46(5), pp. 789-792. 

Seo, C.J. and B.K. Kim (1996). Robust and Reliable 
∞H  Control for Linear Systems with Parameter 

Uncertainty and Actuator Failure. Automatica, 
32(3), pp. 465-467. 

Suyama, K. (2001). Context -based Reliable Control. 
Proc. European Control Conference, Spain, 
1273-1278. 

Veillette, R.J., J.V. Medanic and W.R. Perkins (1992). 
Design of Reliable Control Systems. IEEE Trans. 
Auto. Contr., 37(3), pp. 290-304. 

Wang, J., H. Su and J. Chu (1998). Robust ∞H  
Controller Design for Linear Uncertain Systems 
with Delayed State and Control. J. Franklin Inst., 
335(3), pp. 517-524. 

Xie, L. and C.E. Souza (1992). Robust ∞H  Control 
for Linear Systems with Norm-Bounded Time -
Varying Uncertainty. IEEE Trans. Auto. Contr., 
37(8), pp. 1188-1191. 

 
 


