
SATISFYING COMPLEX TIMING CONSTRAINTS WITH
PRE-RUN-TIME SCHEDULING

Jia Xu
��� 1

�
Department of Computer Science, York University

Abstract: This paper illustrates, through examples, how a pre-run-time scheduling approach
can be used to satisfy complex timing and other constraints in real-time embedded systems.

Keywords: Real-time embedded systems, scheduling, processes, off-line, timing analysis.

1. INTRODUCTION

Real-time embedded systems often have many differ-
ent types of processes with complex timing and other
constraints. Some of the processes may be periodic
and some of them may be asynchronous. Some of
the processes may have hard deadlines and some of
them may have soft deadlines. For some of the pro-
cesses, especially the hard real-time processes, com-
plete knowledge about their characteristics can and
must be acquired before run-time. For other processes,
a prior knowledge of their worst case computation
time and their data requirements may not be available.
Some processes may have complex constraints and
dependencies between them. For example, a process
may need to input data that are produced by other
processes. In this case, a process may not be able
to start before those other processes are completed.
Such constraints are called precedence relations. Ex-
clusion relations may exist between processes when
some processes must prevent simultaneous access to
shared resources such as data and I/O devices by other
processes. For some periodic processes, they may not
be able to start immediately at the beginning of their
periods. In this case, those processes have release time
constraints.

1 Current address: Department of Computer Science, York Univer-
sity, 4700 Keele Street, North York, Ontario M3J 1P3, Canada. This
work was partially supported by a Research Grant from the Natural
Sciences and Engineering Council of Canada.

This paper describes an approach based on pre-run-
time scheduling for satisfying such complex tim-
ing and other constraints in real-time embedded sys-
tems. A formal specification of the algorithms used
in the approach is provided in Xu and Lam (Xu and
Lam, 1998). The description here is not intended to
provide a formal specification of the algorithms, but
to illustrate, through examples, how a pre-run-time
scheduling approach can be used to effectively sat-
isfy complex timing constraints in real-time embedded
systems.

2. A PRE-RUN-TIME SCHEDULING APPROACH

The approach outlined below provides a system and
methods for scheduling five types of real-time pro-
cesses:
Set P-h-k: Periodic processes with hard deadlines and
known characteristics.
Set A-h-k: Asynchronous processes with hard dead-
lines and known characteristics.
Set P-s-k: Periodic processes with soft deadlines and
known characteristics.
Set A-s-k: Asynchronous processes with soft dead-
lines and known characteristics.
Set A-s-u: Asynchronous processes with soft dead-
lines and unknown characteristics.
For P-h-k and P-s-k processes, each such process pi

consists of one or more segments, with precedence
relations defined on them to enforce the proper or-
dering of segments belonging to the same process.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

It is assumed that the following are known for each
such process before run-time: period prdpi ; worst-case
execution time cpi ; release time rpi ; deadline dpi ; the
set of data that the process reads and writes; any ex-
clusion relationships with other process segments; any
precedence relationships with other periodic process
segments.
For A-h-k and A-s-k processes, each such process a j

consists of a single segment and the following are
known for each such process before run-time: dead-
line da j ; worst-case execution time ca j ; minimum time
between two consecutive requests mina j ; the set of
data that the process reads and writes; any exclusion
relationships with other process segments.
For A-s-u processes, each such process consists of a
single segment and nothing else is known about each
such process before run-time.

The system integrates pre-run-time scheduling with
run-time scheduling to guarantee that the executions
of the processes will satisfy all the specified con-
straints and dependencies. Whenever a new set of
processes arrives in the system, the system schedules
their executions in two phases: a pre-run-time (off-
line) phase performed by a pre-run-time scheduler,
and a run-time (on-line) phase performed by a run-
time scheduler.

In each pre-run-time phase, the pre-run-time scheduler
executes five steps.

Step 1. The pre-run-time scheduler divides asyn-
chronous processes with hard deadlines and known
characteristics, called A-h-k processes, into two sub-
sets. One subset of asynchronous processes, called
A-h-k-p, is converted into new periodic processes by
the pre-run-time scheduler before run-time. When the
pre-run-time scheduler converts an asynchronous pro-
cess into a new periodic process, it prevents possible
timing conflicts with other periodic and asynchronous
processes, by reserving enough ”room” in each new
periodic process’s deadline, to accommodate the com-
putation times of all the periodic and asynchronous
processes processes that have shorter deadlines that
might preempt that new periodic process at run-time.
The processes in the other subset of asynchronous
processes, called A-h-k-a, remains asynchronous and
are scheduled by the run-time scheduler at run-time.
The pre-run-time scheduler reserves processor capac-
ity for such process by adding the computation time of
each A-h-k-a process to the computation time of every
periodic process that has a hard deadline that is greater
than that A-h-k-a process’s deadline.

Whether each asynchronous process is converted into
a new periodic process or not, is based on whether the
processor capacity that needs to be reserved for the
new periodic process exceeds the processor capacity
that needs to be reserved for the asynchronous process
if unconverted.

Example 1.

Suppose that there exists 4 asynchronous processes
with hard deadlines and known characteristics (A-h-k
processes), and 4 periodic processes with hard dead-
lines and known characteristics (P-h-k processes) as
follows.
a0: ca0

� 2 � da0
� 2 � mina0

� 1 � 000;
a1: ca1

� 2 � da1
� 7 � mina1

� 1 � 000;
a2: ca2

� 10 � da2
� 239 � mina2

� 1 � 000;
a3: ca3

� 10 � da3
� 113 � mina3

� 113 �
p4: rp4

� 0 � cp4
� 26 � dp4

� 200 � prdp4
� 200;

p5: rp5
� 30 � cp5

� 16 � dp5
� 50 � prdp5

� 200;
p6: rp6

� 0 � cp6
� 26 � dp6

� 200 � prdp6
� 200;

p7: rp7
� 0 � cp7

� 16 � dp7
� 200 � prdp7

� 200 �
The adjusted computation times for p4 � p5 � p6 � p7 will
respectively be:
cp4

� � cp4

�
ca0

�
ca1

� 26
�

2
�

2 � 30;
cp5

� � cp5

�
ca0

�
ca1

� 16
�

2
�

2 � 20;
cp6

� � cp6

�
ca0

�
ca1

� 26
�

2
�

2 � 30;
cp7

� � cp7

�
ca0

�
ca1

� 16
�

2
�

2 � 20 �
If a3 is converted into a periodic process newp3, dnewp3

= ca3 + ca0 + ca1 = 10 + 2 + 2 = 14. Using Mok’s
formula (Mok, 1983), prdnewp3 = (da3 � dnewp3

�
1 � =

113 - 14 + 1 = 100.
If a3 is converted into a periodic process newp3, the
processor capacity that needs to be reserved for newp3

will be: RPCnewp3
� cnewp3

���
prdnewp3

� 14
�
100 �

0 � 14;
If a3 is not converted, then the processor capacity
that needs to be reserved for a3 will be: RPCa3

�	
∑pi
 P � h � k � da j dpi

	�	�	��
dpi � rpi �

�
mina j ��� ca j ��

prdpi ��� �
	
ca j

�
mina j � =

��	
dp4 � rp4 �

�
mina3 � ca3

�
prdp4� ��	

dp6 � rp6 �
�
mina3 � ca3

�
prdp6

� ��	
dp7 � rp7 �

�
mina3 �

ca3

�
prdp7

�
ca3

�
mina3 = 20/200 + 20/200 + 20/200 +

10/113 = 0.388 � RPCnewp3
� 0 � 14

a3 will be converted into a new periodic process newp3

=
	
rnewp3 � cnewp3 � dnewp3 � prdnewp3 � = (0, 10, 14, 100).

Using a similar process, it can be determined that
the A-h-k processes a0 � a1 � a2 should not be converted
into periodic processes, because the processor capac-
ity that needs to be reserved for the corresponding new
processes exceeds the processor capacity that needs to
be reserved when they remain asynchronous. �

Step 2. The pre-run-time scheduler determines the
schedulability of the set of all periodic processes with
hard deadlines and known characteristics, called P-
h-k processes, which also includes the new periodic
processes converted from A-h-k-p processes. The pre-
run-time scheduler constructs a pre-run-time schedule
in which one or more time slots are reserved for the
execution of every P-h-k process, including every new
P-h-k process converted from an A-h-k-p process. The
time slots reserved for each P-h-k process also include
time reserved for the executions of all A-h-k-a pro-
cesses that have deadlines that are shorter than that
P-h-k process’ deadline, and which may preempt the
execution of that P-h-k process. The present approach

newp3 p5 p4 newp3
p6 p7

�
�

rp7

rp6

rp4

rnewp3

0

dnewp3

14

rp5

30

dp5

50 80

rnewp3

100

dnewp3

114 144 164

dp7

dp6

dp4

200

Fig. 1. A feasible schedule for all the P-h-k processes
in Example 1, constructed in Step 2.

is deliberately designed in a way that allows the pre-
run-time scheduler to use practically almost any exist-
ing method that statically schedules a set of processes,
including manual methods, to construct the pre-run-
time schedule of periodic processes in Step 2 and in
Step 4, without requiring any change in the methods
used in any of the other steps of the present approach,
so that the system and methods have the flexibility
to incorporate and take advantage of any future new
static scheduling method for satisfying any additional
desired constraints among the most important and nu-
merous type of processes in real-time applications, —
the periodic processes.

Example 2.

If the algorithm described in (Xu and Parnas, 1990) is
used to schedule all the P-h-k processes in Example 1
above, the pre-run-time schedule illustrated in Fig. 1
will be obtained. �

Step 3. The pre-run-time scheduler uses knowledge
about the time slots reserved for the P-h-k processes
in the pre-run-time schedule to determine, before run-
time, the worst-case response times of all A-h-k-a
processes. It is possible for the pre-run-time scheduler
to use a simulation procedure which uses the A-h-k-a
Scheduler and Main-Run-Time Scheduler to simulate
the execution of all the processes (see description of
the run-time scheduler for this approach) to determine
the worst-case response time of each A-h-k-a process.
In the simulation procedure, one execution for each
arrival time between time 0 and LCM - 1 for each A-
h-k-a process ai is simulated, under the assumption
that all other A-h-k-a processes whose deadlines are
shorter or equal to ai’s deadline arrive at the same time
as ai at time ts, and are put into execution before ai;
and the process that has the greatest computation time
among all other A-h-k-a processes that have a greater
deadline and can block ai at that time will arrive one
time unit before ai’s arrival time.

The pre-run-time scheduler verifies the schedulabil-
ity of each A-h-k-a asynchronous process by check-
ing whether its deadline is greater than or equal to
its worst-case response time. Thus, the pre-run-time
scheduler provides an a priori guarantee that all peri-
odic and asynchronous processes with hard deadlines
and known characteristics will always meet their dead-
lines.

newp3 p5 p4 newp3
p6 p7

a2

�

�

rp7

rp6

rp4

rnewp3

0 10

dnewp3

14

rp5

30 46

dp5

50
72

ra2

91

ra0

rnewp3
ra1

a0

100

da0

102

a1

da1

104

dnewp3

114 140 156
166

dp7

dp6

dp4

200

(da2
� 239

�

Fig. 2. A possible run-time execution of the A-h-k-
a processes a0, a1, a2, together with the P-h-k
processes in Fig. 1.

Example 3.

In the examples, e’(x) denotes the actual time at which
asyn. or periodic process x’s execution ends at run-
time.
a0’s worst-case response time Ra0 = R

	
a0 � ts � will hap-

pen when a0 arrives at time ts � 0. Since no process
excludes a0, and a0 has the shortest deadline among
all processes, a0 will always be put into execution
immediately after it arrives, thus a0’s response time
Ra0 = R

	
a0 � 0 � = max � R

	
a0 � ts ��� = ca0 = 2 � da0

� 2.
a1’s worst-case response time Ra1 = R

	
a1 � ts � will hap-

pen when a1 arrives at time ts � 0. Since no process
excludes a1, and only one process a0 has a shorter
deadline compared with a1’s deadline, when a1 arrives
at time ts � 0, assuming that a0 will also arrive at
time ts � 0, a1 will only be delayed by a0’s execution
time, thus a1’s response time Ra1 = max � R

	
a1 � ts ��� =

R
	
a1 � 0 � = ca0 + ca1 = 2 + 2 = 4 � da1

� 7.
a2’s worst-case response time Ra2 = The maximum
value of R

	
a2 � ts � will happen when a2 arrives at time

ts � e
	
p3 � � ca2 � cp3 � ca0 � ca1 � 1 � 114 � 10 � 10 �

2 � 2 � 1 � 114 � 25 � 91. (Fig. 2.) At time 91 a2 will
be delayed because the conditions of Case 1 of the
A-h-k-a Scheduler will be true. Note that a2 excludes
newp3, and dnewp3

� 14 � da2
� 239; if a2 is allowed

to execute at time 91, it will cause newp3 to miss its
deadline if a0 and a1 also preempt newp3. As da0

�
2 � da2

� 239 and da1
� 4 � da2

� 239, the worst-
case response-time of a2 will happen when a0 and
a1’s arrival times actually occur at time s

	
newp3 � �

100 � Thus a2’s response time Ra2 = max � R
	
a2 � ts �	� =

R
	
a2 � 91 � = e

� 	
a2 � � ra2 = 166 - 91 = 75 � da2

� 239.
Since the response time of every A-h-k-a process is
less than or equal to its deadline, one would be able to
guarantee that they are all schedulable. �

Step 4. The pre-run-time scheduler determines the
schedulability of all the periodic processes with soft
deadlines and known characteristics, called P-s-k pro-
cesses, under the condition that all the P-h-k processes
and A-h-k-a processes that were guaranteed to be
schedulable in the previous steps are still schedulable.
The pre-run-time scheduler re-constructs the pre-run-
time schedule in which one or more time slots are
reserved for the execution of every P-h-k process (in-
cluding every new P-h-k process converted from an
A-h-k-p process), and for every P-s-k process. The
time slots reserved for each P-h-k or P-s-k process
also include time reserved for the executions of all

newp3
p8 p5

p8 p4 newp3
p6 p7

�

�

rp7

rp6

rp4

rnewp3

0

dnewp3

14

rp8

20

rp5

30

dp5

50

dp8 �

60 90

rnewp3

100

dnewp3

114 144 164

dp7

dp6

dp4

200

Fig. 3. A feasible schedule of the P-h-k and P-s-k
processes in Example 4, constructed in Step 4.

newp3

a2 p8 p5
p8 p4

a2
newp3

p6 p7

�

�

rp7

rp6

rp4

rnewp3

(200)

ra0
ra1
a0

da0

(202)

a1

da1

(204)

(214)

dnewp3

rp8

ra10

(220)

rp5

(230)(246)

dp5

(252)

dp8 �

(278)
(282)

rnewp3

100
110

dnewp3

114

ra2

191

dp7

dp6

dp4

200
136 152

(da2
� 239

�

Fig. 4. A possible run-time execution of the A-h-k-a
processes a0, a1, a2, together with the P-h-k and
P-s-k processes in Fig. 3.

A-h-k-a processes that have deadlines that are shorter
than that P-h-k or P-s-k process’ deadline, and which
may preempt the execution of that P-h-k or P-s-k
process. The pre-run-time scheduler uses the methods
in the previous step that take into account knowledge
about the time slots reserved for the P-h-k and P-s-
k processes in the pre-run-time schedule to determine
again, before run-time, the worst-case response times
of every A-h-k-a process.

Example 4.

Suppose that in addition to the hard deadline processes
in Examples 1-3 above, there exists the following pe-
riodic process with a soft deadline and known charac-
teristics (P-s-k process).
p8: rp8

� 20 � cp8
� 16 � dp8

� 60 � prdp8
� 200;

Suppose further that p8’s deadline upperlimit is 100.
p8’s adjusted computation time is:
cp8

� � cp8

�
ca0

�
ca1

� 16
�

2
�

2 � 20 �
The feasible pre-run-time schedule in Fig. 3 can be
obtained using the algorithm described in (Xu and Par-
nas, 1990) in which each guaranteed periodic process
reserves a time frame that includes reserved processor
capacity for any A-h-k-a process that has a shorter
deadline than that guaranteed periodic process’s dead-
line.
The response times of the A-h-k-a processes in the ex-
amples above are re-calculated using the information
in the schedule in Fig. 3 using a simulation method
similar to that shown in Example 3 to verify that all
A-h-k-a processes’ worst-case response times are less
than or equal to their deadlines. a0’s response time Ra0

and a1’s response time Ra1 will remain the same as
in Example 3. R

	
a2 � ts � will happen when a2 arrives

at time ts � e
	
p3 � � ca2 � cp3 � ca0 � ca1 � 1 � 214 �

10 � 10 � 2 � 2 � 1 � 214 � 25 � 191. a2’s response
time Ra2 = max � R

	
a2 � ts ��� = R

	
a2 � 191 � = e

� 	
a2 � � ra2

= 282 - 191 = 91 � da2
� 239. (See Fig. 4.) �

newp3

a2 p8 p5
p8 p4 a10 newp3

p6 p7

�

�

rp7

rp6

rp4

rnewp3

0
(200)

10

(210)

dnewp3

rp8

ra10

20
(220)

rp5

30

(230)

46
(246)

dp5

52
(252)

dp8 �

60 78
(278)

(288)

rnewp3

100
110

dnewp3

114

ra2
ra0
ra1

ra10
a0

196

da0

198

a1

da1

dp7

dp6

dp4

200

136 152

(da2
� 239

��
da10

� 300
�

Fig. 5. A possible run-time execution of the A-s-k
process a10, together with the A-h-k-a processes
a0, a1, a2, and the P-h-k and P-s-k processes in
Fig. 4.

Step 5. The pre-run-time scheduler uses knowledge
about the time slots reserved for the P-h-k and P-
s-k processes in the pre-run-time schedule to deter-
mine, before run-time, the worst-case response times
of asynchronous processes with soft deadlines and
known characteristics, i.e., A-s-k processes.

Example 5.

Suppose there exists the following asynchronous pro-
cess with a soft deadline and known characteristics
(A-s-k process).
a10: ca10

� 10 � da10
� 300 � mina10

� 300 �
By using a simulation method similar to that used
in Example 3, one can determine that the maximum
value of R

	
a10 � ts � will happen when a10 arrives at

time ts � 196. (See Fig. 5 for an illustration of this
case.) a10’s worst-case response time will be Ra10 =
max � R

	
a10 � ts ��� = R

	
a10 � 196 � = e

� 	
a10 � � ra10 = 288 -

196 = 92 � da10 = 300. �

At the end of the pre-run-time phase, a feasible pre-
run-time schedule for all the periodic processes with
known chracteristics will be constructed, while the
worst-case response times of all the asynchronous pro-
cesses with known characteristics will be determined.

Run-time phase. A run-time scheduler uses knowl-
edge about the time slots reserved for the periodic
processes in the pre-run-time schedule to schedule
the executions of all the periodic and asynchronous
processes, that is, the P-h-k processes (including ev-
ery new P-h-k process converted from an A-h-k-p
process), P-s-k processes, A-h-k-a processes, A-s-k
processes, as well as asynchronous processes with soft
deadlines and unknown characteristics, called A-s-u
processes, in a way that guarantees that every periodic
process’s execution will complete before the end of
that periodic process’s time slot in the pre-run-time
schedule , and all the asynchronous processes with
soft deadlines and known characteristics, are guaran-
teed to be completed within the worst-case response
time pre-determined in Step 4 and Step 5 after their
arrival, so that all the constraints and dependencies of
all processes with known characteristics will always
be satisfied.

The A-h-k-a Scheduler Subroutine operates as fol-
lows:

At any time t:
if some A-h-k-a process ai has arrived at time t,
or if some process xi completes its computation at time
t
or if t is both the release time and start time in the pre-
run-time schedule for some P-h-k or P-s-k process p,
i.e., t � rp

� s
	
p �

then
begin

for each A-h-k-a process ai that has already arrived
and not yet completed, i.e., �

	
e
� 	

ai � � t � , if ai satisfies
any of the following conditions, then Delay ai:

(1) Delay ai either if the immediate execution of ai

may cause the execution of a P-h-k or P-s-k process p
with a shorter or equal deadline to exceed the end of
its time slot in the pre-run-time schedule; or, if it may
cause some A-h-k-a process a j to be blocked for the
duration of two processes ai and p which both have
greater deadlines compared with a j’s deadline.
(2) Delay ai if there exists any process x that has
started but not completed and excludes ai.
(3) Delay ai if there exists any process x that has
started but not completed and has a deadline that is
shorter than or equal to ai’s deadline.
(4) Delay ai if there exists any A-h-k-a process a j that
has started but not completed and which excludes a P-
h-k or P-s-k process p with a shorter or equal deadline
compared with ai’s deadline.
(5) Delay ai if the immediate execution of ai may
cause the start time of the execution of a P-h-k or
P-s-k process p with a shorter or equal deadline to
be delayed beyond the beginning of its time slot in
the pre-run-time schedule, when p may be preempted
by some other periodic process p1, and ai cannot be
preempted by p1.
(6) Delay ai if there exists any process x that has
started but not completed and which excludes some
other A-h-k-a process a j which has a deadline that is
shorter than both x and ai’s deadline, because that may
cause a j to be blocked by the duration of more than
one process with greater deadlines.
(7) Delay ai if there exists a P-h-k or P-s-k process
p that has become ready, and which has a deadline
that is shorter than or equal to ai’s deadline, when ai

does not exclude p and does not exclude any A-h-k-a
process with deadline that is shorter than p’s deadline.

Select, among all processes ai
� A-h-k-a, such that

ai has already arrived and not yet completed, and ai

is NOT Delayed, the process which has the shortest
deadline. If more than one process is thus selected,
select among them the process that has the smallest
index. end;

return to Main Run-Time Scheduler;

The Main-Run-Time Scheduler operates as follows:

newp3

a2 p8 p5
p8 p4

a2

a10 newp3
p6 p7

a11

�

�

rp7

rp6

rp4

rnewp3

(200)

ra0
ra1
a0

da0

(202)

a1

da1

(204)

(214)

dnewp3

rp8

ra10

(220)

rp5

(230)(246)

dp5

(252)

dp8 �

(278)
(282)

(288)

a11

(292)

rnewp3

100
110

dnewp3

114

ra11

190

ra2

191

ra10

196

a10

dp7

dp6

dp4

200136 152

(da2
� 239

��
da10

� 300
��

da11
� 300

�

Fig. 6. A possible run-time execution of the A-s-u
process a11, and the A-s-k process a10, scheduled
by the Main Run-Time Scheduler together with
the A-h-k-a processes a0, a1, a2, and the P-h-k
and P-s-k processes in Fig. 5.

At any time t:
if some process x has arrived at time t, or has com-
pleted at time t,
or if t is both the release time and start time in the pre-
run-time schedule for some P-h-k or P-s-k process p
then execute the A-h-k-a-Scheduler-Subroutine;
if some A-h-k-a process ai is selected for execution at
time t by the A-h-k-a Scheduler
then execute ai

else
if at least one P-h-k or P-s-k periodic process is ready,
then execute one P-h-k or P-s-k periodic process that is
ready, according to the order in which their time slots
appear in the pre-run-time schedule.
If no P-h-k or P-s-k process is ready, and at least
one A-s-k process is ready, then execute the A-s-k
process which has the shortest deadline among all A-
s-k processes that are ready.
If no A-s-k process is ready, and at least one A-s-u
process is ready, then execute an A-s-u process which
has the shortest deadline among all A-s-u processes
that are ready.

Example 6.

Continuing with the set of processes in Examples
1-5 above, suppose there exists the following asyn-
chronous process a11 with a soft deadline and un-
known characteristics (A-s-u process). (a11’s charac-
teristics are only known after its arrival.)
a11: ca11

� 10 � da11
� 300 �

Suppose that A-s-u process a11 makes a request at
time 190; A-h-k-a process a2 makes a request at time
191; A-s-k process a10 makes a request at time 196;
and A-h-k-a processes a0 and a1 make requests at time
200. The A-h-k-a Scheduler Subroutine and the Main-
Run-Time Scheduler will schedule all these processes
and all the processes in the previous examples as illus-
trated in Fig. 6. �

We note that existing algorithms or protocols that per-
form all scheduling activities at run-time cannot han-
dle precedence constraints, release time and exclusion
constraints simultaneously in an efficient way, hence
are not capable of guaranteeing the schedulability of
the set of processes given in these examples.

3. CONCLUSION

Compared with previous systems and methods that
perform all scheduling activities at run-time, using a
pre-run-time scheduling approach is better suited for
satisfying complex timing constraints for the follow-
ing reasons:
(1) In most real-time applications the bulk of the com-
putation is usually performed by periodic processes
for which the characteristics are known a priori. Com-
plex constraints and dependencies are normally de-
fined on the periodic processes. When a pre-run-time
scheduling approach is used, all the periodic processes
are scheduled before run-time, there is practically no
limit on the time that can be used for scheduling
the periodic processes. This allows one to use better
methods that can handle a great variety of application
constraints and dependencies, and that can achieve
higher schedulability for the most important and most
numerous type of processes in real-time applications.
(2) With a pre-run-time approach, the run-time over-
head required for scheduling and context switching is
much smaller.
(2.1) The number of asynchronous processes that the
run-time scheduler needs to schedule, should be small,
as in most real-time applications, the number of asyn-
chronous processes with hard deadlines is usually
small (Xu and Parnas, 1993).
(2.2) A significant portion of the asynchronous pro-
cesses will be transformed into periodic processes
when using this approach. For those asynchronous
processes that are not transformed into periodic pro-
cesses, their interarrival times are likely to be long.
(2.3) Most of the important scheduling decisions have
already been determined before run-time. In particu-
lar, the relative ordering of all the periodic processes
was determined before run-time when the pre-run-
time schedule was computed.
(2.4) A significant portion of the parameters used by
the run-time scheduler to make scheduling decisions
for asynchronous processes, are known before run-
time, so one can pre-compute major portions of the
conditions that are used for decision making, and the
amount of computation that needs to be performed for
scheduling asynchronous processes at run-time can be
minimized.
(2.5) From the pre-run-time schedule, one would
know in advance exactly which periodic process may
preempt which other periodic process at run-time.
Thus one can use this information to minimize the
amount of context switching.
(3) When a pre-run-time scheduling approach is used,
once the pre-run-time schedule has been determined
for all the periodic processes, the run-time scheduler
can use this knowledge to achieve higher schedulabil-
ity for the small number of asynchronous processes
that needs to be scheduled at run-time.
(3.1) The run-time scheduler can use knowledge about
the pre-run-time schedule to schedule asynchronous
processes more efficiently, e.g., it would be possible to

completely avoid blocking of a periodic process with
a shorter deadline by an asynchronous process with a
longer deadline.
(3.2) When determining the worst-case response times
of asynchronous processes, one does not need to make
overly pessimistic assumptions, e.g., one does not
need to assume that for each process, all the peri-
odic processes with shorter deadlines can arrive at the
same time to delay that process. Thus one can obtain
tighter worst-case response times for asynchronous
processes.
(4) When a pre-run-time scheduling approach is used,
verifying that all timing constraints will always be
satisfied is much easier.
(4.1) It is straightforward to verify that all the tim-
ing constraints and dependencies between the periodic
processes are satisfied in a pre-run-time schedule.
(4.2) When using the technique of pre-run-time schedul-
ing, timing constraints and dependencies are directly
“embedded” in the pre-run-time schedule, thus for
the majority of the processes, one can avoid the use
of complicated run-time synchronization mechanisms
for which it is often extremely difficult to obtain rea-
sonable and accurate execution time bounds.
(4.3) The number of asynchronous processes is re-
duced, and the ordering of the periodic processes is
fixed in the pre-run-time schedule. This significantly
reduces the complexity of verifying that the asyn-
chronous processes will meet timing constraints. (Xu
and Parnas, 2000)

4. REFERENCES

Mok, A.K. (1983). Fundamental design problems of
distributed systems for the hard-real-time envi-
ronment. Ph.D Thesis, Department of Electri-
cal Engineering and Computer Science, Mas-
sachusetts Institute of Technology.

Xu, J. and D.L. Parnas (1990). Scheduling processes
with release times, deadlines, precedence, and
exclusion relations. IEEE Trans. on Software En-
gineering pp. 360–369.

Xu, J. and D.L. Parnas (1993). On satisfying tim-
ing constraints in hard-real-time systems. IEEE
Trans. on Software Engineering pp. 1–17.

Xu, J. and D.L. Parnas (2000). Priority scheduling ver-
sus pre-run-time scheduling. Real-Time Systems
pp. 7–23.

Xu, J. and K.L. Lam (1998). Integrating run-time
scheduling and pre-run-time scheduling of real-
time processes. Proc. 23rd IFAC/IFIP Workshop
on Real-Time Programming.

