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Abstract: Most estimators/filters provide assessments of their own estimation errors. Are
these self-assessments trustable? To what degree are they trustable? This paper provides
practical answers to such questions, referred to as the credibility of the estimators/filters.
It formulates the concept of credibility and proposes practical measures of credibility with
justifications. Numerical examples are provided to illustrate the use of the measures.
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1. INTRODUCTION

Algorithms for parameter, signal, and state estima-
tion are widely used in science and engineering. No
matter how solid such an estimation algorithm, or
estimator for short, is in theory, its performance and
characteristics must be evaluated in practice to serve a
number of purposes, such as verification of its valid-
ity, demonstration of its performance, and comparison
with other estimators.

More specifically, estimators are almost always de-
rived based on more or less restrictive assumptions.
These assumptions are often not transparent to prac-
titioners. Even if they are, in many practical situa-
tions, it is not easy to verify the validity of these
assumptions directly. For a practitioner, the validity of
these assumptions per se is of little concern. What is
most important is whether the estimator works well
for the application under consideration. This can be
evaluated by stochastic simulation using a number
of measures, particularly those discussed in (Li and
Zhao, 2001).

This paper deals with a closely related issue—the
credibility of an estimator. Many estimators provide
self-assessments of estimation errors based on some
simplifying assumptions. These self-assessments carry
useful information about the estimation errors and the
capability of the estimators. It would be ashamed
to waste such information. Similar to those used to
derive the estimator itself, however, these assump-
tions are usually even less transparent to practitioners
and harder to verify. Even worse, the self-assessments
could be quite misleading when the underlying as-
sumptions are not adequately accurate. Then impor-
tant questions for practitioners include: Can we trust
these self-assessments and by how much amount? If
not, are the estimators too optimistic or pessimistic?

Albeit very important in practice, work on this issue
has been scarce. Although limited treatments of this
topic can be found in publications, e.g., (Bar-Shalom
and Birmiwal, 1983; Drummond et al., 1998; Bar-
Shalom et al., 2001), in our opinion, it has received
attention far less than what it deserves. As a result, it
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is virtually impossible for a practitioner to answer the
above important questions satisfactorily.

The purpose of this paper is three-fold. First, it pro-
vides a formal definition of the credibility of an esti-
mator to facilitate further studies. Second, it proposes
practical metrics to measure the credibility of an esti-
mator. Use of these metrics will enable a practitioner
to answer questions like “By how much amount an
estimator is noncredible?” Furthermore, the credibili-
ties of two or more estimators can be compared using
these metrics in a meaningful way. Finally, it intends
to stimulate further studies of this important topic.

Terminology and notation. The following conven-
tion will be maintained throughout the paper. We refer
to the quantity to be estimated as estimatee. It can be a
time-invariant (or slowly varying) parameter, a (deter-
ministic or random) process or signal, or in particular,
the state of a (deterministic or random) system. We
will use the term estimator to mean both parameter
estimator and filter (in particular, state estimator). Let
the n-dimensional estimatee, its estimate, and estima-
tion error be denoted by x, x̂, and ~x, respectively. We
emphasize that n is reserved throughout the paper to
denote the dimension of the estimatee. We denote the
actual bias and mean-square error (MSE) matrix of x̂
(i.e., mean and mean-square (not covariance) matrix
of ~x) by � and �, respectively. By self-assessment
of an estimator, we mean the bias and MSE matrix of
x̂ given by the estimator. By error covariance, we
always mean the MSE matrix given by the estimator,
denoted by P , as opposed to the actual MSE matrix�.
We always assume that the estimator-computed bias
is (approximately) zero; otherwise the computed bias
should be added to x̂ to make ~x unbiased. Subscript
i stands for quantities pertaining to the ith run of a
Monte-Carlo simulation. It is always assumed that a
total of M Monte-Carlo independent runs are con-
ducted, and thus ~xi and ~xj are independent because
(xi; x̂i) and (xj ; x̂j) are independent. All default vec-
tors are column vectors.

2. CREDIBILITY

As explained, self-assessments of an estimator con-
tain valuable information about the estimation errors
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and the capability of the estimator, and should be
utilized properly. However, this information is not al-
ways reliable and it may even be misleading. An
important issue is then how reliable an estimator’s
self-assessment is and how to determine this reliability
both qualitatively and quantitatively. We refer to this
issue as credibility issue of an estimator. Evidently, it
amounts to the evaluation of the self-assessments.

Clearly, the credibility issue has two related sides.
On the qualitative side, it addresses whether an estima-
tor’s self-assessment is credible. The answer should be
“yes” or “no.” Unfortunately, like many other decision
problems, there is not a clear line that separates the
two answers in most cases. An estimator accepted
as credible by one user may be rejected by another
user for the same case because the required levels
of credibility may differ. Similarly, two noncredible
estimators may have vastly different levels of noncred-
ibility, which may lead to completely different actions.
Therefore, it would be desirable if we could quantify
the amount by which an estimator is credible or non-
credible. This will enable us to compare quantitatively
the credibility levels of estimators. In this sense, the
quantitative side is probably more important than the
qualitative side.

Definitions. An estimator is said to be credible at
a level � (0 � � � 1) if the difference between its
actual estimation error (in particular, bias and MSE
matrix) and its self-assessment (in particular, calcu-
lated bias and error covariance) is statistically insignif-
icant at level � in the sense that the two errors can be
treated as equal statistically. The maximum level � at
which an estimator is rejected as being noncredible is
referred to as the noncredibility level of the estimator.
An estimator is said to be optimistic at a level � if its
self-assessing estimation error is statistically smaller
than the actual error at the � level. It is pessimistic in
the opposite situations.

We will consider only the first two moments of the
estimation error since most estimators are not able to
provide information about the higher moments. We
emphasize that the word “difference” above should
not be interpreted literally. For example, a small dif-
ference in A and B could actually mean that A=B is
close to 1, as well as A�B is small.

To our knowledge, the most notable prior pub-
lications with a considerable amount of treatment
of the issue of credibility are (Bar-Shalom and Bir-
miwal, 1983; Bar-Shalom et al., 2001), referred to
as (finite-sample) consistency. They address the is-
sue and present a test for determining whether a fil-
ter should be accepted as credible, although with-
out a formal definition of the (finite-sample) consis-
tency. The term “credibility” is recommended because
consistency is an extremely well-established concept
widely used in statistics, which differs very much from
the concept of credibility, and furthermore, “credi-
ble/credibility” has been used in statistics as a techni-
cal term, such as the “credible region” and the “degree
of credibility,” in reference to the commensurability of
a hypothesis (model) relative to data or evidence.

The above definition makes it explicit that rigor-
ously speaking, when we are speaking of the cred-
ibility (or noncredibility) of an estimator, the cor-

responding level should also be specified. However,
we emphasize that it is not appropriate to define the
(minimum) level at which an estimator is accepted as
credible as the credibility level of the estimator.

3. CREDIBILITY MEASURES

The normalized estimation error squared (NEES) in
the ith run is defined by �i = (xi� x̂i)0P�1

i (xi� x̂i).
The average normalized estimation error squared
(ANEES), defined by (Bar-Shalom and Birmiwal,
1983; Drummond et al., 1998; Bar-Shalom et al.,
2001)

�� =
1

nM

MX
i=1

�i (1)

or its equivalents are often used as a measure of an
estimator’s credibility: The closer to 1 the ANEES is,
the more credible the estimator.

3.1 Drawbacks of ANEES as Credibility Measure

If the estimation error is indeed Gaussian dis-
tributed, whether an estimator is credible can be de-
termined reasonably well by a chi-square test based on
ANEES. However, this does not imply that ANEES is
a good metric for measuring the credibility of an esti-
mator (i.e., how credible or noncredible the estimator
is). In fact, it can be easily seen from the definition
that ANEES has the following drawbacks as a metric.

Firstly, ANEES penalizes optimism much more
severely than pessimism. Note first that NEES is in
essence equal to the actual MSE over the estimator-
calculated error covariance. An estimator is too opti-
mistic (or pessimistic) if NEES is substantially greater
(or smaller) than n, where n = dimx is equal to the
mean of NEES if the estimator is perfectly credible.
Consider two cases, NEES = 100n and NEES =
n=100. In the first case, actual MSE is 100 times the
calculated one, while the calculated one is 100 times
the actual one in the second case. Since in both cases
the two MSEs differ by a factor of 100, the two cases
are equally noncredible 2 . However, a case with ten
NEES’s of 100n and one NEES of n=100 will have
a much worse ANEES than a case with ten NEES’s
of n=100 and one NEES of 100n. This drawback
stems from the fact that in the ideal Gaussian case ~x �
N (0; P ), ANEES is chi-square distributed, which is
highly asymmetrical around its mean—although it is
more likely to have a small value, the possibility of
a few large terms makes the mean significantly larger
than the mode (the location of the peak of the density).
In fact, the mean is n but the mode is n� 2 for n > 2.

Secondly, the use of ANEES is not convenient for
comparing credibilities of different estimators. Con-
sider two estimators with ANEES of 2:2 and 0:5,
respectively. Most practitioners will be confused as
which estimator is more credible. From the discussion
above, it should be clear that 0:5 is equivalent to 2:0 in
the ideal case because 2:0=1 = 1=0:5. However, due
to the drawback discussed above, the first estimator is

2 Of course, the first case is worse than the second in terms of
estimation accuracy, but they are equivalent as far as credibility is
concerned.



probably more credible because ANEES = 0:5 indi-
cates that the NEES is significantly smaller than unity
in virtually all runs while ANEES = 2:2 could have
been resulted from only a few large terms.

These drawbacks arise from using arithmetic aver-
age of a ratio—the NEES. As elaborated in (Li and
Zhao, 2001), the geometric average would be much
more appropriate for a ratio. Quite often it is more
desirable to have more accurate measures.

3.2 Noncredibility Indices

Assume the estimator is unbiased. Then the credi-
bility issue is concerned with the difference between
or relative “ratio” of the actual MSE � and the esti-
mator’s error covariance P . However, � and P are in
general matrices and cannot be compared directly—
there is no generally accepted measure of difference
between two matrices.

A difference between � and P is “equivalent” to
that between ��1 and P�1. One of the simplest and
most widely used ways for the comparison of ��1

and P�1 is to compare ~x0P�1~x and ~x0��1~x, where
~x is the estimation error. This is particularly appeal-
ing in the context of measuring credibility. The com-
monest quantity that quantifies the difference between
~x0P�1~x and ~x0��1~x is y = ~x0P�1~x� ~x0��1~x. Since
y is random and ~x0i�

�1
i ~xi � �2n under the assumption

~xi � N (0; P ), a natural idea is to use its sample aver-
age 1

M

PM
i=1 yi = n�ANEES� 1

M

PM
i=1 ~x

0

i�
�1
i ~xi �

n(ANEES�1) as a measure of the difference. How-
ever, this is directly proportional to ANEES, which
has serious flaws as a measure, as discussed above.

An equally natural yet probably better idea is to use

� =
~x0P�1~x

~x0��1~x
(2)

to quantify the difference between � and P . In fact,
� can be called the credibility variable. It is in gen-
eral a function of the random error ~x. For a vector
~x, it is a NEES ratio—the actual NEES normalized
by the ideal NEES. For a scalar ~x, it is actually a
constant, independent of ~x, and is equal to the ratio
of the true mean-square error over the estimator’s error
variance—this ratio is the most convincing measure of
the credibility in the scalar case. This NEES ratio has
an intimate relationship with the relative deviation of
NEES: ~x0P�1~x�~x0��1~x

~x0P�1~x+~x0��1~x .
For a vector ~x, � is not a good credibility measure

because it is highly dependent on the random ~x. To
remove (reduce) the uncertainty in � (a ratio), as
elaborated in (Li and Zhao, 2001), geometric average"
MY
i=1

�i

#1=M
=

"
MY
i=1

~x0iP
�1
i ~xi

~x0i�
�1
i ~xi

#1=M
=

"
MY
i=1

�i
��i

#1=M

is much more preferable to arithmetic average, where
�i = ~x0iP

�1
i ~xi is the NEES of the estimator and ��i =

~x0i�
�1
i ~xi is the NEES of a perfectly credible estimator.

Often �i is not known but can be approximated by
its sample value 1

M

PM
i=1 ~xi~x

0

i. From numerical and
other considerations, we use logarithm and define the
noncredibility index (NCI) by

NCI =
10

M

MX
i=1

log10 (�i)�
10

M

MX
i=1

log10 (�
�

i ) (3)

The extra constant 10 is an amplification factor, as
in the definition of the signal-to-noise ratio (SNR) in
terms of power. For scalar ~x with data-independent
P , NCI is not random and is equal to 10 log10(�=P )
and is thus a perfect measure. Note that ANEES as a
measure is flawed even in the scalar case. For a vector
~x, NCI is the sample average of 10 times the logarithm
of the NEES ratio, 10 log10(�), in analogy to average
SNR.

Note that �=E[��] = ~x0P�1~x=E[��] can be called
the normalized NEES since it has a unity mean
if the estimator is perfectly credible (�� stands for
its ideal NEES). Then another idea is simply to
use the geometric average of this normalized NEES:hQM

i=1(�i=E[��])
i1=M

, which is free of the above

drawbacks of the ANEES. As for NCI, we use its log-
arithm and define an alternative noncredibility index
(NCI-2) by

NCI-2 =
10

M

MX
i=1

log10(�i)� 10E[log10 (��)] (4)

Subtraction of the term E[log (��)] makes the NCI-2
of a perfectly credible estimator close to zero since
in this case E[NCI-2] = 0. Clearly, NCI-2 turns out
to be a simplified version of NCI in that the sample
average 1

M

PM
i=1 log10 (�

�

i ) is replaced by the theo-
retical mean E[log10 (��)]. As such, use of the sample
mean here is more accurate than the theoretical mean
because the latter relies on not necessarily accurate
assumptions on the distribution of ��.
P�1=2~x can be viewed as a normalized estimation

error and Æ=E[Æ�] as one-dimensional equivalent nor-
malized estimation error squared, where Æ� is the Æ of a

perfectly credible estimator, Æ =
�
sum(P�1=2~x)

�2
=�Pn

j=1 uj

�2
, and uj is the jth element of P�1=2~x.

Similar to NCI-2, we propose another measure, non-
credibility index-3 (NCI-3),

NCI-3 =
10

M

MX
i=1

log10(Æi)� 10E[log10 (Æ�)] (5)

NCIs are in essence the average ratio of the one-
dimensional-equivalent true estimation error power to
the calculated estimation error power in logarithm
(dB), similar to the SNR definition.

For NCI-2 and NCI-3 to be useful, we need to
knowE[log10 (��)] and E[log10 (Æ�)], respectively. In
view of the central limit theorem it can be assumed
in most cases that for a perfectly credible estimator,
~x� � N (0; P ). Then �� =

Pn
j=1 u

2
j � �2n is standard

chi-square with n degrees of freedom and Æ� � �21(n)
is chi-square with 1 degree of freedom and parameter
�2 = n. It can be shown then that

10E[log10 (��)] =
10

ln 10
[ln 2 +  (n=2)] (6)

10E[log10 (Æ�)] =
10

ln 10
[ln(n=2)� ] (7)



where  (x) = d
dx ln �(x) is the Euler psi function,

which has the recursion

 (m+ 1) =� +
m�1X
k=0

1

k + 1

 

�
m+

1

2

�
=� + 2

"
mX
k=1

1

2k � 1
� ln 2

#

 = � (1) = 0:57721566490 is the Euler con-
stant and  

�
1
2

�
= � � 2 ln 2. In the case where

~x� 6� N (0; P ) but ~x� has a known distribution,
E[log10 (��)] and E[log10 (Æ�)] may be obtained an-
alytically or numerically. In any case, they may be
obtained by simulation for the estimator under con-
sideration by setting � in the computation of �� and
Æ� with its sample value: � = 1

M

PM
i=1 ~xi~x

0

i, where
~xi is the actual estimation error in run i. As seen
from above, NCI-2 so obtained turns out to be NCI.
Similarly, NCI-3 so obtained turns out to be equal to
an alternative NCI: 10

M

PM
i=1 log10 (Æi=Æ

�

i ). Under the
above Gaussian assumption, the sample averages and
the theoretical means can be expected to be close, oth-
erwise the former may be significantly more accurate
than the latter.

All NCIs are free of the drawbacks of the ANEES
discussed above. For instance, (a) optimism and pes-
simism are penalized to the same degree; (b) the lev-
els of noncredibility of different estimators can be
compared simply by comparing the absolute values
of their NCIs—the larger the worse; and (c) a posi-
tive and negative NCI represents optimism and pes-
simism, respectively. NCI is most accurate and NCI-
3 is least accurate, but NCI requires the extra work of
computing the sample MSE 1

M

PM
i=1 ~xi~x

0

i. All NCIs
are presented here because it is possible that one is
easier to use than the others for a particular case. If
the Gaussian assumption ~x � N (0; P ) turns out to
be valid, then NCI � 0 (= 0 if the precise ��1

i is
used), �i � �2n and Æi � �21(n). In this case NCI-2 is
more reliable (i.e., less uncertain) than NCI-3 because
it can be shown that var[NCI-2] � var[NCI-3], where
the equality holds if and only if n = 1, and in fact,

var[NCI-2] =

8>>>>>>>><
>>>>>>>>:

9:31=M; n = 1

9:31

3M
�

n=2�1X
k=0

1:8861

k2M
; n = 2m � 2

9:31

M
�

(n�1)=2�1X
k=0

1:8861

M [k + (1=2)]2

n = 2m+ 1 � 3

var[NCI-3] = 9:31=M

That is, for a perfectly credible estimator, all NCIs are
around zero and the standard deviation of NCI-2 is
upper bounded by (approximately) 3=

p
M , which is

the standard deviation of NCI-3.
Finally, we also propose log-ANEES: LNEES =

10 log(ANEES) as a heuristic measure. By taking
logarithm, it is hoped that the drawback of the ANEES
that large errors are amplified can be corrected.

3.3 Noncredibility Matrix and Its Scalar Measures

Definitions. The noncredibility matrix (NCM) �
of an estimator is: � = � � P ; the normal-
ized noncredibility matrix (NNCM) of an estimator
with nonsingular P is: NNCM = P�1=2�P�1=2 =
P�1=2�P�1=2�I ; the normalized noncredibility ma-
trix w.r.t. I of an estimator with nonsingular P is: � =
P�1=2�P�1=2; an estimator is said to be optimistic
definite (or semidefinite) if NCM positive definite (or
semidefinite), or pessimistic definite (or semidefinite)
if NCM negative definite (or semidefinite).

With these definitions, an estimator is perfectly
credible if and only if � = 0. The “size” of NNCM
(not NCM) measures the level of noncredibility. How-
ever, the direct use of a matrix norm (or some other
scalar measure) of NNCM or � suffers from draw-
backs similar to those of ANEES as a measure of
noncredibility. Better scalar measures should be used.
For this purpose, consider the following measures: log
matrix norm ratio (log-MNR), matrix norm relative
error (MNRE), log mse ratio (log-MSER) 3 , the mse
relative error (MSERE), log generalized error variance
ratio (log-GEVR) 4 , and the generalized error variance
relative error (GEVRE), defined by

MNRE1=
k�� Pk
k�k+ kPk ; MNRE2 =

k�k � kPk
k�k+ kPk

log-MSER= log
tr(�)
tr(P )

; MSERE =
tr(�)� tr(P )
tr(�) + tr(P )

log-MNR= log
k�k
kPk ; GEVRE =

det(�)� det(P )

det(�) + det(P )

log-GEVR= log
det(�)

det(P )
= log[det(�)]

where kAk stands for any matrix norm of A. These
measures are free of the drawbacks mentioned above
and enjoy some nice properties. For example, (a)
they are all symmetric w.r.t. � and P (so that opti-
mism and pessimism are treated equally); (b) 0 �
MNRE � 1, 0 � GEVRE � 1, 0 � MSERE
� 1; (c) optimistic/pessimistic (semi)definite implies
positive/negative (nonnegative/nonpositive) MNRE2,
GEVRE, MSERE, log-GEVR, and log-MSER, (d) an
estimator is perfectly credible (i.e., P = �) if and
only if MNRE1 = 0; P = � implies MNRE2 = 0
but the converse is not true. These measures have their
own pros and cons and hence are complementary to
each other. For instance, log-MSER and MSERE have
a clear physical interpretation of power but depend
only on the diagonal elements, while log-GEVR and
GEVRE have a clear geometric interpretation of vol-
ume but it is zero when the parallelotope is collapsed.

Different estimation errors ~x may excite different
“modes” of the credibility variable � defined by (2).
As a result, average � (and hence NCI) carry useful
information about the credibility of an estimator that
is dependent on the distribution of the estimation
error (beyond the second moment). NCI, however, is a

3 The MSE matrix is MSE = E[(x � x̂)(x � x̂)0] and the scalar
mean-square error is mse = E[(x� x̂)0(x� x̂)] = tr(MSE).
4 The determinant of a covariance matrix is called a generalized
variance in statistics, and is proportional to the volume of the error
ellipsoid.



scalar measure. On the other hand, NCM is a matrix
measure that depends only on the actual and calculated
second moments of the estimation error. These two
classes of measures are related. For example, it can
be shown that � and NCI are related to the eigenvalues
of � by

0 � �min(�)� � � �max(�)

10 log10 �min(�)�NCI � 10 log10 �max(�)

As such, [�min(�); �max(�)] can be called the credi-
bility interval of an estimator.

4. EVALUATION OF VARIOUS MEASURES’
EFFECTIVENESS

To better explain the concepts, consider a scalar
estimatee. It is better to recognize that for a large mse
relative error  = (� � P )=�, a log scale is more
appropriate than a linear scale, while for a small , a
linear scale is more appropriate. For example,  = 8
and  = 8:2 have a negligible difference. On the
other hand, while  = 0:1 differs significantly from
 = 0:3, it is usually not fair to think that an estimator
with  = 0:3 is three times more noncredible than
an estimator with  = 0:1. On the other hand, it is
clearly more reasonable to use a log scale for the mse
ratio P=�.

4.1 Scalar Case

As explained in Sec. 3.2, in the scalar case, NCI is a
perfect measure because it is equal to 10 log10(�=P ),
which is not random at all. However, ANEES is
flawed, as explained before and illustrated below.

Consider the same example as the one considered
in (Li and Zhao, 2001). The estimation errors of a
MAP estimator and an MMSE estimator of x with
density f(x) = e�x1(x) using a single measurement
z = x+ v are

~xMAP = x�max(x+ v � 1; 0) =

�
1� v; z > 1
x; z � 1

~xMMSE = 1� v � (
p
2�[1��(1� z)])�1e�(z�1)

2=2

where v � N (0; 1) and �(�) is the standard Gaussian
cumulative distribution function. ~xMAP is highly non-
Gaussian while ~xMMSE, albeit non-Gaussian, is not far
from Gaussian.

Fig. 1 shows ANEES and LNEES versus �=P
from 500 Monte Carlo runs. The horizontal axes are
obtained by varying P while holding � equal to
their sample values 1

M

PM
i=1(xi � x̂i)

2 for MAP and
MMSE estimators, respectively. The corresponding
95% probability interval for ANEES is (0:8799; 1:1277).

It turns out that the chi-square test based on ANEES
accepted the MMSE estimators x̂MMSE with �=P �
0:9 and rejected all other MMSE estimators. This
result is acceptable since x̂MMSE(�=P � 0:9) almost
perfectly credible. However, the same chi-square test
incorrectly accepted a noncredible MAP estimators
x̂MAP(�=P � 0:65) and rejected all other MAP
estimators, including the credible one, x̂MAP(P = �).
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Fig. 1. ANEES and LNEES versus �=P .

This mistake arises from the incorrect assumption that
~xMAP(P = �) � N (0; P ). As such, NEES and
thus ANEES of x̂MAP(P = �) are far from chi-
square distributed. The Gaussian assumption is not
bad for the MMSE estimators in this example and
thus the results of credibility tests are fine. This
example demonstrates that the chi-square test based
on ANEES is sensitive to the validity of the Gaussian
assumption. For the scalar case, �=P is the most
convincing measure of the credibility. It is also evident
that the ANEES amplifies the region over which the
estimator is optimistic and suppresses the pessimistic
region.

NCI is not shown because NCI for this scalar
case is never random at all and is a perfect straight
line connecting (10�1;�10) and (101; 10), which
passes through the origin (100; 0) because �i =
~x0iP

�1
i ~xi=(~x

0

i�
�1~xi) = �=Pi. This is perfect: (a)

optimism and pessimism are treated symmetrically;
(b) everybody is treated fairly—no particular region
is suppressed or amplified; (c) estimators of differ-
ent types (e.g., MAP and MMSE) have identical
NCI curve and thus NCI values from different es-
timators can be directly compared in a meaningful
way. As such, the credibility of different estimators
in different cases may be compared by their NCIs.
NCI-2 is exactly NCI shifted upward by the amount
10
M

PM
i=1 log10(~x

2
i =P ) � 10E[log10 (��)] and thus is

also a perfect straight line. For the MMSE estimator,
it almost coincides with NCI, while for the MAP esti-
mator, it has a small upward shift. The LNEES curves
are close to a straight line but with some variation. The
LNEES of the MAP estimator deviates significantly
from the ideal one [i.e., the one that passes through
the origin (100; 0)].

4.2 Vector Case

For a vector x, care should be taken to evaluate
the effectiveness of credibility measures. Since our
NCIs are based on the NEES ratio, it would be un-
fair to evaluate the effectiveness of various credibility
measures by checking how close they are to the direct
proportion of log(�) or log(Æ=Æ�). Albeit meaningful,
such evaluation is in favor of our NCI. We devise
below a more impartial evaluation.

Let A = [aij ] be nonrandom and ~A = [~aij ] = A+
B, where B = [bij ] is the difference between A and
~A. Generate bij randomly with a N [0; (�aij)

2] dis-
tribution. Then var(~aij) = var(bij) = (�aij)

2. Note
that while E[ ~A] = A, in most runs ~A is substantially



different than A unless �2 is quite small, and the dif-
ference increases with �2. Note that�B andB do not
cancel each other as far as the difference between ~A
and A is concerned. In this sense, the scalar � 2 quan-
tifies the difference between ~A and A. As such, we
may think the following holds in a statistical sense 5 :
�A � B. Now let A = ��1=2 and ~A = P�1=2. It
thus follows that since B = ~A�A,

�I � �1=2(P�1=2 ���1=2) = �1=2P�1=2 � I

�I � (P�1=2 ���1=2)�1=2 = P�1=2�1=2 � I
(8)

that is, � quantifies the credibility in some statistical
sense. Evidently, � can also be used as a credibility
measure.

Fig. 2 shows ANEES versus � while Fig. 3 shows
NCI, NCI-2, NCI-3, and LNEES versus �, obtained
from M = 100 Monte-Carlo runs. As argued above,
linear and log scales are used for � over [0; 1) and
[1; 100], respectively. The ANEES, NCIs, and LNEES
were computed as follows. We set

A =

�
1 1
1 2

�
; ��1 = AA0

For each � value, we generated ~xi � N (0;�),

b
(i)
nm � N [0; (�anm)

2], Bi = [b
(i)
nm], ~Ai = A + Bi,

P�1
i = ~Ai ~A

0

i, i = 1; : : : ;M . Then, ANEES, NCIs,
and LNEES were computed from their formulas using
~xi, P

�1
i , and ��1.
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Fig. 2. ANEES versus �.
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Fig. 3. Noncredibility indices and LNEES vs. �.
Clearly, ANEES amplifies large � severely while

NCIs and LNEES are approximately proportional to
�, which is desirable. NCI and NCI-2 are essentially
the same and are most reliable (i.e., with least vari-
ation). LNEES exhibits a larger variation but NCI-
3 is even less reliable. The variation of the ANEES
increases significantly as � increases.

5 This is similar to viewing a zero-mean random variable as having
a length equal to its standard deviation, which has a solid theoretical
foundation.

NCI increases by 20 dB when � is increased 10
times. This is in agreement with the scalar case where
NCI = 10 log10(�=P ). For example, NCI = 6 dB
corresponds to � ' 1, or equivalently [from (8)]
�1=2P�1=2 � 2I (i.e., NCI = 6 dB corresponds to
�P�1 � 4I). On the other hand, NCI = 6 dB corre-
sponds to �=P = 4 because NCI = 10 log10(�=P ) in
the scalar case. Similarly, NCI= 10 dB corresponds to
� ' 2, or equivalently�P �1 � 9I , which agrees with
NCI = 10 log10(�=P ) = 10 log10 9 ' 10 dB in the
scalar case. This comparison demonstrates that NCI
enjoys a nice property that it is invariant with respect
to the dimension of the estimator. Note that LNEES
does not possess this nice property.

In summary, these two examples demonstrate that
NCI is the most accurate measure of the credibility of
an estimator with many nice features. In view of this,
NCI can be used as a universal measure for credibility
of estimators.

5. SUMMARY

The problem of the credibility of an estimator,
that is, whether and how much an estimator’s self-
assessment of the estimation errors can be trusted, has
been formulated. A number of credibility measures,
ranging from the most accurate noncredibility index
(NCI) to the simple, intuitively appealing mse ratio,
have been presented, along with justifications. The
pros and cons of these measures have been explained.
It has been shown via numerical examples that the
proposed credibility measures are fairly accurate in
that they provide fairly good indication of the level
of (non)credibility. It is concluded that NCI, with its
superior accuracy and nice properties, can be used
as a universal measure of credibility of estimators. It
has also be shown that the statistic, ANEES, while
valid for credibility tests, has fundamental flaws as a
measure of credibility.
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