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Abstract: A CAD-guided vision sensor planning system is developed in our lab. To improve
the efficiency of the inspection system, the path planning problem is rendered as a Traveling
Salesman Problem(TSP). A new approach is developed to solve the TSP into its sub-
optimality quickly. First, viewpoints are clustered into several groups. Second, clustered
Traveling Salesman Problem is solved by favoring the inter-group paths. Experimental results
on real parts show that the proposed approach is effective.
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1. INTRODUCTION
1.1 CAD-Guided Vision Sensor Planning

Sensor planning (Tarabanis et al., 1995), or finding
the suitable sensor configurations so that an inspection
task can be carried out satisfactorily, is essential to
automated inspection systems. A camera positioning
system is being developed in our lab to plan and re-
alize the camera configurations in a fully automated,
accurate and efficient way(W.Sheng et al., 2000). The
overall system is shown in Figure 1. This system can
be used to aid the automotive part dimensional inspec-
tion using structured light method. Based on the re-
quirements of the structured light method, the problem
of camera planning for dimensional inspection can be
stated as follows:

find a set of camera viewpoints (position and orienta-
tion) to cover all the surfaces of the part and, for any
point and its small neighboring area on the surfaces
of the part, at least one viewpoint exists such that the
point and its neighboring area are visible, in the field
of view, resolvable and in focus (W.Sheng et al., 2000).
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In this system, the camera planning algorithm con-
sists of two main steps. First, the compound surfaces
are decomposed into patches that satisfy a flatness
constraint. Second, a combined viewpoint generation
algorithm is proposed for each patch based on two
existing sensor planning methods: generate-and-test
and synthesis (Tarabanis et al., 1995).

1.2 Shortest Path Planning Problem

After all the viewpoints are generated, the path plan-
ning problem then follows: find the minimum-time
movement of the robot to carry out the inspection.
Obviously, the time for a complete inspection of the
whole part consists of 1) the time spent on the traverse
among the viewpoints and 2) the time spent on the
execution of inspection at all the viewpoints. Since the
latter is constant, the optimization of the total inspec-
tion time is, essentially, the minimization of the time
spent on the traverse of the camera among viewpoints.
Mainly, two factors determine the traverse time: 1) the
trajectory, or time history of joint positions, velocities,
accelerations, and torques, between each pair of view-
points; 2) the order to visit all the viewpoints. In this
paper, we focus on the latter.
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Fig. 1. Camera positioning system for automated part
dimensional inspection

For a robotic system, the minimum-time geometric
path of the robot’s end-effector is not necessarily
equivalent to the path of minimum Euclidean distance,
but depends on the manipulator’s kinematics and its
inertial parameters (K.G.Shin and N.D.Mckay, 1986).
However, in our view, Euclidean distance is still a
good approximation.

Edan et al. developed a computationally efficient al-
gorithm that allows the determination of the near-
minimum-time path between n task points (Y.Edan et
al., 1991). They modeled the problem as a Traveling
Salesman Problem (TSP) (E.L.Lawler et al., 1985).
To reduce the computation time, they divided the task
points into several groups and solved the TSP group
by group. However, they did not talk about how to find
the paths connecting different groups, which will be an
additional problem as the number of groups increases.

To model the robot path planning problem, a graph,
G = (V, E) is constructed in the following way: take
the position of each viewpoint as a vertex v;, the path
between two vertices v; and v; as an edge e;; and
the minimum distance to traverse between these two
vertices as its weight, w;;. The goal is to find a shortest
Hamiltonian path, or a path that visits all the vertices
once and does not go back to the starting vertex. The
following assumptions hold: 1) the Euclidean distance
between two viewpoints corresponding to vertex v;
and v;, d(v;,v;), is taken as weight w;;. 2) the graph
is complete, or there exists a straight path between any
pair of viewpoints.

1.3 Traveling Salesman Problem and Its Variants

The Traveling Salesman Problem tries to determine
an order to visit n cities so that the total tour length
is the shortest (E.L.Lawler et al., 1985). In compu-
tation complexity theory, the TSP is N P-complete.
There have been intensive research efforts in TSP.
Basically, there are two types of algorithm for it. 1) ex-
act algorithms and 2) approximation algorithms. The
exact algorithms aim to find the optimal solutions,
however, these algorithms are very slow, especially
for large size problems. Some of the exact algorithms

are: cutting planes, Branch-and-Bound and dynamic
programming (E.L.Lawler et al., 1985). The approx-
imation algorithms try to find sub-optimal solutions
using heuristic approaches and are much faster.

As variants of the TSPs, the shortest Hamiltonian path
problems have three types:

o the shortest free-end Hamiltonian path (SFHP)
problem — there is no specification on the end
cities,

e the shortest one-end Hamiltonian path (SOHP)
problem — one end city is specified, and

o the shortest two-end Hamiltonian path (STHP)
problem — both end cities are specified.

All the three Hamiltonian path problems can be trans-
formed into classical TSPs by enhancing the dis-
tance matrix (E.L.Lawler et al., 1985). They can also
be solved directly using approximation algorithms
(N.Guttmann-Beck et al., 2000; J.A.Hoogeveen, 1991).

The organization of the paper is as follows, in Section
2, the two-level-TSP approach is developed. Section 3
evaluates the performance of our approach. Section 4
provides the implementation and experimental results.
Conclusions are provided in Section 5.

2. TWO-LEVEL-TSP APPROACH

It is apparent that the number of viewpoints will in-
crease as the area of the part surfaces and the geo-
metric complexity increase. Due to the nature of the
TSP, the time to solve it grows rapidly as the problem
size grows, even for approximation algorithms. On the
other hand, based on the decomposition of compound
surfaces, the resulting viewpoints tend to form groups
in 3D space. That means the distances between view-
points in the same group are relatively smaller than
the distances between viewpoints in different groups.
This geometric structure of the viewpoints inspires us
to solve the problem in a hierarchical way:

cluster the viewpoints based on their distance similar-
ity into several groups; solve the TSP for each group
as well as determine the path to visit all the groups.

By taking advantage of the cluster nature of the prob-
lem, it is possible to find sub-optimal solutions very
quickly. Following are some useful definitions when
the hierarchical TSP is referred.

o inter-group edge: an edge e;; = (v;,v;) with its
vertices v; and v; in different groups.

o inter-group path: the collection of inter-group
edges that visit all the groups.

The shortest inter-group path is the shortest “connec-
tions” among all the groups. Apparently, if the number
of the groups is N,, the number of the inter-group
edges on the inter-group path is IV, — 1.
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Fig. 2. An example problem

o intra-group Hamiltonian path: a path that visits all
the vertices exactly once in a group without leaving
the group.

Any overall path for N, groups consists of one inter-
group path and N, intra-group Hamiltonian paths.

2.1 Clustered Traveling Salesman Problem

Once the viewpoints are clustered into groups, the
two-level hierarchical TSP becomes the clustered
Traveling Salesman Problem (CTSP) (J.A.Chisman,
1975):

Let G = (V, E) be a complete graph with vertex set
V and edge set E. The vertex set is partitioned into
k groups, g1, g2, ..., gk, determine a shortest path to
visit all the vertices and the vertices of each group are
visited consecutively.

To solve the CTSP, Chisman (J.A.Chisman, 1975)
transformed the CTSP back to a TSP by adding big
costs to the inter-group edges. However, his algorithm
focuses on the group constraint instead of the com-
putational cost. In this sense, his method does not re-
duce the computational cost of the original TSP. Lokin
(F.C.J.Lokin, 1978) provided a Branch-and-Bound al-
gorithm to exactly solve the CTSP, and as can be
expected, it is not time-efficient. Approximation algo-
rithms were also developed (M.Gendreau et al., 1994).

Recently, Guttmann-Beck et al. (N.Guttmann-Beck
et al., 2000) proposed an approximation algorithm
for CTSP. Their algorithms are based on a modified
Christofides’ algorithm (J.A.Hoogeveen, 1991) for the
shortest Hamiltonian path in each group, as well as an-
other modified Christofides’ algorithm to find a short-
est path connecting all the groups. Guttmann-Beck et
al. determined the shortest intra-group Hamiltonian
paths first, then calculated the paths among groups.
Hence their algorithm favors the intra-group paths.

In this paper, a different perspective is taken to solve
the CTSP, which favors the inter-group paths. Basi-
cally, two level of TSPs are solved. In the higher level,
the shortest “connections”, or the shortest inter-group
path, among groups are determined first. In the lower
level, with the entering and the leaving vertex already
known in each group, the shortest Hamiltonian path
problems are solved group by group. By combining
the paths generated in both levels, a complete path can
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Fig. 3. The distances between groups and the group
graph

be obtained. As is analyzed later, this new algorithm
has comparable performance with Guttmann-Beck’s
algorithm and in some cases it is even better.

2.2 Level 1: Shortest Inter-group Path

To find the shortest inter-group path, a new graph,
called group graph, is constructed with each vertex
representing a group and the distance between two
vertices representing the distance between the corre-
sponding two groups. Here the distance between two
groups is defined as follows,

o distance between two groups: the minimum of the
length of the inter-group edges between g; and g;. i.e.,
D(gi,9;) = miny;eg; v;e4; d(viyv5)-

An example problem is shown in Figure 2. The dis-
tances between groups and the corresponding group
graph are shown in Figure 3, where IP,,IP,,...IPg
are the distances between each pair of groups.

The shortest free-end Hamiltonian path on the group
graph is corresponding to the collection of the inter-
group edges with minimum total distance that visit all
the groups. In Figure 3, the thicker lines (IPy, I P>, I P3)
highlight the shortest inter-group path.

2.3 Level 2: Shortest Intra-group Hamiltonian Paths

As far as the way the shortest inter-group path enters
and leaves each group is concerned, there are four
possibilities as shown in Figure 3 :

1) in the starting group of the shortest inter-group path,
there is only one leaving vertex,

2) in the ending group of the shortest inter-group path,
there is only one entering vertex,

3) in some intermediate groups, entering and leaving
vertices are different.

4) in some intermediate groups, entering and leaving
vertices coincide.

Correspondingly, there are four ways to find the short-
est intra-group Hamiltonian paths (or extended intra-
group Hamiltonian paths as in the fourth case). Fig-
ure 4 shows them.

1) The shortest one-end Hamiltonian path (SOHP)
problem is solved to find the shortest intra-group
Hamiltonian path that ends at the starting vertex of the
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Fig. 4. Find the intra-group Hamiltonian paths

Fig. 5. The relation between the shortest Hamilto-
nian circle and the shortest extended intra-group
Hamiltonian path

shortest inter-group path.

2) The shortest one-end Hamiltonian path (SOHP)
problem is solved to find the shortest intra-group
Hamiltonian path that starts at the ending vertex of the
shortest inter-group path.

3) A shortest two-end Hamiltonian path (STHP) is
found which begins at the entering vertex and ends at
the leaving vertex.

4) A shortest two-end Hamiltonian path (STHP) is
found which begins at the entering vertex of the cur-
rent group and ends at the entering vertex of the next
group. As a result, in the overall path, the correspond-
ing inter-group edge is replaced by the new edge join-
ing the two consecutive groups.

In the fourth case, the following lemma holds.

Lemma 2.1. Denote the length of the shortest two-end
Hamiltonian path that extends from group g; to the
next group g; as d(ST H P}), the length of the shortest
Hamiltonian circle in group g; as d(SHC;), IP; is
on the shortest inter-group path and it joins g; with
g;, denote d(IP;) as its length, then d(STHP]) <
d(SHC;) + d(IF;).

Proof. In Figure 5, assume SHC; is the shortest
Hamiltonian circle in group g;. Delete the edge (ep)
between the starting vertex s; and the vertex preceding
s; on SHC;. Connect the preceding vertex with the
starting vertex s; of the next group g; by edge IF;.
Thus an extended intra-group Hamiltonian path is
constructed from s; to s;. Obviously, the length of this
Hamiltonian path is no less than d(STHP}). On the
other hand, due to the triangle inequality, the length of
this Hamiltonian path is less than d(SHC;) + d(I F;).
Therefore d(STHP]) < d(SHC;) + d(IF;). <

Fig. 6. Construct a two-end Hamiltonian Path from an
SFHP

3. PERFORMANCE ANALYSIS

The performance of the two-level-TSP hierarchical
algorithm is analyzed here. That is, what is the length
difference between the solution of the TLT algorithm
and the optimal solution of the CTSP? if both the
shortest inter-group path and the shortest intra-group
Hamiltonian path problems achieve optimality.

Lemma 3.1. Denote the total length of the shortest
free-end Hamiltonian path of group g as d(SFH P),
the total length of the shortest two-end Hamiltonian
path of the same group as d(ST H P), then the fol-
lowing inequality holds, d(STHP) < d(SFHP) +
2D(g). Here D(g) is the diameter of group g, or
the maximum distance of all pairs of vertices in that

group.

Proof. As shown in Figure 6, the n vertices are num-
bered sequentially from v; to v, in the order of the
shortest free-end Hamiltonian path (SFH P). Given
any pair of starting and ending vertex, (v;, v;), the fol-
lowing method can construct a two-end Hamiltonian
path.

1)v; and v; are adjacent on the SFHP. It is obvious
that by adding an edge (v1, v, ) and deleting an edge
(vj_1,v;), a Hamiltonian path is obtained with given
starting and ending vertices.

2)v; and v; are not adjacent. Similarly, by adding
two edges, (v1, vi1) and (v;_1,vy,) and deleting two
edges (vi, vi+1) and (vj—1,v;), a Hamiltonian path is
obtained with given starting and ending vertices.

Hence, by adding at most two edges an SFHP can
be converted to a two-end Hamiltonian path with any
given starting and ending vertices, which implies that
the length of the ST H P of any pair of starting and
ending vertices should be no more than the length of
SFH P plus 2 times of the diameter of the group, i.e.,
d(STHP) < d(SFHP)+2D(g).«

Obviously, for each group, Guttmann-Beck’s algo-
rithm has a loss of 2D(g) due to favoring intra-group
Hamiltonian paths. And the above lemma implies that
the loss caused by favoring the inter-group path is also
2D(g). Hence they are comparable.

Similarly to lemma 3.1, we have the following lemma,



Fig. 7. A floor pan

Lemma 3.2. Denote the total length of the shortest
free-end Hamiltonian path of group g as d(SFH P),
the total length of the shortest one-end Hamiltonian
path of the same group as d(SOH P), then the fol-
lowing inequality holds, d(SOHP) < d(SFHP) +
D(g).

Denote the total length of the optimal solution of the
CTSP as d(OPT). Obviously, the following inequal-
ity holds, d(OPT) > d(IP) + d(SFHP). Here
d(IP) = ngfl d(IF;) is the total length of the
shortest inter-group path solved based on the group
graph. d(SFHP) = Y n°, d(SFHP;) is the sum of
the length of the shortest free-end Hamiltonian paths
in all groups. The equality holds only when in each
group the two end vertices determined by the two-
level-TSPs(TLT) algorithm are the same.

Theorem 3.1. Denote the total length of the overall
path returned by the TLT algorithm as d(T'LT"), then

d(TLT) < d(OPT) + 2 %1% D(gs).

Proof. The overall path returned by TLT algo-
rithm consists of the inter-group path and the intra-
group paths. For the starting and ending group where
only one end vertex is given, as proved in lemma
3.2, d(SOHP;) < d(SFHP;) + D(g;). For the
groups with two different entering and leaving ver-
tices, lemma 3.1 has shown that d(STHP;) <
d(SFHP;) + 2D(g;). For those shortest intra-group
Hamiltonian paths that extend to the next group, as we
have proved in lemma 2.1, d(STHP]) < d(SHC;) +
d(IP;). While the length of the shortest Hamiltonian
circle should be less than the length of the shortest
free-end Hamiltonian path plus the diameter of the
group, i.e., d(SHC;) < d(SFHP;)+ D(g;), we have
d(STHP)) < d(SFHP) + D(g;) + d(IF).

Adding up all the paths we have

Ng Ng Ng—1
dTLT)< Y SFHP;+2Y D(g)+ Y d(IP)
i=1 =1 i=1
Ng
< d(SFHP) + d(IP) + 2 Z D(g;)

i=1

the path

Fig. 8. The path by TLT algorithm

Ng

< d(OPT) + 2 Z D(g;).

i=1
<
It is obvious that the TLT algorithm obtains solutions
within a constant bound from the optimal solution of
CTSP. So the TLT algorithm is favorable for highly
clustered CTSPs.

4. IMPLEMENTATION AND RESULTS
4.1 Implementation

The TLT algorithm is implemented in C. To clus-
ter the viewpoints, a modified nearest neighbor al-
gorithm is developed based on A.K.Jain’s algorithm
(A.K.Jain, 1988). This modified algorithm keeps the
size of each group and the number of groups to be
moderate. The shortest inter-group path, or the top
level of the TSP is solved using a simulated annealing
method based on a minimum spanning tree. For the
SFHP, SOHP and STHP, a Christofides-like algorithm
is used (J.A.Hoogeveen, 1991), which is based on the
minimum spanning tree and the minimum matching.

4.2 Results

Parts from Ford Motor Company are used to test the
algorithm. First, the viewpoints that satisfy the task
constraints are generated. Second, these viewpoints
are grouped into multiple groups. Third, using TLT
algorithm, a complete path is obtained. As an example,
a floor pan is used, which is shown in Figure 7.
Totally 510 viewpoints are generated. The viewpoints
are clustered into 46 groups. The overall path is shown
in Figure 8, where the positions of the viewpoints
are marked. The total length of the path is 59.96 m
and the running time is 17.35 s on Uniz™™ with a
Sun Ultra 1 167 Mhz CPU and 512 M RAM .

We compare the TLT algorithm with SFHP algorithm
that runs on the whole set of viewpoints (we call
it one-level-TSP(OLT) algorithm). The overall path
obtained by OLT is shown in Figure 9 with a path
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Fig. 9. The path by OLT algorithm

length of 45.26 m and running time 264.25 s. The
following table summarizes the performance (path
length and running time) of the TLT and the OLT
algorithm on different parts.

No. of Length (m) Time (s)
Viewpoint | OLT TLT OLT TLT
pillar 55 16.58 | 17.62 | 17.50 1.82
door 103 35.28 | 36.78 | 37.02 6.26
floorpan 510 4526 | 59.96 | 264.25 | 17.35

So it is clear that the TLT algorithm is much faster
than the one-level-TSP algorithm. The total lengths of
the paths are comparable for both algorithms.

5. CONCLUSIONS

In this paper, how to efficiently solve the shortest path
planning problem in CAD-guided vision sensor plan-
ning is discussed. A two-level-TSP (TLT) algorithm is
developed based on variants of shortest Hamiltonian
path problems. Performance of the TLT algorithm
is analyzed. It is shown that a constant bound can
be achieved which is related to the diameter of the
clusters. This new algorithm can obtain near-optimal
solutions quickly for many large scale TSPs, which
are common problems in many robot path planning
applications.
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