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Abstract: Optimal control of systems with complex nonlinear behaviour such as steady state
multiplicity results in a nonlinear optimization problem that needs to be solved online at each
sample time. We present an approach based on simulation, function approximation and evolutionary
improvement aimed towards simplifying online optimization. Closed loop data from a suboptimal
control law, such as MPC based on successive linearization, is used to obtain an approximation of
the ‘cost-to-go’ function, which is subsequently improved through iterations of the Bellman equation.
Using this offline-computed cost approximation, an infinite horizon problem is converted to an
equivalent single stage problem — substantially reducing the computational burden. This approach
is tested on continuous culture of microbes growing on a nutrient medium containing two substrates
that exhibits steady state multiplicity. Extrapolation of the cost-to-go function approximator can
lead to deterioration of online performance. Some remedies to prevent such problems caused by
extrapolation are proposed.
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1. INTRODUCTION

We are often faced with the task of solving non-
linear dynamic optimization problems — either
off-line or more commonly on-line. An example
is the popular method of Model Predictive Con-
trol (MPC) (Morari and Lee, 1999; Mayne et
al., 2000), which requires a nonlinear dynamic
optimization problem to be solved at each sam-
ple time when applied on a nonlinear process
model. Nonlinear dynamic optimization problems
are intrinsically hard problems and it is difficult
to assure the attainment of quick, reliable solu-
tions, which are needed in most of the practical
applications. Difficulties exist even in off-line op-
timization, when the problem involves a model
of high dimension and a large time window, thus
yielding a large set of optimization variables and
constraints. In practice, these problems are often
solved in a highly approximate sense (by using a
linear approximation of the model, for example) or
are avoided by adopting heuristic policies instead.

One approach for solving dynamic optimization
is Dynamic Programming (DP). Here, the aim is
to find the optimal ‘cost-to-go’ function, which
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can be used to parameterize the optimal solution
with respect to the system state – either as a
continuous function or as a lookup table – thereby
simplifying the task of obtaining on-line solutions.
However, the approach is largely considered im-
practical as analytical solution of resulting dy-
namic program is seldom possible and numerical
solution suffers from the ‘curse of dimensionality’
(Bellman, 1957).

Neuro-Dynamic Programming (NDP) approach
was proposed as a way to alleviate the curse of
dimensionality (Bertsekas and Tsitsiklis, 1996).
It uses simulated process data obtained under
suboptimal policies to fit an approximate cost-to-
go function – usually by fitting artificial neural
networks, hence the name. The initial approxi-
mate cost-to-go function is further improved by
an iteration procedure based on the so called Bell-
man equation. In this context, the simulation’s
role is two-fold. First, by simulating the process
under a reasonably chosen suboptimal policy and
all possible operating parameters / disturbances,
it provides a set of data points that define the
relevant region in the state space. Second, the
simulation provides the cost-to-go value under
the suboptimal policy for each state visited, with
which iteration of the Bellman equation can be
initiated.
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The NDP approach has received significant atten-
tion for its successes in several applications such
as elevator dispatch problem and a program that
plays Backgammon at the world championship
level. Recently, we used NDP to develop a non-
linear model predictive controller for a bench-
mark Van de Vusse reaction system (Lee and
Lee, 2001). In this paper, this method is applied
to a more complex problem involving a continu-
ous bioreactor displaying multiple steady states.
The cybernetic modeling framework developed by
Ramkrishna and coworkers (Kompala et al., 1986)
is used to model the system. For Nonlinear MPC
(NMPC) method based on successive linearization
of the nonlinear model (Lee and Ricker, 1994) to
this system, we needed long prediction and control
horizons due to certain peculiar dynamics of the
bioreactor, viz quickly settling to an almost stable
behavior that lasts for a long period followed by
a sharp drift to another steady state, which is
“triggered” by a change in the cells’ metabolic
states 2 . We seek to use this approach, not only
to reduce the on-line computational demand but
also to improve the performance of the suboptimal
MPC method.

2. PRELIMINARIES

2.1 Open Loop Optimal Control Problem

A general dynamic optimization problem com-
monly found in the optimal control literature is
as follows:

min
u0,...,up−1

p−1
∑

i=0

φ(xi, ui) + φ̄(xp) (1)

with

Path Constraint: gi(xi, ui) ≥ 0, 0 ≤ i ≤ p− 1

Terminal Constraint: ḡ(xp) ≥ 0

Model Constraint: ẋ = f(x, u)

for a given initial state x0 and a piecewise constant
input u(τ) = ui i·h ≤ τ < (i+1)·h. φ is the single
stage cost function and φ̄ is the terminal state cost
function. Such a problem may be solved in the
context of finding an open-loop input trajectory
off-line for a fixed finite-time process (e.g., a batch
process). For a continuous system, the problem
may be solved on-line at each sample time in
order to find the optimal input adjustment for
the given state – as in ‘Receding Horizon Control’
(Morari and Lee, 1999; Mayne et al., 2000). In
the latter case, it is shown to be advantageous

2 The microbes display different nutrient uptake patterns
in the two steady states, indicating distinct internal cellular
mechanisms

to solve an infinite horizon problem (in which p
is set to infinity). Obviously, the computational
load for solving the optimization increases with
the size of the horizon, thereby limiting the use of
such an approach in practice, especially when non-
linear system models are involved and the use of
a large optimization window is required to obtain
a satisfactory result.

2.2 Dynamic Programming and Bellman Equation

Dynamic Programming (DP) is an elegant way
to solve the previously introduced optimization
problems. It involves stagewise calculation of the
cost-to-go function to arrive at the solution, not
just for a specific x0 but for general x0. For (1),
the cost-to-go at each stage is defined as

Ji = min
up−i,...,up−1

p−1
∑

j=p−i

φ(xj , uj) + φ̄(xp) (2)

Then, the calculation of the cost-to-go function at
each stage can be done recursively as

Ji(x) = min
u

φ(x, u) + Ji−1(Fh(x, u)), (3)

where Fh(x, u) denotes the resulting state after in-
tegrating the differential equation for one sample
interval with the starting state of x and constant
input of u. The above is sequentially solved from
i = 1 through i = p with the initialization of
J0 = φ̄(x). Of course, the pertinent terminal /
path constraints need to be imposed at each stage.
The cost-to-go function, once found, represents a
convenient vehicle to obtain the optimal solution
for a general state x0.

By continuing the cost-to-go iteration of (3) until
convergence within the above procedure, we can
see that the infinite horizon cost-to-go function
J∞ satisfying the following‘Bellman Equation’ can
be obtained.

J∞(x) = min
u
{φ(x, u) + J∞(Fh(x, u))} (4)

In very few cases can we solve the stagewise opti-
mization analytically to obtain a closed-form ex-
pression for the cost-to-go function. The conven-
tional numerical approach to the problem involves
gridding the state space, calculating and storing
the cost-to-go for each grid point as one marches
backward from the last stage to the first. For
an infinite horizon problem, the number of iter-
ations required for convergence can be very large.
Such an approach is seldom practically feasible
due to the exponential growth of the computation
with respect to state dimension. This is referred
to as the ‘curse of dimensionality’, which must
be removed in order for this approach to find a
widespread use.



2.3 A Simulation Based Alternative to Obtain
Cost-to-go Approximation

The policy improvement theorem states that a new
policy that is greedy 3 with respect to the cost-to-
go function of the original policy is as good as or
better than the original policy; i.e. the new policy
defined by J i+1 = minu(φ + J i) is an improve-
ment over the original policy (Sutton and Bar-
tow, 1998). Indeed, when the new policy is as good
as the original policy, the above equation becomes
the same as Bellman optimality equation (4). Use
of the Bellman equation to obtain iterative im-
provement of cost-to-go approximator forms the
crux of various methods like Neuro-Dynamic Pro-
gramming (NDP) (Bertsekas and Tsitsiklis, 1996),
Reinforcement Learning (RL) (Sutton and Bar-
tow, 1998), Temporal Difference (Tsitsiklis and
Roy, 1997) and such.

In this paper, the basic idea from NDP and RL
literature is used to improve the performance of
a successive linearization based Nonlinear Model
Predictive Control (NMPC) method applied to a
bioreactor. Relevant regions of the state space are
identified through simulations of the NMPC con-
trol law, and initial suboptimal cost-to-go func-
tion is calculated from the simulation data. A
functional approximator is used to interpolate be-
tween these data points. Evolutionary improve-
ment is obtained through iterations of the Bell-
man equation (5). When the iterations converge,
this offline-computed cost-to-go approximation is
then used for online optimal control calculation
for the reactor.

In the remainder of the paper, we refer to our
proposed algorithm as simulation-approximation-
evolution (S-A-E in short) scheme as this term
captures the essence of the algorithm much better
than NDP or RL.

2.4 The Algorithm

The simulation-approximation-evolution scheme
involves computation of the converged cost-to-
go approximation offline. The following steps de-
scribe the general procedure for the infinite hori-
zon cost-to-go approximation.

(1) Perform simulations of the process with cho-
sen suboptimal policies under all representa-
tive operating conditions.

(2) Using the simulation data, calculate the
∞-horizon cost-to-go for each state vis-
ited during the simulation. For example,
each closed loop simulation yields us data
x(0), x(1), . . . , x(N), where N is sufficiently
large for the system to reach equilibrium. For

3 A greedy policy is one whose current cost is the least.

each of these points, one-stage cost φ(k) is
computed. Cost-to-go is the sum of single
stage costs from the next point to the end
of horizon — J(k) =

∑N
i=k+1 φ(i).

(3) Fit a neural network to the data to approx-
imate cost-to-go function as a smooth func-
tion of the states.

(4) With the cost-to-go function approximation
J̃ i(x), calculate J i+1(x) for the given sample
points of x by solving

J i+1 = min
u

φ(x, u) + J̃ i(Fh(x, u)) (5)

which is based on the Bellman Equation.
(5) Repeat steps 3 and 4 until convergence of

the cost-to-go function approximation. This
procedure is known as cost iteration.

(6) Policy Update may sometimes be neces-
sary to increase the coverage of the state
space. In this case, more suboptimal simula-
tions with the updated policy (J̃ i) are used to
increase the coverage or the number of data
points in certain region of state space.

Assuming that one starts with a fairly good ap-
proximation of the cost-to-go (which would result
from using a good suboptimal policy), the cost
iteration should converge fairly fast — faster than
the conventional stagewise cost-to-go calculation.

3. MICROBIAL CELL REACTOR WITH
MULTIPLE STEADY STATES

Continuous bioreactors often display steady state
multiplicity, and significant delayed responses to
changes in the environment due to the tendency of
living cells to switch metabolic states in response
to environmental pressures. Steady state multi-
plicity is a condition in which a system displays
two or more distinct states and output conditions
for the same set of input conditions. Product for-
mation is associated with specific metabolic states
that can be achieved only by carefully controlling
the cells’ environment. Analysis of models of mi-
crobial cell cultures indicate coexistence of multi-
ple stable steady states in a certain range of opera-
tion (Namjoshi and Ramkrishna, 2001). This work
focuses on the control of a continuous stirred tank
containing bacterium Klebsiella oxytoca growing
on a mixture of two sugars: glucose and arabinose.
Specifically, switching between multiple steady
states to drive the reactor to the preferred steady
state is considered.

3.1 Description of the Modeling Scheme

This system was originally studied for a batch
reactor by Kompala et al. (1986). They applied
the cybernetic modeling framework for modeling



the diauxic behavior of the system. The five states
of the system correspond to substrate concentra-
tions, biomass concentration and concentration of
the two key enzymes within the cells. The model
consists of five ODEs:

dsi

dt
= D[sif − si]− Yi[rivi]c (6)

dei

dt
= reiui + r∗ei − βiei − rgei (7)

dc
dt

= rgc−Dc (8)

where i = 1, 2 and the rates are given by

ri = rmax
i

si

Ki + si

(

ei

emax
i

)

rei = αi
si

Kei + si
rg = r1v1 + r2v2

As seen in equation (6), the monod type kinetics
are modified by cybernetic regulation variables of
the second type vi = ri

max(r1,r2)
, that modify en-

zyme activity. Similarly, the cybernetic regulation
variables ui = ri

r1+r2
in equation (7) modify the

rates of enzyme synthesis.

State s1 glucose (gm/L)
Variables s2 arabinose (gm/L)

e1 key enzyme(s)-1 (gm/gm dry wt.)
e2 key enzyme(s)-2 (gm/gm dry wt.)
c biomass (gm/L)

M. V. D dilution rate (hr−1)
C. V. c biomass
Parameter s2f s2 feed rate (gm/L)

Table 1. Key variables and parameters
of the system

Numerical bifurcation analysis of the above-
mentioned cybernetic model of bacterial growth
on substitutable substrates revealed the existence
of two stable steady states in a certain range
of operating parameters (Namjoshi and Ramkr-
ishna, 2001), which arise due to cells’ ability to
switch their physiological states under nutritional
pressures. Figure 1 shows the steady state bifur-
cation diagram for a bacterium Klebsiella Oxytoca
growing on mixed feed of glucose and arabinose,
in a continuous stirred reactor at dilution rate of
0.8hour−1. The steady state which results in high
biomass yield is the desired state. Values of the
state variables for the two different steady states
are shown in Table 2. One can observe that the
“working steady state” is close to turning point
bifurcation. Thus, relatively small changes in di-
lution rate and/or substrate feed concentrations
could cause the reactor to drift to the other steady
state.

The control objective is, therefore, to drive the
reactor from the low biomass steady state to

State s1 s2 e1 e2 c
High 0.035 0.081 0.0004 0.0006 0.0565
Low 0.0447 0.1425 0.0007 0.0003 0.02

Table 2. Steady state values for: D =
0.8, s1f = 0.078, s2f = 0.146. High and

low represent biomass yield.
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s 1
Fig. 1. Steady state bifurcation diagram for Kleb-

siella Oxytoca growing on glucose and arabi-
nose. Note the proximity of the steady states
to turning point bifurcation. Adapted from
Namjoshi and Ramkrishna (2001)

the desirable high biomass yield state. It may
be viewed as a step change in the setpoint at
time t = 0 from the low biomass to the high
biomass yield steady state. The performance of
the controller is evaluated under step disturbances
of various magnitude in parameter s2f .

4. IMPLEMENTATION AND DISCUSSIONS

4.1 Suboptimal control law: Nonlinear MPC

The successive linearization based NMPC algo-
rithm (Lee and Ricker, 1994) was used as the
initial suboptimal control law. This method lin-
earizes the nonlinear model at each current state
and input values to compute a linear prediction
equation. The control is computed by solving a
QP, with the hessian and the gradient computed
from the new linear approximation. Readers are
referred to the paper by Lee and Ricker (1994)
for further details.

The closed loop simulation with the NMPC algo-
rithm under a parameter conditions s2f = 0.146
and cSP = 0.055 is shown in Figures 2, 4 as
thick line. At time t = 0, the system was at
a low biomass steady state, when a step change
in the set point to a high biomass steady state
was applied. The constraints on the dilution rate
were chosen to be umin = 0.6, umax = 1.0 and
∆umax = 0.05, keeping in mind that the model
is not valid for low dilution rates and to avoid
washout condition that occurs at high dilution.



4.2 Obtaining optimal cost approximator

4.2.1. Simulations using suboptimal controller
The suboptimal NMPC controller described above,
was used to obtain closed loop simulation data for
the proposed strategy. It was implemented for four
values of s2f = [0.14 0.145 0.15 0.155] , to cover
the possible range of variations. For each of the
parameter values, the reactor was started at three
different x(0) values around the low biomass yield
steady state. We obtained 100 data points for each
run. Thus a total of 1200 data points were ob-
tained. The infinite horizon cost-to-go values were
computed for all the 1200 points. Note that the
calculated cost-to-go value is approximate infinite
horizon cost, as described in section 2.4.

4.2.2. Cost approximation States were aug-
mented with the parameter s2f (see table 1). A
functional approximation relating cost-to-go with
augmented state was obtained by using a neural
network — multi layer perceptron with five hidden
nodes, six input and one output node. The neural
network showed a good fit with mean square error
of 10−3 after training for 1000 epochs. This is the
zeroth iteration, denoted as J̃0(x).

4.2.3. Improvement through Bellman iterations
Improvement to the cost-to-go function is ob-
tained through iterations of the Bellman equation
(5). This method, known as cost iteration, is de-
scribed in section 2.4. The solution of the one-
stage-ahead cost plus cost-to-go problem, results
in improvements in the cost values. The improved
costs were again fitted to a neural network, as
described above, to obtain subsequent iterations
J̃1(x), J̃2(x), and so on . . . , until convergence.
Cost was said to be “converged” if the sum of ab-
solute error was less than 5%. The cost converged
in 4 iterations for our system.

4.3 Online implementation

The converged cost-to-go function from above
was used online in solving the one stage ahead
problem. The control move was calculated as in
9 and implemented online in a receding horizon
manner.

u(k) = arg min
u(k)

{φ (x(k), u(k))+

J̃4 (fh(x(k), u(k)))
}

(9)

The results are shown as broken line in Figure 2
and a numerical comparison is shown in Table 3.
Clearly, the new scheme is less optimal than the
original NMPC scheme. An overshoot is observed

and the total cost is also increased. However, there
is a dramatic reduction in computational time —
from almost half an hour to under 2 minutes, for
100 time steps (50 hours). In the next section,
we evaluate the possible reasons for the worse
behavior and discuss possible solutions.
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Fig. 2. Comparison of the online performance
of NMPC control law and proposed S-A-E
approach. Also see Table 3.

4.4 Improvement in the Strategy

The policy improvement theorem, described ear-
lier, indicates that Bellman iteration is expected
to improve the performance over the suboptimal
controller. At worst, the performance of the pro-
posed scheme should be at par with the original
suboptimal scheme. The logical reasoning behind
this is that Bellman iterations should choose the
original policy over all other policies that lead to
a less optimal result (Sutton and Bartow, 1998).

The possible causes of error could either be pres-
ence of local minima, poor fitting of the cost
approximations (by the neural network), or ex-
trapolation to previously unvisited regions in state
space. An investigation of the state space plot in
Figure 3 suggests that extrapolation to previously
unvisited regions of the state space could have re-
sult in deterioration of the controller performance.

Possible remedies are discussed in brief; they will
be discussed in full length paper 4 .

• Gridding and restricting the working region:
The optimizer was restricted to search only in
the visited region of the state space during
both offline Bellman iterations as well as
online implementation.

• Increasing data coverage through additional
simulations : Additional data is obtained
from some more simulations of NMPC law
and cost iteration is performed again. Points

4 www.prism.gatech.edu/∼gte207x/files/ifac02full.pdf
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Fig. 3. State space plot of states visited during on-
line implementation (diamond) and training
date from NMPC controller (dots). Extrapo-
lation to the unvisited states is likely to be
the cause of overshoot.

shown by solid discs in Figure 3 are used as
x(0) for additional simulations.

• Generalized Policy Update: This technique is
used to increase the coverage of the state
space by performing generalized policy up-
date within the cost iteration loop. In other
words, data points that lie in unvisited region
of the state space are added to the original
data by performing control simulations using
the suboptimal cost-to-go approximation J̃ i.
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Fig. 4. Performance of the modified schemes.
NMPC control law is shown as thick solid line
for comparison

Control Total cost CPU Time
Algorithm (at x(0)) (seconds)‡
NMPC 22.54 1080.3
S-A-E 24.18 98.7
w/ Gridding 9.06 127.7
w/ Add Sim† 9.37 79.5
w/ Pol. update 10.32 74.12

Table 3. Comparison of NMPC algo-
rithm v/s S-A-E and its modifications.
†Additional NMPC simulations; ‡Intel

Pentium III, 800 MHz processor

5. CONCLUSIONS

Application of simulation based strategy for im-
proving the performance of MPC for steady state
switching in a microbial reactor provides a promis-
ing framework for nonlinear optimal control in a
computationally amenable way. Presence of local
minima, over-fitting of neural network or extrap-
olation to previously unvisited regions in state
space may result in deteriorated performance. In
this study, latter was found to result in poor con-
troller performance. Three different modifications
were suggested to obtain optimal performance. As
a final comment, we suggest the use of generalized
policy update over other two methods.
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