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Abstract: This paper presents a new method for determining ARMA model parameters 
using Particle Swarm Optimization (PSO).  PSO is a new optimization method that is 
based on a social-psychological metaphor.  Each ARMA model is represented as a 
particle in the particle swarm.  Particles in a swarm move in discrete steps based on their 
current velocity, memory of where they found their personal best fitness value, and a 
desire to move toward where the best fitness value that was found so far by all of the 
particles during a previous iteration.  PSO is applied for determining the ARMA 
parameters for the Wolfer Sunspot Data. The method is extended using Akaike's 
Information Criterion (AIC).  PSO is used to simultaneously optimize and select an 
estimated "best approximating ARMA model" based on AIC.  Several plots are included 
to illustrate how the method converges for various PSO parameter settings.   
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1. INTRODUCTION 
 
System Identification (Ljung, 1999; Pandit, 1983; 
Söderström, 1989) is concerned with the derivation 
of mathematical models from experimental data.  
When given a data set one typically applies a set of 
candidate models and chooses one of the models 
based on a set of rules by which the models can be 
assessed.  One of the simplest System Identification 
models is the Autoregressive Moving Average  
(ARMA) model as shown in equation (1).   
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where  and are the parameters 
for an ARMA(n,m) model.  For a given ARMA(n,m) 
model the model parameters  and  are selected 
such that equation (2) is minimized, 
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2. PARTICLE SWARM OPTIMIZATION (PSO) 

 
The Particle Swarm Algorithm is an adaptive 
algorithm based on a social-psychological metaphor 
(Kennedy and Eberhart, 2001a). A population of 
individuals adapt by returning stochastically towards 
previously successful regions in the search space, 
and are influenced by the successes of their 
topological neighbors.  Most particle swarms are 
based on two sociometric principles.  Particles fly 
through the solution space and are influenced by both 
the best particle in the particle population and the 
best solution that a current particle has discovered so 
far.  The best particle in the population is typically 
denoted by   (global best), while the best position 
that has been visited by the current particle is 
denoted by   (local best).  The   (global best) 
individual conceptually connects all members of the 
population to one another.  That is, each particle is 
influenced by the very best performance of any 
member in the entire population. The (local best) 
individual is conceptually seen as the ability for 
particles to remember past personal successes. 
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Particle Swarm Optimization is a relatively new 
addition to the evolutionary computation 
methodology, but the performance of PSO has been 
shown to be competitive with more mature 
methodologies (Eberhart and Shi, 1998a; Kennedy 
and Spears, 1998b).  Since it is relatively 
straightforward to extend PSO by attaching 
mechanisms employed by other evolutionary 
computation methods that increase their 
performance; PSO has the potential to become an 
excellent framework for building custom high-
performance stochastic optimizers (Løvbjerg, et al., 
2001).  It is interesting to note that PSO can be 
considered as a form of continuous valued Cellular 
Automata.  This allows its hybridizations to extend 
into areas other than computational intelligence 
(Kennedy and Eberhart, 2001a). 
 
 
2.1  PSO  Equations 
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The ith particle is represented as,  
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where D is the dimensionality of the problem. The 
rate of the position change (velocity) of the ith 
particle is represented by,   
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where  is the velocity for dimension “k” for 
particle “i”. The best previous position (the position 
giving the best fitness value) of the i  particle is 
represented as, 

1 2( , ,..., )I i i iDv v=  
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The best previous position so far achieved by any of 
the particles (the position giving the best fitness 
value) of the ith particle is recorded and represented 
as,  
                       (7) 
 
On each iteration the velocity for each dimension of 
each particle is updated by, 
 

1 2( , ,..., )G g g gDP p p p=

  v w  (8) 
 
where  is the inertia weight that typically ranges 

from 0.9 to 1.2.  and  are constant values 
typically in the range of 2 to 4.  These constants are 
multiplied by  (a uniform random number between 
0 and 1) and a measure of how far the particle is from 
its personal best and the global best particle so far. 
From a social point of view, the particle moves based 
on its current direction ( ), its memory of where it 

found its personal best ( ), and a desire to be like 

the best particle in the population ( ).  
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2.2 PSO - Position Update Rule 
 
After a new velocity for each particle is calculated, 
each particle's position is updated according to: 
 
                          (9) ik ik ikx x v= +
 
It typically takes a particle swarm a few hundred to a 
few thousand updates for convergence depending on 
the parameter selections within the PSO algorithm 
(Eberhart and Shi, 1998b). 
 
 
2.3 Particle Swarm Parameter Settings 
 
Particle Swarm Optimization was used to determine 
the ARMA parameters for the Wolfer Sunspot Data 
(1770-1869).  The PSO parameter values that were 
used are given in Tables 1. and 2.   
 
 

 
Table 1. 

Particle Swarm 
Parameter Settings 

Population Size 80 
Number of 
Iterations 

1000 
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25 5 

 
 
Table 2. illustrates data structure for a particular 
particle.  Note that a each variable has a minimum 
and maximum "x" value along with a maximum 
absolute velocity.  Having separate limits for each 
particle dimension is an extension to the simple PSO.  
Dimension 1 is used for the regressive order which 
has been set to be between 1 and 10 inclusive.  
Similarly Dimension 2 is used for the order of the 
moving average order.  That is each particle 
represents an ARMA(n,m)  model where n and m 
can assume values 1 through 10 and 0 through 10 
respectively.  The values that the ARMA parameters 

and  can assume have also been limited to ±25 
with a maximum absolute velocity of 5.   It is 
apparent that having expert knowledge about specific 
variable domains when setting up the particle 
variable settings can increase the performance of the 
algorithm.  Setting the PSO particle variable settings 
is analogous to the procedure for setting up variable 
representations within a binary genetic algorithm; 
where one needs to choose the interval and a string 
length for each variable (Angenline, 1998). 
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2.4 Results: PSO + ARMA = SwARMA 
 

m 0 10 3 

Initially "n" and "m" were fixed to test the ability of 
PSO to determine the ARMA parameters for a fixed 
ARMA model. The results from the study are shown 
in Fig. 1.  This model was chosen to demonstrate the 
use of PSO on a well understood System 
Identification problem. The authors where somewhat 
surprised at the results.   The PSO method converged 
in less that a minute on a 200 Mhz Pentium PC.  In 
all cases the solution found was substantially better 
that those found using the Wolfer Sunspot example 
provided with the IMSL Libraries.   It is recognized 
that the IMSL Libraries may not be "optimal" and  
are used here to provide a benchmark value. 
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Wolfer Sunspot Data (1770-1869)
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Fig. 1.  Wolfer Sunspot Data. 
 Fixed SwARMA models.  Weight = 0.7. 
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For an ARMA(2,1) model the PSO solution was 15% 
better than the IMSL solution. In light of these results 
the authors chose to call the combination of PSO 
with ARMA: SwARMA (Voss and Feng, 2001). 
These results suggest some interesting future 
research with regards to traditional System 
Identification. 
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2.5 Results: Static SwARMA convergence 
 

25 5 

The convergence of the static ARMA(2,1) and 
ARMA(4,2) models, using the particle variable 
settings  given in Table 2., are shown in Fig. 2.   The 
dependant variable is the sum squared error SSE. 
This is also the fitness of the best particle in the 
population. The independent variable is show is the 
number of fitness function evaluations.  This can be 
calculated as the number of particle iterations times 
the population size. Plotting the number of function 
evaluations is more informative than plotting the 
iterations. The fixed ARMA(2,1) model converges 
faster that the fixed ARMA(4,2) model as expected.  
Most of the fitness improvement is achieved after 
only 1000 function evaluations.  The plateau after 
1000 iterations suggests that the algorithm might 
have a more optimal parameter configuration. 
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Table 2. 
Particle Variable Settings  
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Fig. 2. Convergence plot for fixed  
 SwARMA models.  Weight = 0.7. 
 
 

 
Fig 3. Convergence plot for variable  
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2.6 Results: Dynamic SwARMA convergence 

 
Fig. 3. illustrates the effect of allowing dimensions 
"1" and "2" (which correspond to n and m in an 
ARMA(n,m) model) participate in the Particle 
Swarm Algorithm. 

 

Fig. 4. Wolfer Sunspot Data. 
  Variable SwARMA model.  Weight = 0.7. 
 

 
The best  model after 60,000 function evaluations 
(750 iterations) was an  ARMA(8,3) model.  This 
model was plotted against the fixed ARMA models 
discussed in Fig. 2..  The constant improvement is 
caused by the model  simultaneously optimizing, 
while at the same time, increasing the number of  
ARMA parameters.  The observation of this 
behaviour is necessary in order to extend the 
SwARMA model to incorporate Akaike's 
Information Criterion (AIC) (Burnham and 
Anderson,  1998 ).  into the model selection process.  
AIC will be discussed in the next section.  The 
ARMA (8,3) model is plotted in Fig. 4.   This model 
is somewhat large ( 8+3 = 11 parameters ) for the 
100 data points used.  The next section discusses 
selecting models using a constraint that takes both 
model fit and model complexity into consideration. 
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3. AKAIKE'S INFORMATION CRITERION (AIC) 

 
Akaike's Information Criterion is an information-
theoretic approach for selecting the estimated best 
approximating ARMA model. 
 
AIC can be expressed as, 
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where, 
       
         K , sum of the ARMA(m,n) (12) n m= +
    model  parameters. 
 
 
3.1 AIC- A Heuristic Interpretation 
  
AIC is sometimes interpreted as the sum of two 
terms; the first is a measure of model fit, while the 
second is a penalty for the number of model 
parameters.  This is an acceptable heuristic 
interpretation as long as one does not forget that the 
second term is not an arbitrary penalty term, but 
rather it is derived based on a link between 
information theory and the  Kullback-Liebler (K-L) 
distance (Burnham, and Anderson, 1998). 
 
 
3.2 Results: Dynamic ARMA convergence 
 
AIC was easily integrated into the SwARMA 
methodology.  This was accomplished by simply 
replacing the particle fitness function (equation 2) 
with equation 10.  It was demonstrated in Fig. 3. that 
the variable SwARMA model became more  
complex with increasing iterations.  Fig. 5  
demonstrates the ability for AIC to restrict model 
complexity.  Fig. 5 also demonstrates the 
advantageous use of dynamic inertial weights.  For 
the variable SwARMA(2,1) model the particles 
inertial weight was linearly decreased from 0.9 to 0.7 
during the run.   The effect of this was to delay 
convergence during the beginning of the run.  That 
is, using a higher initial inertial weight prevented the 
swarm from prematurely converging on a sub-
optimal solution.  This can be observed as the shift to 
the right exhibited by the SwARMA(2,1) run.  Fig. 5. 
illustrated the importance of understanding the 
behavior of particles (Kennedy, 1998c)  based on the 
parameter settings. 
 
 

4. CONCLUSION 
 

Particle Swarm Optimization (PSO) was 
demonstrated as a viable method for determining the  
ARMA model parameters for a fixed size ARMA 
model.  The PSO methodology was extended to 
solve variable ARMA models based on a sum 
squared error criteria (SSE).   The variable ARMA 
model demonstrated the ability to use PSO to 
dynamically select the model size while decreasing 
the (SSE).   Akaike's Information Criterion (AIC) 
was then integrated into the variable SwARMA 
model to allow for ARMA model selection based on 
an information-theoretic approach (SwARMA-AIC).  
Convergence plots for SwARMA-AIC demonstrated 
the ability for this hybrid algorithm to use AIC to 
select an estimated best approximating ARMA 
model.  Particle Swarm Optimization has been 
shown to be a potential tool for optimising ARMA 
models.   
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