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∗ Departamento de Ingenieŕıa Eléctrica, Sección de Mecatrónica
CINVESTAV, México.
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Abstract: The goal of this paper is two-fold. First, given an arbitrary n-dimensional
discrete-time nonlinear dynamical system, necessary and sufficient conditions for the
existence of a one-dimensional invariant codistributions are obtained. Second, it is
shown that the previous conditions can be used iteratively to obtain a nested sequence
of n invariant codistributions with the properties that each codistribution contains
the previous one and the last one coincides with the cotangent bundle of the state
manifold. As a byproduct, necessary and sufficient conditions are obtained for a
discrete-time nonlinear dynamical system to be equivalent to the so-called feedforward
form.
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1. INTRODUCTION

Invariant distributions and their dual, invariant
codistributions, occupy a prominent place in non-
linear control theory. They have been used to
study controllability and observability properties
of nonlinear control systems, and to solve various
nonlinear synthesis problems. For discrete-time
nonlinear control systems, invariant distributions
were introduced in (Grizzle, 1985; Monaco and
Normand-Cyrot, 1984).

Recently, a generalized notion of invariance has
been introduced for both continuous- and discrete-
time nonlinear systems. This new notion has been
used to solve the dynamic disturbance decou-
pling problem (DDDP), see (Aranda-Bricaire and
Kotta, 2001; Huijberts et al., 1997). Also, in the

1 The work of the first author was done while he was visit-
ing IRCCYN, partially supported by the French Ministry
of Research and Technology.

case of continuous-time systems, invariant distri-
butions provide a geometric characterization of
nonlinear control systems which are equivalent
to the so-called feedforward form (Astolfi and
Mazenc, 2000).

Despite the widespread use of invariant codistri-
butions in control theory, the following question
does not seem to have received an answer: given
a nonlinear control system, what are all possible
invariant codistributions with respect to the sys-
tem dynamics? Of course answers to particular
cases of this questions are well known. For in-
stance, checking whether a given codistribution is
invariant or not is a simple exercise. Also, explicit
methods are available which allow to construct
the smallest invariant codistribution containing a
given codistribution.

The main goal of this paper is to give a partial
answer to the above general question. More specif-
ically, given a discrete-time nonlinear dynamical
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system, a characterization of all one-dimensional
codistributions which are invariant with respect to
the system dynamics will be given. As we shall see,
the solution of this apparently simple problem is
by no means obvious and, moreover, suggests the
solution to various equivalence problems.

The paper is organized as follows. In Section 2, we
adapt the linear algebraic formalism introduced
in (Aranda-Bricaire et al., 1996; Grizzle, 1993)
to the case of uncontrolled systems. In Section
3, the notion of eigenform is presented, as well
as its application to the characterization of one
dimensional invariant codistributions. In Section
4, the results of the previous Section are used
iteratively in order to construct nested sequences
of invariant codistributions. In Section 5, it is
shown that integrability of these codistributions
is a necessary and sufficient condition for equiv-
alence to the so-called feedforward form. Finally,
concluding remarks are offered in Section 6.

2. PRELIMINARIES

Throughout the rest of this paper we will make
extensive use of the linear algebraic framework
introduced in (Aranda-Bricaire et al., 1996; Griz-
zle, 1993). It will be necessary, however, to adapt
this framework to the situation of uncontrolled
systems. At some places of the paper, notions from
exterior differential systems will be used. For these
matters, the reader is referred to (Abraham et
al., 1988; Bryant et al., 1991; Choquet-Bruhat et
al., 1989).

In this paper we will be dealing with discrete-
time nonlinear dynamical systems described by
the following difference equation:

x(t + 1) = f [x(t)], x(0) = x0, t ≥ 0, (1)

where the state x(t) ∈ �n, and f : �n → �n is a
real analytic mapping.

Define the operator � : �n → �n by

ν �→ f(ν),

where f(·) is the same mapping as in (1).

Let K denote the field of meromorphic functions
of the scalar components of

x(0) = [x1(0), . . . , xn(0)]T ∈ �n.

The elements of K can be viewed as functions ϕ :
�n → �. Using this interpretation, the forward-
shift operator δ : K → K is defined by δϕ = ϕ◦�.
Sometimes, the abridged notation ϕ+(·) = δϕ(·)
is used.

Define the vector space E = spanK {dϕ | ϕ ∈ K}.
The elements of E are called one-forms. The

operator δ : K → K induces the operator ∆ : E →
E in the following way. Let ω =

∑
i aidϕi ∈ E .

Then

ω+ = ∆ω = ∆(
∑

i

aidϕi) =
∑

i

a+
i dϕ+

i .

Throughout the paper it will be assumed that the
dynamics of system (1) is reversible. More pre-
cisely, we make the following technical assumption

Assumption 2.1. Generically, rank∂f
∂x = n.

Assumption 2.1 guarantees that the mapping
δ : K → K is well defined. It is satisfied for
discrete-time systems which arise from sampling
a continuous time system (Jakubczyk and Son-
tag, 1990). The following example displays the
type of pathologies that can appear for non re-
versible systems.

Example 2.2. Consider the discrete-time nonlin-
ear system

x+
1 = x2

x+
2 = − x1

x+
3 = x1x2.

(2)

Easy computations show that system (2) does
not satisfy Assumption 2.1. Define the function
µ = 1

x3+x1x2
∈ K. It can be checked that the

forward-shift µ+ is not defined.

Under Assumption 2.1, the mapping � : �n →
�n is well defined and invertible. Therefore, the
backward-shift operator δ−1 : K → K exists and
is defined by δ−1ϕ = ϕ ◦ �−1. Sometimes, the
abridged notation ϕ−(·) = δ−1ϕ(·) will be used.

The operator ∆−1 : E → E is defined in the
following way. Let ω =

∑
i aidϕi ∈ E . Then

ω− = ∆−1ω = ∆−1(
∑

i

aidϕi) =
∑

i

a−
i dϕ−

i .

Given a codistribution or subspace

Ω = spanK {ω1, . . . , ωr} ⊂ E ,

define Ω+ = ∆Ω = spanK {ω+ | ω ∈ Ω}.

Definition 2.3. A codistribution Ω ⊂ E is said to
be invariant with respect to the dynamics (1) if
Ω+ ⊂ Ω.

3. ONE-DIMENSIONAL INVARIANT
CODISTRIBUTIONS

The goal of this Section is to give necessary and
sufficient conditions for the existence of a one-
dimensional codistribution which is invariant with



respect to the dynamics (1). The solution of this
apparently simple problem constitutes the fun-
damental brick upon which solutions to different
equivalence problems can be obtained.

To begin with, we need to introduce some nota-
tion. Let f : �n → �n be the mapping which
defines the system dynamics (1). Define the map-
ping C(δ) : Kn → Kn by

C(δ) =
[
∂fj

∂xi
δ

]
=

[
∂f

∂x
δ

]T

. (3)

In the rest of the paper, [dx] stands for the col-
umn vector [dx1, . . . , dxn]T . With this notation,
it is easy to see that [dx+] = [∂f

∂x ][dx]. Since
{dx1, ..., dxn} is a basis for E , any one-form ω ∈ E
can be written as

ω =
i=n∑
i=1

aidxi = [a1, . . . , an][dx] = [a][dx].

Note that ω+ = [a+][dx+] = [dx]T C(δ)[a]T .
Finally, define the family of operators Γλ(x, δ) =
[C(δ) − λI], parameterized by a function λ ∈ K.

Definition 3.1. (Eigenform). A one-form ω ∈ E is
said to be an eigenform if there exists a function
λ ∈ K such that ω+ = λω.

Clearly, if ω is an eigenform, then Ω = spanK {ω}
is a one-dimensional invariant codistribution.
Therefore, the characterization of one-dimensional
invariant codistributions is equivalent to the char-
acterization of eigenforms.

Theorem 3.2. A one-form ω = [a][dx] ∈ E is an
eigenform if and only if there exists a function
λ ∈ K such that [a] ∈ kerΓλ(x, δ).

PROOF. Let ω = [a][dx] and recall that ω+ =
[dx]T C(δ)[a]T . Now suppose that ω is an eigen-
form. Therefore, there exists a function λ ∈ K
such that ω+ = λω. The last two expressions
imply that [dx]T [C(δ) − λI][a]T = 0 or, equiv-
alently, that [a] ∈ ker Γλ(x, δ). The converse is
obvious. �

Theorem 3.2 provides a complete characterization
of all one-dimensional codistributions which are
invariant with respect to the dynamics of the sys-
tem (1). From a practical point of view, the prob-
lem has been reduced to that of finding a function
λ ∈ K such that the operator Γλ(x, δ) : Kn →
Kn becomes singular. This problem can be tack-
led by usual Gaussian elimination thanks to the
following technical Lemma, proven in (Márquez-
Mart́ınez et al., 2000).

Lemma 3.3. Let K[δ] denote the ring of polyno-
mials in the operator δ whose coefficients belong
to the field K. Then, for all a(δ), b(δ) ∈ K[δ]
there exists polynomials p(δ), q(δ) ∈ K[δ] such
that p(δ)a(δ) + q(δ)b(δ) = 0.

The following simple example serves to illustrate
the typical procedure.

Example 3.4. Consider the following discrete-time
(linear) system

x+
1 = x2

x+
2 = − x1.

(4)

For system (4) the family of operators Γλ(x, δ) is
given by

Γλ(x, δ) =
[−λ −δ

δ −λ

]
.

The operator Γλ(x, δ) can be brought to a trian-
gular form by performing elementary row oper-
ations. Straightforward computations show that,
whenever λ �= 0, it holds that[−1 0

−δ −λ+

]
Γλ(x, δ) =

[
λ δ
0 δ2 + λλ+

]
.

At this point, the computation of ker Γλ(x, δ)
amounts to solve the difference equation a++

2 +
λλ+a2 = 0 in the unknown a2, and then solve the
equation λa1 + a+

2 in the unknown a1. In general,
the solutions to these equations are not unique.
Table 1 displays various solutions, corresponding
to different choices of the parameter λ.

Table 1. Possible choices of coefficients
for system (4)

Parameter λ Coefficient a1 Coefficient a2

1 x1 x2

1 −x2 x1

-1 −x1 x2

-1 x2 x1

Each one of the choices displayed in Table 1
defines a eigenform ω = a1dx1 + a2dx2 and,
consequently, a codistribution Ω = spanK {ω}
which is invariant with respect to the dynamics
of the system (4).

4. NESTED SEQUENCES OF INVARIANT
CODISTRIBUTIONS

In this Section an algorithm will be presented
which allows to construct a sequence of invari-
ant codistributions with the property that their
dimensions increase by one at each step. Applica-
tions of this construction will be presented in the
following section.



The tangent linear system associated to the
discrete-time nonlinear system (1) is given by
[dx+] = [∂f

∂x ][dx]. In order to develop the Algo-
rithm, an alternative representation of the tangent
linear system will be presented.

Let {ω1, . . . , ωn} be an arbitrary basis of the
space spanK {dx}. Then, necessarily, there exist
coefficients aij ∈ K, such that ω+

i =
∑n

j=1 aijωj ,
for i = 1, . . . , n. Define ω = [ω1, . . . , ωn]T . Then
the above relations can be written in the following
matrix form:

ω+ =




ω+
1
...

ω+
n


 = A




ω1

...
ωn


 = Aω.

Invariant Codistribution Algorithm (ICA)

step n

If kerΓλ(x, δ) = 0, then this step can not be
accomplished and the algorithm terminates. Oth-
erwise, pick [a]T ∈ ker Γλ(x, δ), and define

ωn = [a][dx] =
n∑

j=1

ajdxj .

Choose n− 1 one-forms {ωn
1 , . . . , ωn

n−1} such that

spanK
{
ωn

1 , . . . , ωn
n−1, ωn

}
= spanK {dx} .

Let An−1 ∈ K(n−1)×(n−1) be the unique matrix
such that


(ωn

1 )+
...

(ωn
n−1)

+


 ≡ An−1




ωn
1
...

ωn
n−1


 mod {ωn}.

step i, for i = n − 1, . . . , 2

Define Γi
λ(x, δ) = [AT

i δ − λI]. If ker Γi
λ(x, δ) =

0, then this step can not be accomplished and
the algorithm terminates. Otherwise, pick [a]T ∈
ker Γi

λ(x, δ), and define

ωi = [a]




ωi+1
1
...

ωi+1
i


 =

i∑
j=1

ajω
i+1
j .

Choose i − 1 one-forms {ωi
1, . . . , ω

i
i−1} such that

spanK
{
ωi

1, . . . , ω
i
i−1, ωi

}
=

spanK
{
ωi+1

1 , . . . , ωi+1
i

}
.

Let Ai−1 ∈ K(i−1)×(i−1) be the unique matrix
such that 


(ωi

1)
+

...
(ωi

i−1)
+


 ≡ Ai−1




ωi
1
...

ωi
i−1




mod {ωi, . . . , ωn}.

step 1

Pick ω1 = ω2
1 . It follows that {ω1, . . . , ωn} is a

basis of spanK {dx}.

Theorem 4.1. There exist a sequence of invariant
codistributions

Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωn,

with dim Ωi = (n + 1) − i, if and only if all the
steps of Algorithm 1 can be accomplished.

PROOF. Sufficiency: Step i of the algorithm de-
fines the codistribution Ωi := spanK {ωi, . . . , ωn}
which is obviously invariant. The converse is ob-
vious. �

The following example illustrates the application
of the ICA.

Example 4.2. Consider the following discrete-time
nonlinear system

x+
1 = x2

x+
2 = − x1

x+
3 = x3 + x1x2.

(5)

For system (5) the family of operators Γλ(x, δ) is
given by

Γλ(x, δ) =


−λ −δ x2δ

δ −λ x1δ
0 0 δ − λ


 .

Now we proceed to apply ICA to system (5).

step 3 First apply elementary row operations to
bring the operator Γλ(x, δ) into triangular form.
Define the unimodular matrix

B(δ) =


−1 0 0
−δ −λ+ 0
0 0 1


 .

It is easy to verify that

B(δ)Γλ(x, δ) =


 λ δ −x2δ

0 δ2 + λλ+ x1δ
2 − λ+x1δ

0 0 δ − λ


 .

Choosing λ = −1, it follows that the vector
[a1, a2, a3]T , with a1 = x2, a2 = x1, and a3 = 0
annihilates the operator Γλ(x, δ). Therefore, we
choose ω3 = x2dx1+x1dx2. We complete a basis of
spanK {dx} by ω3

1 = x1dx1+x2dx2, and ω3
2 = dx3.

Straightforward computations show that (ω3
1)

+ =
ω3

1 , and (ω3
2)

+ = ω3
2 + ω3. Therefore,

A2 =
[

1 0
0 1

]
.

step 2 The family of operators Γ2
λ(x, δ) is given

by



Γ2
λ(x, δ) =

[
δ − λ 0

0 δ − λ

]
.

It is easy to see that the vector [a1, a2]T annihi-
lates the operator Γ2

λ(x, δ), whenever a1 = a2 = α

and λ = α+

α , α ∈ K being a free parameter.
Choose for instance α = 1. Therefore, the form
ω2 is defined by

ω2 = ω3
1 + ω3

2 = dx3 + x1dx1 + x2dx2.

A basis of spanK
{
ω3

1 , ω
3
2

}
can be completed by

taking ω2
1 = dx3.

step 1. Pick ω1 = ω2
1 = dx3.

Since all the steps of Algorithm 1 can be accom-
plished, the sequence of invariant codistributions
Ω1 ⊃ Ω2 ⊃ Ω3 exists, and is defined as follows:

Ω3 = spanK {ω3}
= spanK {x2dx1 + x1dx2}

Ω2 = spanK {ω2, ω3}
= spanK {dx3 + x1dx1 + x2dx2,

x2dx1 + x1dx2}
Ω1 = spanK {ω1, ω2, ω3}

= spanK {dx} .

(6)

5. EQUIVALENCE TO FEEDFORWARD
FORM

Definition 5.1. System (1) is equivalent feedfor-
ward form if there exists a local change of coordi-
nates z = ϕ(x1, ..., xn) such that

z1(t + 1) = f1(z1, ..., zn)
z2(t + 1) = f2(z2, ..., zn)

...
zn(t + 1) = fn(zn)

In the continuous-time case, a nice geometric char-
acterization of those systems that are equivalent
to feedforward form can be found in (Astolfi and
Mazenc, 2000), and is recasted below in a dual
form.

Theorem 5.2. System (1) can be transformed into
feedforward form if and only if there exists a
sequence of completely integrable codistributions

Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωn

such that dim Ωi = n + 1 − i.

Corollary 5.3. System (1) is equivalent to feedfor-
ward form if all the steps of Algorithm 1 can be
accomplished and the set of forms {ω1, . . . , ωn}
thereby identified satisfy

dωi ∧ ωi ≡ 0 mod {ωi+1, . . . , ωn}.

It should be strengthened that Corollary 5.3 pro-
vides only sufficient conditions for equivalence to

feedforward form. The main obstacle to obtain
necessary and sufficient conditions is the fact that
the sequences of invariant codistributions con-
structed by an application of the ICA are not
unique. The following simple example illustrates
this situation.

Example 5.4. Consider again system (4), and de-
fine the following codistributions:

Ω2 = spanK {x1dx1 + x2dx2}
Ω̃2 = spanK {x1dx2 − x2dx1}
Ω1 = spanK {dx} .

From Example 3.4, it follows that Ω1, Ω2, and
Ω̃2 are invariant codistributions. Therefore, dif-
ferent applications of the ICA would lead to the
sequences Ω1 ⊃ Ω̃2 or Ω1 ⊃ Ω2.

Remark 5.5. The pathology exhibited by Exam-
ple 5.4 is not a consequence of the application of
ICA. It comes from the fact that a given nonlinear
system can be equivalent to two different feed-
forward forms, through the appropriate change of
coordinates.

Example 5.6. Consider system (5), and the se-
quence of invariant codistributions Ω1 ⊃ Ω2 ⊃
Ω3 obtained in Example (4.2). It can be easily
checked that the codistributions Ω1, Ω2 and Ω3

are completely integrable. Therefore, system (5) is
equivalent to feedforward form. The correspond-
ing change of coordinates is obtained by integra-
tion of the one-forms ω1, ω2, ω3. This leads to the
change of coordinates z1 = x3, z2 = x3 + x1x2,
z3 = x1x2. In z coordinates, system (5) becomes:

z+
1 = z2

z+
2 = z2 − z3

z+
3 = − z3,

which is in feedforward form.

6. PERSPECTIVES AND CONCLUDING
REMARKS

In this paper we have introduced the notion of
eigenform. This notion allows to give a character-
ization of one-dimensional codistributions which
are invariant with respect a given discrete-time
nonlinear system. We have also presented an al-
gorithm that allows to construct sequences of in-
variant codistributions. As an application of these
technical developments, explicit sufficient condi-
tions for equivalence to feedforward form have
been obtained. It is interesting to note that this is
an improvement with respect to the same problem
in the continuous-time case.

A natural continuation of this work would be the
characterization of nested sequences of controlled



invariant codistributions for discrete-time nonlin-
ear control systems.

Finally, it is worth mentioning that equivalence
to feedforward form can be used for the design
of stabilizers for discrete-time nonlinear systems
(Mazenc and Nijmeijer, 1998).
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