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Abstract: A new form of a sliding mode controller is presented to deal with pH control.  
It is based on a combination of Sliding Mode Control and Fuzzy Logic. The conventional 
sliding surface (calculated from an FOPDT model) is modified using a set of fuzzy rules, 
which are similar to that of a Fuzzy Logic Controller (FLC).  This confers to the 
controller robustness and flexibility to deal with the highly nonlinear behavior found in a 
neutralization reactor. The new controller performance is compared with a conventional 
sliding mode controller and PID.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
pH control is a common operation in many industrial 
areas such as wastewater treatment, pharmaceutical 
products, fermentation processes, and food processes.  
In all these processes it is necessary to maintain a 
precise control over the pH level of the system, some 
times to satisfy environmental regulations, some 
others to obtain products according with the quality 
requirement. 
Most challenges in pH control are faced when the 
operating condition is between 6 and 8.  The 
difficulty is due to the highly nonlinear behavior of 
the pH.  This is particularly evident when 
neutralization between strong acids and strong bases 
is studied.  The nonlinear behavior observed in the 
titration curve induces radical changes in the process 
gain; quite a few orders of magnitude in most of cases 
(Henson and Seborg, 1994; Shinskey, 1996; 
Lakshmi,1998). Nonlinearities also affect the 
dominant time constant and the dead time, mainly 

because of changes in flow and reaction rate.  Many 
approaches have been developed to face the pH 
control problem such as conventional PID, adaptive 
control, linearized controllers, gain scheduling 
control; and intelligent control approaches such as 
fuzzy logic and neural networks (Kavsek-Biasizzo, et 
al, 1997). 
In order to be successful solving this problem, it is 
necessary to have a flexible and robust control 
strategy.  However, most of the times the path to 
stability leads to sluggish behavior beyond design 
conditions.  A flexible controller should be able to 
keep a reasonable compensation rate at every 
operating condition.  This strategy leads to a two-
phase controller: a control mode focused on error 
compensation and a speed mode that takes care of 
speeding up or slowing down the controller response 
to fit a predetermined desired behavior. 
It is difficult for a single strategy to fulfil all the 
requirements in pH control.  This paper considers the 
combination of Sliding Mode Control (SMC) with 
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Fuzzy Logic as an efficient way to obtain a controller 
able to perform appropriately in pH control problems. 
SMC is a procedure to design robust controllers for 
nonlinear processes.  The usual approach to design a 
SMC controller (SMCr) has two disadvantages: (1) it 
requires a model of the process, and (2) usually the 
controllers designed using traditional SMC are 
complex, with many parameters to be tuned 
(Camacho and Smith, 2000).  Nevertheless, Camacho 
and Smith (2000) have proved that it is possible to 
develop SMC based on a First-Order Plus Dead Time 
(FOPDT) model for nonlinear chemical process.   
The strength of Fuzzy Logic resides in its capacity to 
express in a mathematical form, the subjective 
knowledge based on experiences and analogies 
(Menzl, 1996). Thus, Fuzzy Logic allows 
incorporating “intelligence” and “experience” from 
the expert into the control strategies. The use of 
linguistic variables and rules to design the fuzzy 
adjustment of the sliding surface provides a 
combination of robustness and flexibility.   
 
 

2. NEUTRALIZATION REACTOR MODEL 
 
The model used in this work is based on the 
neutralization reactor presented by Henson and 
Seborg (1994).  Some equations and steady state 
values have been modified as it is indicated later.  
Figure 1 shows a simplified process scheme. 
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Fig. 1. Neutralization Reactor Configuration. 
 
The stream q1(t) is an aqueous solution of HNO3, 
which is introduced in the tank 2 in order to eliminate 
significant flow variation to the reactor.  The exit 
flow from the surge tank, q1e(t), is a function of the 
height in tank 2 and the hydrodynamic conditions in 
the discharge pipe.  Stream q2(t) is the buffer stream, 
an aqueous solution of NaHCO3.  Stream q3(t) is a 
basic solution, an aqueous solution of NaOH and 
NaHCO3.  The purpose of the process is to neutralize 
the acid stream q1(t) by manipulating the basic stream 
flow q3(t), while q2(t) remains constant.  Thus, for 
this paper the main disturbance is the acid flow, while 
the manipulated variable is the basic flow. 
The three streams are introduced to the neutralization 
reactor, where perfect mixture is assumed.  It is also 
assumed constant density and complete solubility of 
the ions involved.   
 

The following chemical reactions take place inside 
the reactor: 
 

+− +↔ HHCOCOH 332            (1) 

 
+−− +↔ HCOHCO 2

33            (2) 

 
+− +↔ HOHOH 2                 (3) 

 
Chemical equilibrium is modeled using the definition 
of two reaction invariants, Wa and Wb.  The first 
invariant, Wa, is a charge related quantity, while Wb, 

is the concentration of the −2
3CO  ion.  Unlike pH, 

these invariants are conserved quantities.  These 
invariants are express as: 
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where i represents the streams involved in the 
process, from 1 to 4.  The invariant balances include 
the complete system dynamic in the accumulation 
term, complementing the original model (Henson and 
Seborg, 1994).  Such balances are: 
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pH is calculated from the following equation: 
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The pH transmitter is modelled as a first order 
transfer function: 
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where c(t) is the sensor output, and τT1 and KT1 are 
the time constant and sensor gain respectively.   
Additionally, because the pH transmitter is located 
downstream, it is necessary to consider a variable 
transport delay t0(t) in the measurement: 
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where L and Ap, are the distance from the bottom of 
the reactor to the measurement point, and the pipe 
cross-section, respectively. 
 
The reason why pH is such a difficult variable to 
control is because of the highly nonlinear behavior 
present in process parameters.  In order to observe 
this effect, an empirical model will be fitted using 
plant (simulation) response.  The most common 
model used in self-regulating chemical processes is 
the First Order Plus Dead Time (FOPDT) model.  The 
main reason why it is still used is because it leads to 
good PID tuning in most cases (most PID tuning 
equations used in process industry are based on 
FOPDT model identification) (Smith and Corripio, 
1997; Marlin, 2000; Shinskey, 1996).  Recent 
developments in PID Auto-tuning (Luo, R., et.al., 
1998) and in Sliding Mode Control (Camacho and 
Smith, 2000) also use the FOPDT model.  The 
transfer function for the FOPDT model is: 
 

1)(

)(
)(

0

+
==

−

s

eK

sM

sC
sG

st
P

P τ
  (12) 

If process identification tests are run at different 
operating conditions (valve positions), the nonlinear 
behavior of the fitted model parameters is 
demonstrated.  Figure 2 illustrates the behavior of the 
three parameters in the FOPDT model: gain (KP), 

time constant (τ), and dead time (t0).  
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Fig. 2. Process Characteristics Deviation from Design 

condition vs. Controller output. 

 
Figure 2 shows the deviation of process 
characteristics values with respect to their value at the 
design condition.  The design condition calls for the 
valve to be 52% open.  At this point no deviation 
(0%) is observed for all three parameters.  It is also 
observed that the parameter with the most significant 
nonlinear behavior is the process gain.  The process 
gain, relating how much the pH increases due to an 
increase in the base flow, shows a reduction of 80% 
from its design value when the valve is about 80% 

open.  It also shows an increment of about 300% from 
its design value when the valve is about 56% open.   
 
Significant changes in the gain lead to controller 
misbehavior especially when the gain used to design 
the controller is much smaller than gain values in 
some other operating conditions.  The main reason is 
because any controller’s aggressiveness is an inverse 
function of the process gain.  In other words, the more 
sensitive the process is to input changes, the less 
sensitive the controller should be to error changes. 
 
 

3. SMC FOR NONLINEAR CHEMICAL 
PROCESSES 

 
SMC is a technique derived from Variable Structure 
theory to design controllers.  Such controllers have 
the capacity to handle nonlinear and time-varying 
systems without a dramatic change in their behavior 
(Camacho and Smith, 2000).  All these characteristics 
are required in order to succeed in a neutralization 
reactor control loop. 
 
The SMC technique first defines a surface along 
which the process can slide to achieve its desired final 
value (Camacho and Smith, 2000).  Then, it defines a 
reaching function to force the controller move 
towards the sliding surface.  The sliding surface, S(t), 
is a function of the order of the process model, as it is 
expressed in the equation proposed by Slotine (1991): 
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where e(t) is the error, λ is a surface tuning 
parameter, and n is the order of the process model.  
Equation 13 shows that when the model is a higher 
order one S(t) also becomes a high order equation  
with many parameters to tune.  Camacho and Smith 
(2000) have demonstrated that using an FOPDT 
empirical model it is possible to obtain a useful and 
versatile controller, with all the necessary 
characteristics of robustness to face highly nonlinear 
systems. The SMCr developed by Camacho and 
Smith (2000) is defined by: 
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with a surface defined by: 
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where m(t) is the controller  output to the final control 
element.  KD, λ0, λ1, and δ are tuning parameters of 
the SMCr.  c(t) is the pH sensor output.  The second 
term on the right side of the Equation 14 represents 
the sliding mode.  This term is responsible for 
keeping the system going towards steady state.  It is 
also called the continuous mode.  The third term is 



     

called the reaching mode, or discontinue mode.  This 
part of the controller is responsible for leading the 
system onto the sliding surface.   
This SMCr has shown good and robust performance 
when controlling nonlinear chemical processes 
(Camacho and Smith, 2000), including processes that 
have inverse response (Camacho, et al., 1999), or 
variable dead time (Camacho and Smith, 2000).  
However, when the system is extremely nonlinear, 
and process gain varies in a nonmonotonic manner, 
the SMCr shows a slow response or excessive 
overshot.  In both cases the result is long stabilization 
time.  It is precisely here where the symbiosis with 
Fuzzy Logic opens the door to the proposed solution.  
It is possible to increase the robustness and the 
“intelligence” of the SMCr through fuzzy rules, 
making the controller response slower or faster when 
appropriate.  This is the purpose of the present 
research.  The result is the development of a hybrid 
controller, combining the best features from SMC and 
Fuzzy Logic, which can be used in pH control in a 
neutralization reactor. 
 
 

4. FUZZY LOGIC IN PROCESS CONTROL 
 
The ways in which fuzzy logic is used in process 
control are three: 

• As a controller: Fuzzy Logic Controller 
(FLC).  

• As a PID improvement supervisor: Fuzzy 
Gain Scheduling (FGS) or Fuzzy Self 
Tuning (FST). 

• As a hybrid controller combined with 
another strategy: Neuro-fuzzy controllers, 
Genetic Algorithms (GA) based tuning of 
FLC’s, Fuzzy Dynamic Matrix Control, or 
Fuzzy Sliding Mode Control. 

 
No matter what strategy is used, the fuzzy system has 
crisp inputs and crisp outputs, and a fuzzy inference 
mechanism to relate them.  The inference system uses 
linguistic variables associated in a degree of 
membership with linguistic values defined using 
membership functions in the same universe of 
discourse as the crisp variables.  Obtaining linguistic 
variables with degrees of membership in linguistic 
values using crisp variable information is called 
fuzzification.  A membership function is a scalar 
function whose domain is the universe of discourse 
and its range is the continuous set of degrees of 
membership to the corresponding linguistic value.  
The most common membership function shapes are 
triangular and trapezoidal, although more complex 
forms are found (Reznick, 1997).   
After the input variable is fuzzified, the inference is 
made using a set of fuzzy rules, which are generally 
deduced using expert knowledge. The fuzzy rules are 
a set of if-then statements, which are based on 
linguistic variables, relating the inputs to outputs. In 
other words, the fuzzy rules define a set of imprecise 
dependence between two linguistic variables.  Fuzzy 
variables are processed in an inference engine using a 

set of fuzzy rules.  The outputs from the engine are 
fuzzy variables with linguistic values defined over the 
universe of discourse of the crisp outputs.  These 
fuzzy variables and their degrees of membership are 
use to obtain crisp outputs.  This operation is called 
defuzzification.   
 
 

5. THE HYBRID SURFACE-BASED FUZZY 
SLIDING MODE CONTROL 

 
5.1 The Steady-state Compensator. 
 
When the performance of the SMCr is studied, one of 
the observations is that controller response is slow for 
set point changes.  The main reason for the 
controller’s slow response facing set point changes is 
that the sliding surface S(t) has an erratic behavior 
initially.  In Figure 3 (solid line) it is shown how S(t) 
varies when the pH set point is reduced by 5%.  S(t) 
starts to decrease, later reaches a minimum value, 
then start to grow until reaches its final value. It is 
necessary to highlight the great difference between 
the minimum value reached by S(t) and its final 
value; from – 0.15 to 0.066, a difference of 0.216 
units.  This behavior results in a long stabilization 
time for the system. 
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Fig. 3. S(t) variation with (MSMCr) and without 
(SMCr) Steady-state compensator. 

 
One way to enhance the SMCr performance is to 
change the continuous mode in Equation 14, because 
this term controls the way how the system approaches 
its new final value.   
If the error dependence in the continuous mode is 
eliminated in Equation 14, the controller equation can 
be expressed as: 
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Therefore, the continuous mode is transformed into a 
steady state compensator, where KS is a tuning 
parameter.  
 



     

The steady state compensator proposed introduces a 
stable term into the controller equation.  This occurs 
because the error variation does not affect the way by 
which the system slides on the surface once it has 
been reached.  Furthermore, when a set point change 
occurs in the system, the MSMCr reacts immediately 
with a pure proportional response.  All these 
advantages are reflected in the time needed to reach a 
new steady state when the system is affected by a set 
point change.   
 
 
5.2 The Hybrid Sliding Surface. 
 
In order to enhance the MSMCr performance, it is 
necessary to include a new element that confers to the 
controller enough intelligence to react aggressively or 
slowly when necessary.  This “smart” feature is 
designed using Fuzzy Logic.  The previous section 
shows how any change that contributes to reach faster 
the sliding surface leads to a faster and less erratic 
response.  Therefore, the ideal place to introduce 
intelligence is inside of S(t).  Hence, Equation 15 is 
modified to include the fuzzy element, ∆SF(e(t),∆e(t)) 
as follows: 
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where SH(t) is the hybrid sliding-fuzzy surface.  
Equation (17) shows that the surface is a combination 
of two terms, the classical expression for SMC, plus a 
term whose value is determined by means of fuzzy 
rules.  This term is a function of the error, e(t), and 
the variation of the error ∆e(t).  Thus, the inputs for 
the fuzzy rules are these variables.  Then, the 
equation for the Hybrid Fuzzy-Sliding Controller 
(HFSMCr) can be written as: 
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The addition of ∆SF to the controller equation 
provides the intelligence and robustness desired.  The 
fuzzification of the inputs, as well as the 
defuzzification of the output is achieved by defining 
five linguistic values through membership functions 
along the universe of discourse o each input and 
output.  Fig. 4 shows schematically the operation of 
the fuzzy inference system.  Table 1 shows the fuzzy 
rules used to build the inference system; where PB 
means Positive Big, Z is zero, NS is Negative Small 
and so forth. The fuzzy rules were obtained analyzing 
how the controller must act facing changes in the 
system. For example, when both the error and ∆e(t) 
are  “positive big”, indicating that the system is out 
from the operation point and it is moving away from 
it, the controller need to act quickly, sending less 
signal to the control valve. Now then, regarding to 
Eq. (18), if the controller needs to send less signal to 

the control valve, then SH(t) should decrease 
significantly to do it. In order to decrease this variable 
(see Eq. (17)), ∆SF should be negative and “big” that 
is the value shown in the Table 1. All the rules were 
obtained using similar reasoning. 
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Fig. 4.  Mamdani Inference System for ∆SF(t). 

Table 1.  Fuzzy Rules to Obtain ∆SF(t) from system 
behavior 

∆e(t)
e(t) NB NS Z PS PB
NB NB NB NB NB NS
NS NB NS NS Z PS
Z NS NS Z PS PS

PS NS Z PS PS PB
PB PS PB PB PB PB  

 
 
6. SIMULATION RESULTS AND CONCLUSIONS 
 
Simulations were developed to study the reactor 
behavior when PID, SMC, and HFSMC control 
strategies are implemented. The tuning parameters for 
the PID used were: K=3.5, τ i=30 s, τd=15 s. For the 
SMC; λ0 = 0.001, λ1 = 0.9, KD = 1900, δ = 45. While 
for HFSMC; Ke= 0.7, K∆e= 0.7, KD=2100, Ks=0.004. 
 
 Figure 5 shows how the system reacts to a set point 
change (both increase and decrease its value by 5%).  
It can be noticed that the hybrid controller provides 
both faster response and reduced stabilization time.  
This behavior is a result of the steady state 
compensator (fast response), and the fuzzy 
adjustment made to the sliding surface.  Figure 6 
shows the system response when a 5% change in the 
feed (acid) flow occurs.  Figure 7 presents the reactor 
behavior when a 10% change in the buffer stream 
flow is induced in the system.  The proposed 
controller exhibits better behavior under disturbances 
for which it was not tuned, indicating robust 
performance characteristics.  Table 2 presents the 
quantitative measure of the controller’s performance 
using IAE (Integral Abosulte Error). 
 



     

Table 2.  Integral of the Absolute value of the Error 
(IAE) for every controller in the four tests performed. 

IAE 
5% 

SetPoint 
Increase 

5% 
SetPoint 

Reduction 

5% 
Change in 
Acid Flow 

10%  
Change in 

Buffer Flow 
SMC 180 210 86 10 

HFSMC 160 180 43 8 
PID 170 200 63 15 
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Fig. 5.  Reactor behavior to set point changes using 

PID, SMC, and HFSMC control. 
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Fig. 6.  Reactor behavior to acid flow change 
using PID, SMC, and HFSMC control. 
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Fig. 7.  Reactor behavior to buffer flow change using 

PID, SMC, and HFSMC control. 

 
Further research will address the following issues: 

• Obtain tuning equations relating the new 
controller parameters with process 
characteristics. 

• A comprehensive stability analysis to 
determine limits in disturbance change 
before the controller becomes ineffective. 

• The addition of new input (more 
intelligence) to the FIS to incorporate time-
related behavior in the weight of the fuzzy 
adjustment in the total value of S(t). 
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