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Abstract: This paper investigates the decentralized control of LTI continuous-time plants using General-
ized Sampled-data Hold Functions (GSHF). GSHFs can be used to modify the structure of the digraph of
the resultant discrete plant, by removing certain interconnections in the equivalent discrete-time model
to form a hierarchical system model of the plant. This is a new application of discretization, and has as
its motivation, the design of decentralized controllers using centralized methods.
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1. INTRODUCTION

Sampled-data system applications are widely found
in industry, mostly in order to take advantage of
the application of computers as digital controllers.
This is usually accomplished by using a simple
zero-order hold. The idea of using Generalized
Sampled-data Hold Functions (GSHF) instead of
a simple zero-order hold (or first-order hold) in
control systems, was first introduced by Cham-
mas and Leondes (Chammas and Leondes 1979)
and Kabamba (Kabamba 1987). Kabamba inves-
tigated several advantages in using GSHFs in
control systems, and pointed out that by us-
ing GSHF, one can obtain many of the advan-
tages of state feedback controllers, without the
requirement of using state estimation procedures
(Kabamba 1987), (Kabamba and Yang 1991); in
particular he showed that GSHFs can significantly
improve the performance of the closed-loop sys-
tem. In addition, it was shown in (Aghdam and
Davison 1996) that digital controllers can have a
significant effect on improving the overall perfor-
mance of certain classes of decentralized control
systems, and in (Aghdam and Davison 1999a),
the application of GSHFs in high-performance
decentralized controller design was discussed.

In a discretized model, each transfer function
in the resulting transfer matrix is a function of
the system parameters, and also the sampling
period and type of hold function (zero-order hold,
first-order hold, ...). The question arises: using
generalized sampled-data hold functions, to what
extent can one modify these transfer functions so
“something desirable” happens?

In this paper it will be shown how one can use gen-
eralized sampled-data hold functions to convert a
continuous-time plant to an equivalent discrete-
time system with a certain desired structure, in
particular a hierarchical structure, which can di-
rectly be used to simplify the design of decentral-
ized control systems for the plant.

2. DIGRAPHS AND SYSTEM STRUCTURE

Consider the following strictly proper continuous-
time decentralized LTI system with m control
agents:

ẋ(t) = Ax(t) +
[

b1 . . . bm

]
 u1(t)

.

..
um(t)


 , (1a)


 y1(t)

.

.

.
ym(t)


 =


 c1

.

.

.
cm


x(t), (1b)
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Fig. 1. Digraph of a continuous-time LTI system
with 3 control agents.

where x(t) ∈ R
n is the state vector, and uj(t) ∈

R
sj , and yj(t) ∈ R

rj , j ∈ m̄ = {1, ...,m} are
the control vector and output vector of agent #j
respectively, and A, bj , and cj are matrices of
appropriate dimensions. The transfer matrix re-
lating the inputs and outputs of this system can
be written as:

 Y1(s)
.
..

Ym(s)


 =


 g11(s) . . . g1m(s)

.

..
.
..

gm1(s) . . . gmm(s)





 U1(s)

.

..
Um(s)


 ,

where:

gij(s) := ci(sI − A)−1bj , i, j ∈ m̄.

Here gij(s) represents the directed arc from node
j to node i in the digraph of this system. For
example, the digraph of a system with 3 input-
output agents is depicted in Figure 1.

In the control of decentralized systems, the struc-
ture of the interconnections generally has a sig-
nificant role to play, and in some decentralized
control design procedures, it is often assumed
that there exists a bound on the interconnec-
tions between different nodes. For example, in
decentralized adaptive control methods, such an
assumption is often made, or alternatively, certain
structural constraints on the interconnections are
often assumed in order to assure the stability
of the overall system (Gavel and Šiljak 1989),
(Shi and Singh 1992), and (Ioannou 1986). In the
special case for systems which have a hierarchi-
cal structure, one can directly apply centralized
control methods to each subsystem (represented
by each node in the digraph of the system), with
no assumptions required to be made on the in-
terconnections, since it is guaranteed that sig-
nals coming from a higher level subsystems to a
lower level subsystems will always be bounded,
once the higher level subsystems are stabilized.
For example, assume that the transfer functions
g12(s), g13(s), g12(s) and g23(s) in Figure 1 are
all equal to zero; then the corresponding sys-
tem will have the hierarchical structure shown
in Figure 2, and assuming that the system has
no unstable decentralized fixed modes, one can
design a centralized stabilizing controller for each
subsystem separately. In this case, subsystem #1
which has the highest level in the hierarchical
structure, will be internally stable and since there
is no input signal coming into this subsystem
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Fig. 2. Digraph of a continuous-time hierarchical
LTI system with 3 control agents.

other than its control input which is bounded, this
implies that all output signals coming out of this
subsystem will be stable. The output signals of
subsystem #1 includes the interconnection signal
going to subsystem #2 and subsystem #3 through
g21(s) and g31(s) respectively. Now subsystem #2,
which has the second highest level will also be
internally stable, and since all input signals com-
ing to this subsystem, including the control input
and interconnection signal from subsystem #1 are
bounded, this implies that all output signals of
this subsystem will also be bounded. Thus, all
interconnection signals coming from the higher
level subsystems to subsystem #3 will now be
bounded and since this subsystem will also be
internally stable, using a similar argument, one
can conclude that the input and output signals of
subsystem #3 are also bounded. Thence, it can
be concluded that the complete system will be
internally stable. This implies that the decentral-
ized controller design problem for a hierarchical
system can be carried out in a centralized way for
each subsystem.

Note that the transfer matrix representing the
hierarchical system of Figure 2 has the following
lower-triangular form:

[
Y1(s)
Y2(s)

Y3(s)

]
=

[
g11(s) 0 0
g21(s) g22(s) 0

g31(s) g32(s) g33(s)

][
U1(s)
U2(s)

U3(s)

]
. (2)

In the general case, the transfer matrix of a hierar-
chical system always has a lower-triangular form
or can be transformed to such a form by renum-
bering the subsystems appropriately (exchanging
the number of subsystem #i with subsystem #j
is equivalent to exchanging the ith row with the
jth row, and the ith column with the jth column
in the transfer matrix).

Our goal now is to determine if and how one can
modify the structure of a system by using gener-
alized sampling. It is observed that if certain in-
terconnections of the system can be eliminated in
the equivalent discrete-time model, then many de-
centralized control problems can be easily solved
by applying centralized design methods to the
individual subsystems of the resultant discrete-
time system.



3. MAIN RESULT

Consider the continuous-time LTI system repre-
sented by (1). It is desired to discretize the sys-
tem by applying generalized sampled-data hold
functions fj(t), j ∈ m̄, with a sampling period
T , to each control agent. This problem can be
formulated as follows. Let:

uj(t) = fj(t)ũj [k], j ∈ m̄, t ∈ [kT, (k + 1)T ), k = 0, 1, ...

(3a)

fj(t + T ) = fj(t). (3b)

As discussed in (Kabamba 1987) and (Aghdam
and Davison 1999a), the equivalent discrete-time
model is thence described by:

x[k + 1] = Adx[k] +
[

bd1 . . . bdm

]
 u1[k]

..

.
um[k]


 , (4a)


 y1[k]

.

..
ym[k]


 =


 cd1

.

..
cdm


x[k], (4b)

where:

Ad = eAT , (5a)

bdj
=

∫ tk+1

tk

eA(T−τ)bjfj(τ)dτ, j = 1, 2, ..., m (5b)

cdj
= cj , j = 1, 2, ..., m. (5c)

It is desired now to determine if one can choose
a set of sampled-data hold functions fj(t), j ∈
m̄, and a sampling period T , so that certain
elements of the transfer matrix corresponding to
the equivalent discrete-time model, become equal
to zero. The following result is obtained.

Theorem 1. Consider the system (1). There exists
a sampled-data hold function fp(t), for each agent
p ∈ m̄, and a sampling period T , so that the
equivalent discrete-time model has a hierarchical
structure, if and only if there exist distinct inte-
gers i1, ..., im ∈ m̄, a positive scalar h > 0, and a
nonzero vector xij

, j = 2, ...,m contained in the

null-space of


 ci1

.

.

.
cij−1


 (zI − eAh)−1 which belongs

to the controllability subspace of
(
A, bij

)
.

Proof of Theorem 1 . The proof follows from
Lemma 1 in (Aghdam and Davison 1999b) which
guarantees for the sampling period T = h, there
exists a sampled-data hold function fij

, so that in
the equivalent discrete-time model (4),(5), bdij

=
xij

. Details of the proof may be found in (Aghdam
and Davison 2001).

Note that Theorem 1 gives necessary and suffi-
cient conditions for a system to have a hierarchical
discrete-time structure. In the next step, sufficient

conditions are given, based on the concept of con-
trollability and observability, which are very easy
to check.

Theorem 2. Consider the system (1). There exists
a sampled-data hold function fp(t), for each agent
p ∈ m̄ and a sampling period T > 0, so that the
equivalent discrete-time model (4),(5) has a hier-
archical structure, if the following two conditions
both hold:

a) there exist distinct integers l1, l2 ∈ m̄, so that

the pair







c1
.
.
.

cl2−1

cl2+1

.

.

.
cm




, A




is not observable.

b) the pair (A, bj) is controllable for every j ∈
m̄, j �= l1.

Proof of Theorem 2 . The proof follows from
Lemma 1 in (Aghdam and Davison 1999b), and
from the fact that the equivalent discrete-time
model of an unobservable continuous system is
also unobservable for any sampling period. Details
may be found in (Aghdam and Davison 2001).

Theorem 1 and Theorem 2 provide the conditions
under which the digraph of a system can be modi-
fied to a hierarchical structure by using sampling.
In the next step, the conditions under which the
resulting discretized model does not have any de-
centralized fixed modes will be discussed.

Theorem 3. Given (1), assume that the pair
(A, bj) is controllable for all j ∈ m̄. Then
eλT ∈ sp(Ad) is not a decentralized fixed mode
of the equivalent discrete-time model (4), with
respect to the block diagonal gain matrix K =
diag(K1, ... ,Km), Kj ∈ R

sj×rj , if the following
three conditions all hold:

i) for every λl1 , λl2 ∈ sp(A), the relation
Re (λl1 ) = Re (λl2 ) implies that Im ( λl1 − λl2 ) �=
2kπ
T

, l1, l2 ∈ {1, ..., n}, k = ±1,±2, ...

ii)
∫ T

0
e−λtfj(t)dt �= 0, λ ∈ sp(A)

iii) the pair





 c1

.

.

.
cm


 , A


 is observable.

Proof of Theorem 3. eλlT ∈ sp(Ad) is a decen-
tralized fixed mode of (4) if and only if any one
of the following conditions hold (Davison and
Chang 1990):

1) rank







Ad − eλT I

c1
.
..

cm





 < n

2) rank
([

Ad − eλT I bd1 . . . bdm

])
< n



3) rank







Ad − eλT I bdi1
ci2 0
..
.

..

.
cim 0





 < n

for some ij ∈ m̄, j = 1, ...,m such that
{i1, ..., im} = m̄

4) rank







Ad − eλT I bdi1
bdi2

ci3 0 0
.
.
.

.

.

.
.
.
.

cim 0 0




 < n

for some ij ∈ m̄, j = 1, ...,m such that
{i1, ..., im} = m̄

m+1) rank
([

Ad − eλT I bdi1
bdi2

. . . bdim−1

cim 0 0 . . . 0

])
< n

for some ij ∈ m̄, j = 1, ...,m such that
{i1, ..., im} = m̄

Assume now that conditions (i), (ii), and (iii) are
all satisfied. Conditions (i) and (ii) imply that the
resulting discretized system will not lose control-
lability and observability (corresponding to any
controllable or observable pairs in the continuous-
time model) (Middleton and Freudenberg 1995).
Thus, the pair

(
Ad, bdj

)
is controllable for all

j ∈ m̄, and the pair







c1

...
cm


 , Ad


 is observable.

This implies that the rank conditions (1) to (m+
1) for the existence of a decentralized fixed mode
do not hold. �

Discussion. The results of Theorem 1 and The-
orem 2 are interesting in the sense that they
introduce a completely new application for sam-
pling in control. The results can be very useful in
the design of decentralized controllers, when the
structure of the original system does not permit
one to directly apply centralized controller design
methods to decentralized systems. In this case, if
the conditions given in Theorem 1 and Theorem 2
are met, one can find a set of GSHFs to mod-
ify the structure of the system in the equivalent
discrete-time model (4),(5), so that centralized
digital control methods can now be directly ap-
plied to each interconnected subsystem. In partic-
ular, the results obtained may be applied to the
decentralized adaptive control problem discussed
in (Aghdam and Davison 1999b). In this case, one
applies sampling to obtain a hierarchical discrete-
time model, and thence directly applies digital
adaptive controllers to each of the subsystems.

Remark 1. Note that conditions (i) and (ii) in
Theorem 3 ensure non-pathological sampling for
generalized sampled-data hold functions. In the
case of a zero-order hold, condition (i) is sufficient
to guarantee non-pathological sampling (Chen
and Francis 1995). In addition, if the eigenvalues
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Fig. 3. The 2-input, 2-output mass-spring system
of Example 1.
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Fig. 4. Digraph of the mass-spring system of
Example 1.

of the continuous-time system are all real, condi-
tion (i) in Theorem 3 will be met.

Remark 2. It can be easily seen that asymptotic
stability of the equivalent discrete-time model will
imply asymptotic stability of the corresponding
continuous-time model (Kabamba 1987). There-
fore, if one designs a digital controller to stabilize
the plant’s discretized model, it will result in sta-
bility for the original continuous-time system.

Remark 3. It is to be noted that a disadvantage
of generalized sampled-data hold functions is that
they are prone to robustness difficulties in the con-
tinuous time domain, e.g. see (Feuer and Goodwin
1994), (J. S. Freudenberg and Braslavsky 1997).

4. NUMERICAL EXAMPLE

Example 1. Consider the 2-input, 2-output mass-
spring system of Figure 3 and assume that the
measured outputs are ym1 := ẏ1 and ym2 := y2 +
ẏ2. For m1 = m2 = 1, M = 10, K1 = K2 =
1, F1 = F2 = 0.1 and ω = 0 this system is
described by the following system matrices:

A =




0 1 0 0 0 0
−0.2 −0.02 0.1 0.01 0.1 0.01
0 0 0 1 0 0
1 0.1 −1 −0.1 0 0
0 0 0 0 0 1
1 0.1 0 0 −1 −0.1


 , b1 =




0
0
0
1
0
0


 , b2 =




0
0
0
0
0
1




(6a)

c1 =
[

0 0 0 1 0 0
]

, c2 =
[

0 0 0 0 1 1
]

. (6b)

The digraph of this system is depicted in Figure 4.
The transfer functions in this figure are given by:

g11(s) =
s4 + 0.12s3 + 1.201s2 + 0.02s + 0.1

s(s4 + 0.22s3 + 2.212s2 + 0.24s + 1.2)
,

g12(s) =
0.001(s2 + 20s + 100)

s(s4 + 0.22s3 + 2.212s2 + 0.24s + 1.2)
,

g21(s) =
0.001(s3 + 21s2 + 120s + 100)

s2(s4 + 0.22s3 + 2.212s2 + 0.24s + 1.2)
,

g22(s) =
s5 + 1.12s4 + 1.321s3 + 1.221s2 + 0.12s + 0.1

s2(s4 + 0.22s3 + 2.212s2 + 0.24s + 1.2)
.
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Fig. 5. Sampled-data hold functions for control
agent #2 in Example 1. (a) T = 0.5 sec; (b)
T = 2 sec; (c) T = 5 sec.
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Fig. 6. Digraph of the equivalent discrete-time
mass-spring system of Example 1.

Here, (c1, A) and (c2, A) are unobservable, while
(A, b1) and (A, b2) are controllable. Thus, the con-
ditions of Theorem 2 hold for any arrangement of
control agents. In other words, one can use sam-
pling with specific sampled-data hold functions to
construct two different hierarchical discrete-time
models, with either one of subsystems at a higher
level. For instance, let us assume that i1 = 1 and
i2 = 2 (which means that l1 = 1 and l2 = 2
in Theorem 2), and let us use equation (5b) to
obtain a sampled-data hold function for control
agent #2, so that the resultant discretized model
will be hierarchical with subsystem #1 at the
higher level. In this case, it can be shown that
for all values of the sampling period T , the vec-
tor [1 0 1 0 1 0]′ is a basis for the null-
space of c1(zI − Ad)−1 (in fact, the null-space
is one dimensional). Solving the minimum energy
problem for (5b), the sampled-data hold functions
of Figures 5 (a), (b), and (c) are obtained for
T = 0.5 sec, T = 2 sec, and T = 5 sec re-
spectively (Aghdam and Davison 2001). Let us
choose T = 5 sec. Applying the sampled-data
hold function of Figure 5 (c) to control agent #2,
and a simple zero-order hold to control agent #1,
the discrete-time hierarchical model of Figure 6 is
obtained. The transfer functions gd11(z), gd21(z),
gd22(z) are given by:

−0.1627(z4 − 6.295z3 + 7.274z2 − 4.752z + 1.175)

z5 − 2.450z4 + 3.045z3 − 2.449z2 + 1.187z − 0.3329
,

1.398(z5 − 1.190z4 + 1.706z3 − 1.137z2 + 0.5280z + 0.02318

z6 − 3.450z5 + 5.494z4 − 5.494z3 + 3.637z2 − 1.520z + 0.3329
,

0.1

z − 1
,

respectively. In addition, it can be easily verified
that the conditions of Theorem 3 for the given
model, GSHF, and sampling period hold true,
which implies that the equivalent discrete-time
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Fig. 7. Closed-loop simulations for Example 1.
(a) Samples of the output response in control
agent #1; (b) samples of the output response
in control agent #2; (c) Samples of the con-
trol signal in control agent #1; (d) samples
of the control signal in control agent #2.

model has no DFMs. This implies that one can
design a decentralized controller for this system
by applying a digital controller for each subsystem
independently, using centralized methods. For in-
stance, consider the controllers:

v11[k + 1] = v11[k] + 5(ym1[k] − yref,1), (7a)

v12[k + 1] = 0.6876v12[k] + ym1[k], (7b)

u1[k] = −0.3591ym1[k] − 0.005629v11[k] − 0.04669v12[k],
(7c)

and:

v21[k + 1] = v21[k] + 5(ym2[k] − yref,2), (8a)

v22[k + 1] = −0.8004v22[k] + ym2[k], (8b)

u2[k] = −9.393ym2[k] − 0.6006v21[k] − 1.086 × 10
−4

v22[k],
(8c)

which have been designed for subsystem #1 and
subsystem #2 respectively, independently of each
other, using centralized methods to solve the ro-
bust servomechanism problem. Here yref,1 and
yref,2 in (7) and (8) denote constant reference sig-
nals for control agent #1 and control agent #2 re-
spectively. The eigenvalues of the resultant closed-
loop discrete-time system corresponding to sub-
system #1 and subsystem #2 are given by:

sp1 = {0.9246, 0.2935 ± 0.7898i, 0.7906 ± 0.08309i, 0.5514 ± 0.5753i},

and:

sp2 = {−0.8004, 0.5303 ± 0.2824i}

respectively. The eigenvalues of the overall closed-
loop discrete-time system are thus given by:

sp = sp1 ∪ sp2.

Assume now that x[0] = [1 1 1 1 1 1]′ and
v11[0] = v12[0] = v21[0] = v22[0] = 0. Figures 7 (a)
and (b) give the outputs of the resultant closed-
loop system, for a unit step reference input in
control agent #1 and a zero reference input in
control agent #2, using the decentralized con-
troller (7), (8). The input signals, corresponding
to control agent #1 and control agent #2, are
given in Figures 7 (c) and (d), respectively.



It is to be noted that if an incorrect polarity
of inputs and outputs occurs in the plant to be
controlled, due to for example incorrect wiring,
the equivalent discrete-time model obtained pre-
serves its hierarchical structure (the correspond-
ing transfer functions may have different signs
however). Thus this implies that one can obtain
a solution to the decentralized adaptive switch-
ing control problem introduced in (Aghdam and
Davison 1999b) for this system by applying cen-
tralized switching control methods to each control
agent, and in this case it is guaranteed that each
subsystem will be “stabilized in a finite time”
(Aghdam and Davison 1999b). This observation
obtained is very important; for example when the
parameters of the mass-spring system are such
that the corresponding interconnections are not
weak enough to be ignored, this implies that the
continuous-time decentralized switching control
method proposed in (Aghdam and Davison 1999b)
may not be applicable, but that its discrete-
time counterpart, which employs the proposed
sampled-data hold functions described in this pa-
per can still be very effective.

5. CONCLUSION

A new application for generalized sampled-data
system control is introduced in this paper, which
has the property that it can be used to simplify
the structure of the resulting discretized model.
Conditions under which the resultant discretized
model can have a hierarchical digraph are dis-
cussed in the paper, and a method to synthesis
the corresponding sampled-data hold functions for
each control agent is presented. The motivation
for simplifying the plant structure to become hier-
archical, is that controller design, particularly for
decentralized control, can be greatly simplified.
For example, in decentralized control problems,
one can design a decentralized controller for the
system by applying centralized methods directly
to each control agent for such a hierarchical dis-
crete system. Simulation results are given in the
paper to show how such a discretization procedure
can result in a simple hierarchical digraph, and
thence simplify the decentralized controller design
problem in obtaining a solution to the robust
servomechanism problem.
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