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Abstract: In this work su¢cient time-varying conditions were established for assuring
local persistent excitation for identi…cation of a large class of nonlinearly parametrized
model structures under integral cost functionals of arbitrary degree. The conditions
are algebraic in nature. They can be set up o¤-line in a symbolic form and evaluated
on-line. The potential bene…t of these conditions mainly reclines in the design of
excitations for nonlinear system identi…cation. A simple method for optimal input
design is presented. Examples illustrate the features of the approach.
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1. INTRODUCTION

In many technical areas physical model structures
are common in the modelling of dynamic systems
from …rst principles, e.g., in chemical processes,
hydrodynamic and mechanical systems. They are
required in control, optimization and diagnosis
among other areas, specially when accuracy can-
not be reached by black-box or semiphysical mod-
els. However phenomenological relations are of-
ten characterized by a high degree of interaction
among parameters and variables involving tran-
scendent and trigonometric functions.

In parameter identi…cation or adaptive control
laws based on optimization of a cost functional,
these interactions can lead to a nonconvex search
problem upon a nonlinear parameterization in
time domain.

Nonconvex functionals are often characterized by
the presence of moving local minima and slots
in the parameter space. This makes generally
the search of the global minimum troublesome

1 The work carried out was supported by the Council for
Science and Technology, CONICET.

and imposes the adaptive law to exhibit certain
ability to sort eventual local minima. To this goal
tensorial information to construct adaptive laws is
necessary (Bambill and Jordán, 1999a), (Bambill
and Jordán, 1999b).

On the other side, it is well known that for
global convergence of parameters, not only global
identi…ability with respect to a nonlinear model
structure is required, but also the property of
persistent excitation in a …nite period of mea-
sures (Kreisselmeier and Rietze-Augst, 1990). The
concept of persistent excitation in a nonlinear
sense is not directly inferred from the well under-
stood homologous concept in Linear Estimation,
(Dasgupta et al., 1991). For the stationary state
this is more closer connected to frequency content
and multilevel amplitude in some unclear manner.
Some approaches are given for triangular model
structure and convex/concave parametrization in,
(Skantze et al., 2000).

When stating these conditions di¤erentially for
a general analytic nonlinear system, it is not
straightforward to established connections be-
tween the excitation and the regressor, i.e., be-
tween the richness of the input and the persistency

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



of excitation of the regressor, due to the complex-
ity of the model structure. If, on the contrary, it
is done algebraically, more simple relations could
be obtained.

The aim of this paper is to …nd su¢cient con-
ditions that ensure persistency of excitation in a
nonlinear sense and to relate these with the input
design for parameter estimation. The approach is
based on pure algebraic conditions that can be
tested on-line. Additionally links of the conditions
with the cost functional are found. Examples de-
pict the features of the proposed approach.

2. PROBLEM STATEMENT

The problem handled in this work concerns the de-
sign of input signals for a general class of nonlinear
systems in order to allow a speci…ed estimator to
…nd the values of the unknown system parameters
in an exponential or asymptotic form. As this
problem is closely joined with the identi…cation
problem, let us in this section relate the iden-
ti…ability concept together with the property of
appropriate system excitation.

2.1 System description

Let a nonlinear time-invariant system of order n
be described in input-output form

y(n) = Á(y(n¡1); :::; y; u(n¡½); :::; u; µ¤); (1)

with u the system input, y the system output,
u(i)and y(i) their respective derivatives, ½ > 0 the
relative degree and µ¤ an unknown parameter vec-
tor in a connected compact set Dµ ½ <n0 . The vec-
tor function Á is supposed Lipschitz-continuous on
Dµ , but not necessary in the variables. This last
relaxation enables the use of piecewise continuous
excitations. In the general case, Á is characterized
in nonalgebraic form, e.g., by means of transcen-
dent functions.

In the next, it is supposed that
©
u(i)

ª
with i =

1; :::; n ¡ ½, and
©
y(i)

ª
with i = 0; :::; n, are

measured in continuous time and bounded in
a …nite time interval [0; T ], T > 0, i.e., they
belong to L1e on [0; T ]. This assumption does not
exclude unstable modes of (1), but only eventual
…nite scape times must be located outside [0;T ].

2.2 Nonlinear estimation

Consider the model structure M(µ), where µ 2 Dµ

is a parameter vector variable. Accordingly, a
nonlinear regression is

y
(n)
µ = Á(y(n¡1); :::; y; u(n¡½); :::; u; µ), (2)

with y
(n)
µ the prediction of y(n).

The estimation of µ¤ can be formulated as an
unconstrained optimization problem

min
µ2Dµ

Vm(u¤(t); µ); (3)

for t 2 (0; T ] with

Vm(u¤(t); µ) :=
1

mt

tZ

0

"m(¿; µ)d¿; (4)

where m is an positive real value, u¤ is an optimal
excitation and

"(t; µ) = y(n)(t; µ¤) ¡ y(n)
µ (t; µ) (5)

is the estimation error.

2.3 Optimal excitation

Following de…nitions will be useful for further
development..

De…nition 1. (Convex lower bound). Let Vm be
uniformly locally convex about µ¤. Then Vm is
said to have a convex lower bound of degree q0 in
Dµ ½ <n0 such that Vm(t; µ) ¸ ¾ jµ ¡ µ¤jq0, with
¾ > 0, t 2 (0; T ], where q0 2 fqig is the minimal
power of the monomials (µi ¡ µ¤

i )
qi of the Taylor

series of Vm about µ¤ for i = 1; :::; n.

De…nition 2. (Optimal excitation). Given (1) with
M(µ¤), then the model structure M(µ) is said
globally identi…able at µ¤ with respect to Dµ on
[0; T ] if there exists at least one excitation signal
u = u¤ such that y(n)(u¤) 6= 0 and

y(n)(u¤) = y
(n)
µ (u¤); µ 2 Dµ

) µ¤ = µ; (6)

with u¤ 2 Du¤, where

Du¤ = fu : [0; T ] ! L1e jVm(u(t); µ) ¸ (7)

¾ jµ ¡ µ¤jq0 ; ¾ > 0; µ 2 Dµ

ª

3. INPUT DESIGN PROBLEM

This section deals with su¢cient conditions for
the existence of u¤ and with its optimal design.



3.1 Convex optimal excitation

For =0 the set of nonnegative integers and the
zero, ¹¾ = [¾1; :::; ¾n0

]T 2 =n0
0 and (µ ¡ µ¤)¹¾ :=

(µ1 ¡ µ¤
1)

¾1 :::(µn0
¡ µ¤

n0
)¾n0 , the Taylor series for

Vm about µ = µ¤ is

Vm(t; µ) =
1X

i=0

(µ ¡ µ¤)¹¾i

¾i1 ! :::¾ in0
!

Ã
@qiVm(t; µ)

@µ
¾i1
1 :::@µ

¾in0
n0

!¯̄
¯̄
¯
µ=µ¤

; (8)

with µi, µ¤
i components of µ and µ¤, and

qi = ®i1 + ::: + ®in0
= trace (¹¾i) ; (9)

is the power of the monomial i-th of the series. In
vector form

Vm(t; µ) =

1X

i=0

1

2t (i)!

0
@

µ
µT @

@µ

¶qi
tZ

0

"m(¿; µ)d¿

1
A

¯̄
¯̄
¯̄
µ=µ¤

(10)

where
³
µT @

@ µ

´
: C 1 ! < is an operator with

following properties

a)
µ

µT @

@µ

¶
Vm =

µ
µT @Vm

@µ

¶

= µ1
@Vm

@µ1

+ ::: + µn0

@Vm

@µn0

(11)

b)

µ
µT @

@µ

¶qi

Vm =

µ
µT @

@µ

¶
:::

µ
µT @Vm

@µ

¶
(12)

c)

µ
µT @

@µ

¶0

Vm = Vm; (13)

with C 1 the set of in…nitely di¤erentiable func-
tions on D µ . The next theorem is the main con-
tribution of the paper.

Theorem 1. (Persistent exciting regressor). Let Vm

in (4) be the cost functional for the estimation
of a nonlinear system of order n with unknown
parameter vector µ¤ 2 <n0 and model structure
M (µ). If

ai >
X

k

1- sign(bk)

2

1

2
jbk j +

X

k

1

2
jck j +

X

k

jdk j

(14)

with i = 1; :::; n0, where at µ¤

ai(t) =

tZ

0

µ
@"

@µi

¶m

d¿ (15)

bk(t) =

tZ

0

µ
@"

@µi

¶¾bi

:::

µ
@"

@µj

¶¾bj

d¿ (16)

ck(t) =

tZ

0

µ
@"

@µi

¶¾ci

:::

µ
@"

@µj

¶¾cj

d¿ (17)

dk(t) =

tZ

0

µ
@"

@µi

¶¾di

:::

µ
@"

@µj

¶¾dj

d¿; (18)

¾bi
; :::; ¾bj

2 =+
0 are all even

¾ci ; :::; ¾cj 2 =+
0 are all odd, with ¾ci = ::: = ¾cj

¾di ; :::; ¾dj 2 =+
0 , at least one of them is even,

with ¾bi + ::: + ¾bj = ¾ci + ::: + ¾cj = ¾di + ::: +
¾dj = m, then Vm is uniformly locally convex on
a region centered at µ = µ¤.

Proof : For Vm it holds

@qVm

@µ¾i
i :::@µ

¾j

j

(t; µ¤) = 0,

for q < m and q = ®i + ::: + ®j (19)

@mVm

@µ¾i
i :::@µ

¾j

j

(t; µ¤) =
(m ¡ 1)!

t

tZ

0

µ
@"

@µi
(¿; µ¤)

¶¾i

:::

µ
@"

@µj
(¿; µ¤)

¶¾j

d¿

with m = ®i + ::: + ®j : (20)

So the …rst (m ¡ 1) terms in (8) are null and Vm

has a lower convex bound with degree q0 = m.
Thus Vm is bounded from below for all t > 0 on a
region centered about µ¤ as

Vm(t; µ) = ¾0 Vm0(t; µ); (21)

with ¾0 a nonzero positive real constant and

Vm0(t; µ) =

1

t

0
@

µ
µT @

@µ

¶m
tZ

0

"m(¿; µ)

1
A

¯̄
¯̄
¯̄
µ=µ¤

: (22)

After applying
³
µT @

@ µ

´m

onto the integral in (22),

one achieves

Vm0
(t; µ) = (23)

(m ¡ 1)!

t (¾i)!:::(¾j)!
(µi ¡ µ¤

i )
¾i :::

¡
µj ¡ µ¤

j

¢¾j

0
@

tZ

0

µ
@"

@µi
(¿; µ¤)

¶¾i

:::

µ
@"

@µj
(¿; µ¤)

¶¾j

d¿

1
A

with ®i + ::: + ®j = m. Denote ~µi = (µi ¡ µ¤
i ) for

i = 1; :::; n0, and de…ne the vector ¹µ 2 B r ½ <nq ,
with nq =

¡m+n0¡1
m¡1

¢



¹µ =
³
~µ

¹¾1
; :::; ~µ

¹¾k
; :::; ~µ

¹¾nq

´T

(24)

~µ
¹¾k

= ~µ
¾k1

1
~µ

¾k2

2 :::~µ
¾kn0
n0

(25)

¹¾k =
¡
¾k1 ; ¾k2 ; :::;¾kn0

¢T
(26)

trace(¹¾k ) =
m

2
: (27)

Similarly let ' : (0; t] ! <nq be

'T (t;µ¤) =

n0Y

i=1

µ
@"

@µi
(¿ ; µ¤)

¶¾1i

; :::; (28)

n0Y

i=1

µ
@"

@µi
(¿; µ¤ )

¶¾ki

,...,
n0Y

i=1

µ
@"

@µi
(¿; µ¤)

¶¾nqi

:

Thus with (24) and (28)

Vm0(t; µ) =

¹µ
T

0
@ (m-1)!

t

tZ

0

' (¿; µ¤)'T (¿; µ¤) d¿

1
A ¹µ (29)

and ©m : (0; t] ! <nq£nq be

©m (t; µ¤)=
(m-1)!

t

tZ

0

' (¿ ; µ¤) 'T (¿ ;µ¤) d¿;(30)

Vm0
(t; µ¤) = ¹µ

T
©m (t; µ¤) ¹µ: (31)

With Áij being an element of ©mand 'i an ele-
ment of ', clearly, Áij = 'i'j and Áij = Áji.

The rest of the proof consists of demonstrating un-
der what conditions Vm0

(t; µ¤) is positive de…nite,
since under the same conditions Vm(t; µ¤) will be
positive de…nite too. Clearly (31) is a quadratic
form for m = 2 and so the condition Vm0

(t; µ¤) to
be convex about µ¤ is ©m (t; µ¤ ) = 0. For m 6= 2
to be positive de…nite more complex relations are
needed to be satis…ed. Let the function elements
Áij be classi…ed according to the sign de…niteness
of the monomials in (29). Thus

for µm
i ! ak = Áii =

tZ

0

µ
@"

@µi

m¶
d¿

for µ
¾bi
i :::µ

¾bj

j ,
©
¾bi ; :::; ¾bj

ª
even !

bk = Áij =

tZ

0

µ
@"

@µi

¾di

:::
@"

@µj

¾bj
¶

d¿

for µ
¾c

i
i :::µ

¾ci
j , ¾ci

odd

ck = Áij =

tZ

0

µ
@"

@µi

¾ci

:::
@"

@µj

¾ci
¶

d¿

for µ
¾di
i :::µ

¾dj

j ,
©
¾di

; :::; ¾dj

ª
even/odd !

dk = Áij =

tZ

0

µ
@"

@µi

¾di

:::
@"

@µj

¾dj
¶

d¿
(32)

where ¾bi + ::: + ¾bj = ¾ci + ::: + ¾cj =
¾di + ::: + ¾dj = m. Hence the monomials
(m¡1)!

t
ai(t) µm

i are uniformly positive de…nite, the

monomials (m¡1)!
t bk (t) µ

¾bi
i :::µ

¾bj

j are positive or
negative semide…nite depending on the sign of
bk, the monomials (m¡1)!

t ck (t) µ
¾ci

i :::µ
¾cj

j are sym-
metric and sign unde…ned, and the monomials
(m¡1)!

t
dk (t) µ

¾di
i :::µ

¾dj

j are antisymmetric and sign
unde…ned. Therefore

bk (t) µ¹¾bk = ¡
n0X

i=1

1- sign(bk)

4
jbk(t)j µm

i (33)

ck (t) µ¹¾ck = ¡
n0X

i=1

1

2
jck(t)j µm

i : (34)

Additionally all dk ’s have the same sign, since
the function dk(t) =

R t

0
@"
@µi

¾di ::: @ "
@µj

¾dj d¿ is an-
tisymmetric and has a dual function with the
same structure but interchanged time variables,
i.e.,

R t

0
@"

@ µj

¾di ::: @ "
@µi

¾dj d¿ . Thus

ck (t) µ¹¾di = ¡
n0X

i=1

1

2
jdk (t)j µm

i : (35)

Then with (33)-(35)

Vm0 =
n0X

i=1

"
ai(t)-

X

k

1- sign(bk )

4
jbk (t)j

¡
X

k

1

2
jck (t)j ¡

X

k

jdk(t)j
#

µm
i (36)

and for Vm0 to be positive de…nite it is su¢cient
that for i = 1; :::; n0

ai(t) >
X

k

1 ¡ sign(bk )

4
jbk(t)j +

X

k

1

2
jck(t)j ¡

X

k

jdk(t)j : (37)

Consequently Vm is convex on a region centered
about µ¤ .

3.2 Applications to local input design

The su¢cient conditions found in theorem (1) can
be applied to solve the problem of optimal input
design in the sense of achieving identi…ability.
The idea of taking advantage of simple algebraic
conditions is the base of the following description.



Next one presents a methodology for input design
could be settled in a simple form. This is the basis
for more sophisticated algorithms.

To this goal consider the family of piecewise
constant functions u with a set of amplitudes

Su =
©
¡sp; ¡s p¡1; :::; ¡s1; 0 ; s1; :::; s p¡1; s p

ª

and a set of time intervals S t i= f[ti¡1; ti)g, with
ti 2 =+

0 and ti > ti¡1. Besides consider a signal
u : S ti ! S u such that

u(t) = u¤(t) = sj for t 2 S t i and sj 2 S u :(38)

The next step in the design consists in selecting
the amplitude at every time ti where an eventual
change of amplitude is subject to the satisfaction
of conditions (14). The additional task is to decide
in which direction, i.e., upstairs or downstairs in
the levels of u¤ is changed. This will be accom-
plished by

max
sj2S u

(ai -
P

k
1- sign(bk)

4 jbkj-
P

k
1
2 jck j-

P
k jdk j):

Here the µ(t) of the adaptive law trajectory is
taking as the center point to evaluate ai, bi , ci,
and di.As the n0 algebraic conditions are easy to
compute numerically, the test can be veri…ed on-
line without too much time consuming.

If one condition in (14) is violated during the
input generation, this is not necessary a symptom
of nonconvexity. However, it may mean the para-
meter tra jectory is crossing a nonconvex zone. A
tensor-based adaptive law can provide insight in
neighboring zones in order to direct the trajectory
to a convex region. Two algorithms with these
features are presented in (Bambill and Jordán,
1999a), (Bambill and Jordán, 1999b).

3.3 Example 1

Let the nonlinear dynamic system and regressor
be described respectively by

Äy(t) = ¡ sin3(µ¤
1 _y) ¡ 2eµ¤

2y+µ¤
3u¡1 (39)

Äyµ(t; µ)= ¡ sin3(µ1 _y) ¡ 2eµ2y+µ3u¡1; (40)

which is Lipschitz continuous in the space of …nite
parameters and bounded signals. Using m = 2 in
Vm it results q0 = 2 and

@2V2

@µ2
(t;µ¤) = ©(t;µ¤) (41)

a1 =
9

t

tZ

0

_y2 cos2(µ¤
1 _y) sin4(µ¤

1 _y)d¿

a2 =
1

t

tZ

0

y2 exp(2µ¤
2y + 2µ¤

3u)d¿

a3 =
1

t

tZ

0

u2 exp(2µ¤
2y + 2µ¤

3u)d¿

c1;2=
3

t

tZ

0

_yy exp(2µ¤
2y+2µ¤

3u) cos(µ¤
1 _y) sin2(µ¤

1 _y)d¿

c3;4=
3

t

tZ

0

_yu exp(2µ¤
2y+2µ¤

3u) cos(µ¤
1 _y) sin2(µ¤

1 _y)d¿

c5;6 =
1

t

tZ

0

y exp(2µ¤
2y+2µ¤

3u)d¿ :

The su¢cient conditions (14) require

sign (c3(u)) = sign (c5(u)) (42)
8
>>>><
>>>>:

a1(u) >
1

2
jc1(u)j +1

2
jc3(u)j+1

2
jc5(u)j

a2(u) >
1

2
jc1(u)j +1

2
jc3(u)j+1

2
jc5(u)j

a3(u) >
1

2
jc1(u)j +1

2
jc3(u)j+1

2
jc5(u)j

:

The (42) implies

sign

tZ

0

_yucos(µ¤
1 _y)d¿ = sign

tZ

0

yd¿: (43)

It could appear that classic conditions (det(©(u)) 6=
0) are more easily to check, but it is apparently.
First, by complex relations in M µ , testing condi-
tion ©(u) > 0 at every time may be cumbersome.
The su¢cient conditions (14), on the contrary,
can be handled on-line much more easily. Second,
©(u) > 0 is valid only for m = 2, while conditions
(14) are general. The next example illustrates this
feature.

3.4 Example 2

Let the nonlinear dynamic system and regressor
be described respectively by

_y(t) = sin1=3(µ¤
1y + µ¤

2u) (44)

_yµ(t) = sin1=3(µ1y + µ2u): (45)

Since often one is interested in using gradient-
based algorithms for parameter estimation, in
which the gradient be simply proportional to µ,
the cost functional is designed for having locally
quadratic order of magnitude. Thus, one chooses
m = 6. Consequently at µ¤ it holds V6 = @V6

@ µ
=

@ 2V6

@µ2 = @V 3
6

@µ3 = @V 4
6

@µ4 = @V 5
6

@µ5 = 0, and

¹µ(t) =
³
~µ

3

1;
~µ

3

2;
~µ

2

1
~µ2;~µ1

~µ
2

2

´T

(46)

@6V6

@µ6
(t; µ¤) = ©6(t; µ

¤) 2 [0; t] £ <4 x4 : (47)



The su¢cient conditions (14) for V6 > 0 require

sign

tZ

0

y5u
cos5 (µ¤

1y)

sin10=3 (µ¤
1y)

cos (µ¤
2u)

sin2=3 (µ¤
2u)

d¿ =

sign

tZ

0

yu5 cos (µ¤
1y)

sin2=3 (µ¤
1y)

cos5 (µ¤
2u)

sin10=3 (µ¤
2u)

d¿

(48)

0 <

tZ

0

y6 cos4 (µ¤
1y)

sin2 (µ¤
1y)

d¿ ¡

2

¯̄
¯̄
¯̄

tZ

0

y3u3 cos3 (µ¤
1y)

sin (µ¤
1y)

cos3 (µ¤
2u)

sin (µ¤
2u)

d¿

¯̄
¯̄
¯̄ ¡

¯̄
¯̄
¯̄

tZ

0

Ã
y5u

cos5 (µ¤
1y)

sin10=3 (µ¤
1y)

cos (µ¤
2u)

sin2=3 (µ¤
2u)

+

yu5 cos (µ¤
1y)

sin2=3 (µ¤
1y)

cos5 (µ¤
2u)

sin10=3 (µ¤
2u)

d¿

!¯̄
¯̄
¯

(49)

0 <

tZ

0

u6 cos4 (µ¤
2u)

sin2 (µ¤
2u)

d¿¡

2

¯̄
¯̄
¯̄

tZ

0

y3u3 cos3 (µ¤
1y)

sin (µ¤
1y)

cos3 (µ¤
2u)

sin (µ¤
2u)

d¿

¯̄
¯̄
¯̄ ¡

¯̄
¯̄
¯̄

tZ

0

Ã
y5u

cos5 (µ¤
1y)

sin10=3 (µ¤
1y)

cos (µ¤
2u)

sin2=3 (µ¤
2u)

+

yu5 cos (µ¤
1y)

sin2=3 (µ¤
1y)

cos5 (µ¤
2u)

sin10=3 (µ¤
2u)

!¯̄
¯̄
¯ :

(50)

Conditions (49)-(50) are now checked for a single-
harmonic signal u(t) = 1:8 sin(3t) (Fig. 1, bottom)
and for an optimal signal u¤(t) (Fig. 2, bottom)
according to our presented approach. Condition
(49) is violated permanently by u(t). It is worth
noticing that in the linear case this u(t) would be
rich of order two, i.e., it is su¢cient for estimating
two parameters. Finally an optimal multilevel ex-
citation generated for …xed changing time points
satis…es (49)-(50) permanently after an insigni…-
cant violation of (49) at the beginning.

4. CONCLUSIONS

In this work su¢cient time-varying conditions
were established for assuring local persistent ex-
citation for identi…cation of a large class of non-
linearly parametrized model structures under in-
tegral cost functionals of arbitrary degree. The
conditions are algebraic in nature. They can be
set up o¤-line in a symbolic form and evaluated
on-line. The potential bene…t of these conditions
mainly reclines in the design of excitations for
nonlinear system identi…cation. A simple method
for optimal input design is presented. Examples
illustrate the features of our approach.
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Fig. 1. PE conditions for a non-rich single-
harmonic input u(t) (Condition 1 is violated
permanently)
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